Journal Home > Volume 17 , Issue 4

Oil pollution is a serious environmental and natural resource problem. Traditional adsorption materials for oil–water separation have limitations in terms of their preparation cost, reusability, and mechanical properties. Among the conventional adsorption materials, super-hydrophobic/super-lipophilic materials are easily contaminated by oil. In this study, polypropylene (PP) is used as a foam substrate to prepare an open-cell PP foam via hot pressing, supercritical CO2 foaming, and electron beam (EB) irradiation. The impact of EB irradiation dose on the open-cell content of PP foam can lead to cell wall rupture, resulting in an open-cell structure that enhances oil-water separation performance. At an absorbed radiation dose of 200 kGy, the PP foams exhibit optimal oil–water separation performance, cyclic compression stability, heat insulation, and preparation cost. The open-cell content of PP foam is increased to 86.5%, the adsorption capacity for diesel oil is 42.8 g/g, and the adsorption efficiency remains at 99.6% after 100 cycles of oil desorption in a complex pH environment. Meanwhile, cracks and nano-voids simultaneously promote the capillary action of oil, and the oil transport rate is 0.0713 g/(g·s). This study provides a new concept for the preparation of open-cell polymer foams that can meet the demand for high oil-absorption capacity under complex acid-base pH conditions.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

A scalable versatile methodology to construct micro/nano open-cell polypropylene foam with high oil adsorption capacity and speed

Show Author's information Chenguang Yang1,§( )Dechang Tao1,§Kun Yan1Zhiyao Li1Qingshi Guo1Wenwen Wang1( )Dong Wang1,2( )
Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Wuhan Textile University, Wuhan 430200, China
College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China

§ Chenguang Yang and Dechang Tao contributed equally to this work.

Abstract

Oil pollution is a serious environmental and natural resource problem. Traditional adsorption materials for oil–water separation have limitations in terms of their preparation cost, reusability, and mechanical properties. Among the conventional adsorption materials, super-hydrophobic/super-lipophilic materials are easily contaminated by oil. In this study, polypropylene (PP) is used as a foam substrate to prepare an open-cell PP foam via hot pressing, supercritical CO2 foaming, and electron beam (EB) irradiation. The impact of EB irradiation dose on the open-cell content of PP foam can lead to cell wall rupture, resulting in an open-cell structure that enhances oil-water separation performance. At an absorbed radiation dose of 200 kGy, the PP foams exhibit optimal oil–water separation performance, cyclic compression stability, heat insulation, and preparation cost. The open-cell content of PP foam is increased to 86.5%, the adsorption capacity for diesel oil is 42.8 g/g, and the adsorption efficiency remains at 99.6% after 100 cycles of oil desorption in a complex pH environment. Meanwhile, cracks and nano-voids simultaneously promote the capillary action of oil, and the oil transport rate is 0.0713 g/(g·s). This study provides a new concept for the preparation of open-cell polymer foams that can meet the demand for high oil-absorption capacity under complex acid-base pH conditions.

Keywords: electron beam irradiation, oil/water separation, cyclic compression, complex acid-base pH conditions, open-cell polypropylene (PP) foam

References(68)

[1]

Jernelöv, A. How to defend against future oil spills. Nature 2010, 466, 182–183.

[2]

Joye, S. B. Deepwater horizon, 5 years on. Science 2015, 349, 592–593.

[3]

Bi, H. C.; Yin, Z. Y.; Cao, X. H.; Xie, X.; Tan, C. L.; Huang, X.; Chen, B.; Chen, F. T.; Yang, Q. L.; Bu, X. Y. et al. Carbon fiber aerogel made from raw cotton: A novel, efficient and recyclable sorbent for oils and organic solvents. Adv. Mater. 2013, 25, 5916–5921.

[4]

Kintisch, E. An audacious decision in crisis gets cautious praise. Science 2010, 329, 735–736.

[5]

Lahann, J. Nanomaterials clean up. Nat. Nanotechnol. 2008, 3, 320–321.

[6]

Schindler, D. Tar sands need solid science. Nature 2010, 468, 499–501.

[7]

Resendes, J.; Shiu, W. Y.; Mackay, D. Sensing the fugacity of hydrophobic organic chemicals in aqueous systems. Environ. Sci. Technol. 1992, 26, 2381–2387.

[8]

Bi, H. C.; Xie, X.; Yin, K. B.; Zhou, Y. L.; Wan, S.; He, L. B.; Xu, F.; Banhart, F.; Sun, L. T.; Ruoff, R. S. Spongy graphene as a highly efficient and recyclable sorbent for oils and organic solvents. Adv. Funct. Mater. 2012, 22, 4421–4425.

