Journal Home > Volume 17 , Issue 4

Layered trihalides exhibit distinctive band structures and physical properties due to the sixfold coordinated 3d or 4d transition metal site and partially occupied d orbitals, holding great potential in condensed matter physics and advanced electronic applications. Prior research focused on trihalides with highly symmetric honeycomb-like structures, such as CrI3 and α-RuCl3, while the role of crystal anisotropy in trihalides remains elusive. In particular, the trihalide MoCl3 manifests strong in-plane crystal anisotropy with the largest difference in Mo–Mo interatomic distances. Research on such material is imperative to address the lack of investigations on the effect of anisotropy on the properties of trihalides. Herein, we demonstrated the anisotropy of MoCl3 through polarized Raman spectroscopy and further tuned the phonon frequency via strain engineering. We showed the Raman intensity exhibits twofold symmetry under parallel configuration and fourfold symmetry under perpendicular configuration with changing the polarization angle of incident light. Furthermore, we found that the phonon frequencies of MoCl3 decrease gradually and linearly with applying uniaxial tensile strain along the axis of symmetry in the MoCl3 crystal, while those frequencies increase with uniaxial tensile strain applied perpendicularly. Our results shed light on the manipulation of anisotropic light-matter interactions via strain engineering, and lay a foundation for further exploration of the anisotropy of trihalides and the modulation of their electronic, optical, and magnetic properties.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Unravelling the anisotropic light-matter interaction in strain-engineered trihalide MoCl3

Show Author's information Yuxuan Sun,§Ziang Liu,§Zeya Li,§Feng QinJunwei HuangCaiyu Qiu( )Hongtao Yuan( )
National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210000, China

§ Yuxuan Sun, Ziang Liu, and Zeya Li contributed equally to this work.

Abstract

Layered trihalides exhibit distinctive band structures and physical properties due to the sixfold coordinated 3d or 4d transition metal site and partially occupied d orbitals, holding great potential in condensed matter physics and advanced electronic applications. Prior research focused on trihalides with highly symmetric honeycomb-like structures, such as CrI3 and α-RuCl3, while the role of crystal anisotropy in trihalides remains elusive. In particular, the trihalide MoCl3 manifests strong in-plane crystal anisotropy with the largest difference in Mo–Mo interatomic distances. Research on such material is imperative to address the lack of investigations on the effect of anisotropy on the properties of trihalides. Herein, we demonstrated the anisotropy of MoCl3 through polarized Raman spectroscopy and further tuned the phonon frequency via strain engineering. We showed the Raman intensity exhibits twofold symmetry under parallel configuration and fourfold symmetry under perpendicular configuration with changing the polarization angle of incident light. Furthermore, we found that the phonon frequencies of MoCl3 decrease gradually and linearly with applying uniaxial tensile strain along the axis of symmetry in the MoCl3 crystal, while those frequencies increase with uniaxial tensile strain applied perpendicularly. Our results shed light on the manipulation of anisotropic light-matter interactions via strain engineering, and lay a foundation for further exploration of the anisotropy of trihalides and the modulation of their electronic, optical, and magnetic properties.

Keywords: anisotropy, strain engineering, layered trihalide MoCl3, polarized Raman spectroscopy

References(46)

[1]

Wang, C.; Zhang, G. W.; Huang, S. Y.; Xie, Y. G.; Yan, H. G. The optical properties and plasmonics of anisotropic 2D materials. Adv. Opt. Mater. 2020, 8, 1900996.

[2]

Liu, Y.; Hu, H. P.; Xu, L.; Qiu, B.; Liang, J.; Ding, F.; Wang, K.; Chu, M. M.; Zhang, W.; Ma, M. et al. Orientation-controlled 2D anisotropic and isotropic photon transport in co-crystal polymorph microplates. Angew. Chem., Int. Ed. 2020, 59, 4456–4463.

[3]

Zhao, S. W.; Dong, B. J.; Wang, H. D.; Wang, H. W.; Zhang, Y. P.; Han, Z. V.; Zhang, H. In-plane anisotropic electronics based on low-symmetry 2D materials: Progress and prospects. Nanoscale Adv. 2020, 2, 109–139.

[4]

Fang, Y. Q.; Wang, F. K.; Wang, R. Q.; Zhai, T. Y.; Huang, F. Q. 2D NbOI2: A chiral semiconductor with highly in-plane anisotropic electrical and optical properties. Adv. Mater. 2021, 33, 2101505.