[9]

Bastani, D.; Safekordi, A. A.; Alihosseini, A.; Taghikhani, V. Study of oil sorption by expanded perlite at 298.15 K. Sep. Purif. Technol. 2006, 52, 295–300.

[10]

Radetić, M. M.; Jocić, D. M.; Jovančić, P. M.; Petrović, Z. L.; Thomas, H. F. Recycled wool-based nonwoven material as an oil sorbent. Environ. Sci. Technol. 2003, 37, 1008–1012.

[11]

Bayat, A.; Aghamiri, S. F.; Moheb, A.; Vakili-Nezhaad, G. R. Oil spill cleanup from sea water by sorbent materials. Chem. Eng. Technol. 2005, 28, 1525–1528.

[12]

Wang, T. C.; Xing, L. L.; Qu, M. C.; Pan, Y. M.; Liu, C. T.; Shen, C. Y.; Liu, X. H. Superhydrophobic polycarbonate blend monolith with micro/nano porous structure for selective oil/water separation. Polymer 2022, 253, 124994.

[13]

Gu, H. B.; Liu, C. T.; Zhu, J. H.; Gu, J. W.; Wujcik, E. K.; Shao, L.; Wang, N.; Wei, H. G.; Scaffaro, R.; Zhang, J. X. et al. Introducing advanced composites and hybrid materials. Adv. Compos. Hybrid Mater. 2018, 1, 1–5.

[14]

Li, A.; Sun, H. X.; Tan, D. Z.; Fan, W. J.; Wen, S. H.; Qing, X. J.; Li, G. X.; Li, S. Y.; Deng, W. Q. Superhydrophobic conjugated microporous polymers for separation and adsorption. Energy Environ Sci. 2011, 4, 2062–2065.

[15]

Tang, X.; Zhu, P. A.; Tian, Y.; Zhou, X. C.; Kong, T. T.; Wang, L. Q. Mechano-regulated surface for manipulating liquid droplets. Nat. Commun. 2017, 8, 14831.

[16]

Li, H. Z.; Fang, W.; Zhao, Z. P.; Li, A.; Li, Z.; Li, M. Z.; Li, Q. Y.; Feng, X. Q.; Song, Y. L. Droplet precise self-splitting on patterned adhesive surfaces for simultaneous multidetection. Angew. Chem., Int. Ed. 2020, 59, 10535–10539.

[17]

Camilli, L.; Pisani, C.; Gautron, E.; Scarselli, M.; Castrucci, P.; D’Orazio, F.; Passacantando, M.; Moscone, D.; De Crescenzi, M. A three-dimensional carbon nanotube network for water treatment. Nanotechnology 2014, 25, 065701.

[18]

Lei, W. W.; Portehault, D.; Liu, D.; Qin, S.; Chen, Y. Porous boron nitride nanosheets for effective water cleaning. Nat. Commun. 2013, 4, 1777.

[19]

Wu, J. F.; Su, Y. X.; Cui, Z. W.; Yu, Y.; Qu, J. F.; Hu, J. D.; Cai, Y. H.; Li, J. Z.; Tian, D.; Zhang, Q. C. Flexible, durable, and anti-fouling nanocellulose-based membrane functionalized by block copolymer with ultra-high flux and efficiency for oil-in-water emulsions separation. Nano Res. 2023, 16, 5665–5675.

[20]

Yang, C.; Kaipa, U.; Mather, Q. Z.; Wang, X. P.; Nesterov, V.; Venero, A. F.; Omary, M. A. Fluorous metal-organic frameworks with superior adsorption and hydrophobic properties toward oil spill cleanup and hydrocarbon storage. J. Am. Chem. Soc. 2011, 133, 18094–18097.

[21]

Gu, H. B.; Gao, C.; Zhou, X. M.; Du, A.; Naik, N.; Guo, Z. H. Nanocellulose nanocomposite aerogel towards efficient oil and organic solvent adsorption. Adv. Compos. Hybrid Mater. 2021, 4, 459–468.

[22]

Zhang, M. T.; Su, M.; Qin, Y. J.; Liu, C. T.; Shen, C. Y.; Ma, J.; Liu, X. H. Photothermal ultra-high molecular weight polyethylene/MXene aerogel for crude oil adsorption and water evaporation. 2D Mater. 2023, 10, 024007.

[23]

Rizvi, A.; Chu, R. K. M.; Lee, J. H.; Park, C. B. Superhydrophobic and oleophilic open-cell foams from fibrillar blends of polypropylene and polytetrafluoroethylene. ACS Appl. Mater. Interfaces 2014, 6, 21131–21140.

[24]

Yeh, S. K.; Tsai, Y. B.; Gebremedhin, K. F.; Chien, T. Y.; Chang, R. Y.; Tung, K. L. Preparation of polypropylene/high-melt-strength PP open-cell foam for oil absorption. Polym. Eng. Sci. 2021, 61, 1139–1149.

[25]

Zhao, J. C.; Wang, G. L.; Chen, Z. L.; Huang, Y. F.; Wang, C. D.; Zhang, A. M.; Park, C. B. Microcellular injection molded outstanding oleophilic and sound-insulating PP/PTFE nanocomposite foam. Compos. Part B:Eng. 2021, 215, 108786.

[26]

Cui, Z. X.; Marcelle, S. S. A.; Zhao, M. L.; Wu, J. H.; Liu, X. H.; Si, J. H.; Wang, Q. T. Thermoplastic polyurethane/titania/polydopamine (TPU/TiO2/PDA) 3-D porous composite foam with outstanding oil/water separation performance and photocatalytic dye degradation. Adv. Compos. Hybrid Mater. 2022, 5, 2801–2816.

[27]

Hou, J. J.; Zhao, G. Q.; Zhang, L.; Wang, G. L.; Li, B. High-expansion polypropylene foam prepared in non-crystalline state and oil adsorption performance of open-cell foam. J. Colloid Interf. Sci. 2019, 542, 233–242.

[28]

Jiao, L.; Wu, Y. X.; Hu, Y. J.; Wu, H. P.; Xu, Z.; Han, L.; Guo, Q. Q.; Li, D. L.; Chen, R. Oil/water microreactor with a core-shell wetting state on a SOB/OL-SHB/HL multilevel patterned surface. J. Phys. Chem. C 2021, 125, 27771–27783.

[29]

Li, B.; Zhao, G. Q.; Wang, G. L.; Zhang, L.; Gong, J.; Shi, Z. L. Biodegradable PLA/PBS open-cell foam fabricated by supercritical CO2 foaming for selective oil-adsorption. Sep. Purif. Technol. 2021, 257, 117949.

[30]

Pang, Y. Y.; Cao, Y. Y.; Guo, B. J.; Zhou, H. F.; Fang, W. X.; Li, J.; Liu, X. R.; Zhou, Y. B.; Weng, Y. X.; Zheng, W. G. Unprecedented cell structure variation in multilayered alternating PS/PS-SiO2 foams. ACS Appl. Polym. Mater. 2021, 3, 2687–2693.

[31]

Guo, Q. S.; Shi, D. A.; Yang, C. G.; Wu, G. Z. Supercritical CO2 assisted construction of carbon black/polypropylene composite foams with bioinspired open-cell micro-nano hierarchical structure and outstanding performance for oil/water separation. J. Supercrit. Fluids 2022, 181, 105466.

[32]

Pang, Y. Y.; Cao, Y. Y.; Zheng, W. G.; Park, C. B. A comprehensive review of cell structure variation and general rules for polymer microcellular foams. Chem. Eng. J. 2022, 430, 132662.

[33]

Huang, P. K.; Wu, F.; Shen, B.; Ma, X. H.; Zhao, Y. Q.; Wu, M. H.; Wang, J.; Liu, Z. H.; Luo, H. B.; Zheng, W. G. Bio-inspired lightweight polypropylene foams with tunable hierarchical tubular porous structure and its application for oil-water separation. Chem. Eng. J. 2019, 370, 1322–1330.

[34]

Rizvi, A.; Tabatabaei, A.; Vahedi, P.; Mahmood, S. H.; Park, C. B. Non-crosslinked thermoplastic reticulated polymer foams from crystallization-induced structural heterogeneities. Polymer 2018, 135, 185–192.

[35]

Lee, P. C.; Wang, J.; Park, C. B. Extruded open-cell foams using two semicrystalline polymers with different crystallization temperatures. Ind. Eng. Chem. Res. 2006, 45, 175–181.

[36]

Kuang, T. R.; Chen, F.; Chang, L. Q.; Zhao, Y. N.; Fu, D. J.; Gong, X.; Peng, X. F. Facile preparation of open-cellular porous poly (L-lactic acid) scaffold by supercritical carbon dioxide foaming for potential tissue engineering applications. Chem. Eng. J. 2017, 307, 1017–1025.

[37]

Li, B.; Ma, X. W.; Zhao, G. Q.; Wang, G. L.; Zhang, L.; Gong, J. Green fabrication method of layered and open-cell polylactide foams for oil-sorption via pre-crystallization and supercritical CO2-induced melting. J. Supercrit. Fluids 2020, 162, 104854.

[38]

Li, D. C.; Liu, T.; Zhao, L.; Lian, X. S.; Yuan, W. K. Foaming of poly(lactic acid) based on its nonisothermal crystallization behavior under compressed carbon dioxide. Ind. Eng. Chem. Res. 2011, 50, 1997–2007.

[39]

Kong, W. L.; Bao, J. B.; Wang, J.; Hu, G. H.; Xu, Y.; Zhao, L. Preparation of open-cell polymer foams by CO2 assisted foaming of polymer blends. Polymer 2016, 90, 331–341.

[40]

Ju, J. J.; Gu, Z. P.; Liu, X. H.; Zhang, S. D.; Peng, X. F.; Kuang, T. R. Fabrication of bimodal open-porous poly (butylene succinate)/cellulose nanocrystals composite scaffolds for tissue engineering application. Int. J. Biol. Macromol. 2020, 147, 1164–1173.

[41]

Wang, X. X.; Li, W.; Kumar, V. A method for solvent-free fabrication of porous polymer using solid-state foaming and ultrasound for tissue engineering applications. Biomaterials 2006, 27, 1924–1929.

[42]

Xu, L. Q.; Qian, S. P.; Zheng, W. G.; Bai, Y. K.; Zhao, Y. Q. Formation mechanism and tuning for bimodal open-celled structure of cellulose acetate foams prepared by supercritical CO2 foaming and poly(ethylene glycol) leaching. Ind. Eng. Chem. Res. 2018, 57, 15690–15696.

[43]

Kohlhoff, D.; Ohshima, M. Open cell microcellular foams of polylactic acid (PLA)-based blends with semi-interpenetrating polymer networks. Macromol. Mater. Eng. 2011, 296, 770–777.

[44]

Fang, Y. W.; Bao, J. B.; Yan, H. K.; Sun, W.; Zhao, L.; Hu, G. H. Preparation of open-cell foams from polymer blends by supercritical CO2 and their efficient oil-absorbing performance. AIChE J. 2016, 62, 4182–4185.

[45]

Mi, H. Y.; Jing, X.; Liu, Y. J.; Li, L. W.; Li, H.; Peng, X. F.; Zhou, H. M. Highly durable superhydrophobic polymer foams fabricated by extrusion and supercritical CO2 foaming for selective oil absorption. ACS Appl. Mater. Interfaces 2019, 11, 7479–7487.

[46]

Yang, L. F.; Feng, Y. P.; He, Z. Y.; Jiang, X. Y.; Luo, X. F.; Dai, H. Y.; Jiang, L. Fast processing nylon mesh by surface diffuse atmospheric plasma for large-area oil/water separation. Nano Res. 2023, 16, 9625–9632.

[47]

Yang, C. G.; Xing, Z.; Zhang, M. X.; Zhao, Q.; Wang, M. H.; Wu, G. Z. Supercritical CO2 foaming of radiation crosslinked polypropylene/high-density polyethylene blend: Cell structure and tensile property. Radiat. Phys. Chem. 2017, 141, 276–283.

[48]

Yang, C. G.; Yan, K.; Wen, X.; Cai, P. J.; Wu, G. Z. Radiation grafting assisted preparation of layered structure polypropylene foam with superthermal insulation and hydrophobic properties via a supercritical CO2 batch foaming process. Ind. Eng. Chem. Res. 2021, 60, 3799–3808.

[49]

Yang, C. G.; Zhe, X.; Zhang, M. X.; Wang, M. H.; Wu, G. Z. Radiation effects on the foaming of atactic polypropylene with supercritical carbon dioxide. Radiat. Phys. Chem. 2017, 131, 35–40.

[50]

Wen, X.; Li, Z. Y.; Yang, C. G.; Yan, K.; Wu, G. Z.; Wang, D. Electron beam irradiation assisted preparation of UHMWPE fiber with 3D cross-linked structure and outstanding creep resistance. Radiat. Phys. Chem. 2022, 199, 110370.

[51]

Cherukupally, P.; Sun, W.; Wong, A. P. Y.; Williams, D. R.; Ozin, G. A.; Bilton, A. M.; Park, C. B. Surface-engineered sponges for recovery of crude oil microdroplets from wastewater. Nat. Sustain. 2020, 3, 136–143.

[52]

Wang, X. L.; Pan, Y. M.; Liu, X. H.; Liu, H.; Li, N.; Liu, C. T.; Schubert, D. W.; Shen, C. Y. Facile fabrication of superhydrophobic and eco-friendly poly(lactic acid) foam for oil-water separation via skin peeling. ACS Appl. Mater. Interfaces 2019, 11, 14362–14367.

[53]

Zhang, K. Q.; Xu, F.; Gao, Y. F. Superhydrophobic and oleophobic dual-function coating with durablity and self-healing property based on a waterborne solution. Appl. Mater. Today 2021, 22, 100970.

[54]

Tang, L.; Tang, Y. S.; Zhang, J. L.; Lin, Y. H.; Kong, J.; Zhou, K.; Gu, J. W. High-strength super-hydrophobic double-layered PBO nanofiber-polytetrafluoroethylene nanocomposite paper for high-performance wave-transparent applications. Sci. Bull. 2022, 67, 2196–2207.

[55]

Liu, Z.; Fan, X. L.; Zhang, J. L.; Chen, L. X.; Tang, Y. S.; Kong, J.; Gu, J. W. PBO fibers/fluorine-containing liquid crystal compound modified cyanate ester wave-transparent laminated composites with excellent mechanical and flame retardance properties. J. Mater. Sci. Technol. 2023, 152, 16–29.

[56]

Zhou, C. L.; Cheng, J.; Hou, K.; Zhao, A.; Pi, P. H.; Wen, X. F.; Xu, S. P. Superhydrophilic and underwater superoleophobic titania nanowires surface for oil repellency and oil/water separation. Chem. Eng. J. 2016, 301, 249–256.

[57]

Zhou, C. L.; Chen, Z. D.; Yang, H.; Hou, K.; Zeng, X. J.; Zheng, Y. F.; Cheng, J. Nature-inspired strategy toward superhydrophobic fabrics for versatile oil/water separation. ACS Appl. Mater. Interfaces 2017, 9, 9184–9194.

[58]

Raturi, P.; Yadav, K.; Singh, J. P. ZnO-nanowires-coated smart surface mesh with reversible wettability for efficient on-demand oil/water separation. ACS Appl. Mater. Interfaces 2017, 9, 6007–6013.

[59]

Young, T. III. An essay on the cohesion of fluids. Philos. Trans. Roy. Soc. London 1805, 95, 65–87.

[60]

Cassie, A. B. D.; Baxter, S. Wettability of porous surfaces. Trans. Faraday Soc. 1944, 40, 546–551.

[61]

Jung, Y. C.; Bhushan, B. Wetting behavior of water and oil droplets in three-phase interfaces for hydrophobicity/philicity and oleophobicity/philicity. Langmuir 2009, 25, 14165–14173.

[62]
Chung, T. C.; Yuan, X. P. Methods and materials for hydrocarbon recovery. WO 2012024614A2, February 23, 2012.
[63]

Zhao, J.; Xiao, C. F.; Xu, N. K. Evaluation of polypropylene and poly (butylmethacrylate-co-hydroxyethylmethacrylate) nonwoven material as oil absorbent. Environ. Sci. Pollut. Res. 2013, 20, 4137–4145.

[64]

Wang, C. F.; Lin, S. J. Robust superhydrophobic/superoleophilic sponge for effective continuous absorption and expulsion of oil pollutants from water. ACS Appl. Mater. Interfaces 2013, 5, 8861–8864.

[65]

Likon, M.; Remškar, M.; Ducman, V.; Švegl, F. Populus seed fibers as a natural source for production of oil super absorbents. J. Environ. Manage. 2013, 114, 158–167.

[66]

Dong, T.; Wang, F. M.; Xu, G. B. Theoretical and experimental study on the oil sorption behavior of kapok assemblies. Ind. Crops Prod. 2014, 61, 325–330.

[67]

Yi, L. F.; Yang, J. Y.; Fang, X.; Xia, Y.; Zhao, L. J.; Wu, H.; Guo, S. Y. Facile fabrication of wood-inspired aerogel from chitosan for efficient removal of oil from Water. J. Hazard. Mater. 2020, 385, 121507.

[68]

Wang, S. S.; Wang, K.; Pang, Y. Y.; Li, Y.; Wu, F.; Wang, S.; Zheng, W. G. Open-cell polypropylene/polyolefin elastomer blend foams fabricated for reusable oil-sorption materials. J. Appl. Polym. Sci. 2016, 133, 43812.

File
12274_2023_6165_MOESM1_ESM.pdf (1.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 31 July 2023
Revised: 03 September 2023
Accepted: 05 September 2023
Published: 30 September 2023
Issue date: April 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 12205225, U20A20257, and 51873166).

Return