[5]

Li, X.; Liu, H. Y.; Ke, C. M.; Tang, W. Q.; Liu, M. Y.; Huang, F. H.; Wu, Y. P.; Wu, Z. M.; Kang, J. Y. Review of anisotropic 2D materials: Controlled growth, optical anisotropy modulation, and photonic applications. Laser Photonics Rev. 2021, 15, 2100322.

[6]

Roldán, R.; Castellanos-Gomez, A.; Cappelluti, E.; Guinea, F. Strain engineering in semiconducting two-dimensional crystals. J. Phys. Condens. Matter 2015, 27, 313201.

[7]

Arora, A.; Noky, J.; Drüppel, M.; Jariwala, B.; Deilmann, T.; Schneider, R.; Schmidt, R.; Del Pozo-Zamudio, O.; Stiehm, T.; Bhattacharya, A. et al. Highly anisotropic in-plane excitons in atomically thin and bulklike 1T'-ReSe2. Nano Lett. 2017, 17, 3202–3207.

[8]

Island, J. O.; Barawi, M.; Biele, R.; Almazán, A.; Clamagirand, J. M.; Ares, J. R.; Sánchez, C.; Van Der Zant, H. S. J.; Álvarez, J. V.; D'Agosta, R. et al. TiS3 transistors with tailored morphology and electrical properties. Adv. Mater. 2015, 27, 2595–2601.

[9]

Wang, Z. M.; Luo, P.; Han, B.; Zhang, X.; Zhao, S. Q.; Wang, S. L.; Chen, X. H.; Wei, L. M.; Yang, S. J.; Zhou, X. et al. Strong in-plane anisotropic SiP2 as a IV-V 2D semiconductor for polarized photodetection. ACS Nano 2021, 15, 20442–20452.

[10]

Li, L. K.; Yu, Y. J.; Ye, G. J.; Ge, Q. Q.; Ou, X. D.; Wu, H.; Feng, D. L.; Chen, X. H.; Zhang, Y. B. Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372–377.

[11]

Zhao, L. D.; Lo, S. H.; Zhang, Y. S.; Sun, H.; Tan, G. J.; Uher, C.; Wolverton, C.; Dravid, V. P.; Kanatzidis, M. G. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 2014, 508, 373–377.

[12]

Liu, E. F.; Fu, Y. J.; Wang, Y. J.; Feng, Y. Q.; Liu, H. M.; Wan, X. G.; Zhou, W.; Wang, B. G.; Shao, L. B.; Ho, C. H. et al. Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors. Nat. Commun. 2015, 6, 6991.

[13]

Beams, R.; Cançado, L. G.; Krylyuk, S.; Kalish, I.; Kalanyan, B.; Singh, A. K.; Choudhary, K.; Bruma, A.; Vora, P. M.; Tavazza, F. et al. Characterization of few-layer 1T' MoTe2 by polarization-resolved second harmonic generation and Raman scattering. ACS Nano 2016, 10, 9626–9636.

[14]

Qiu, G.; Du, Y. C.; Charnas, A.; Zhou, H.; Jin, S. Y.; Luo, Z.; Zemlyanov, D. Y.; Xu, X. F.; Cheng, G. J.; Ye, P. D. Observation of optical and electrical in-plane anisotropy in high-mobility few-layer ZrTe5. Nano Lett. 2016, 16, 7364–7369.

[15]

Li, L. K.; Kim, J.; Jin, C. H.; Ye, G. J.; Qiu, D. Y.; Da Jornada, F. H.; Shi, Z. W.; Chen, L.; Zhang, Z. C.; Yang, F. Y. et al. Direct observation of the layer-dependent electronic structure in phosphorene. Nat. Nanotechnol. 2017, 12, 21–25.

[16]

Li, L.; Wang, W. K.; Gong, P. L.; Zhu, X. D.; Deng, B.; Shi, X. Q.; Gao, G. Y.; Li, H. Q.; Zhai, T. Y. 2D GeP: An unexploited low-symmetry semiconductor with strong in-plane anisotropy. Adv. Mater. 2018, 30, 1706771.

[17]

Zhong, M. Z.; Meng, H. T.; Liu, S. J.; Yang, H.; Shen, W. F.; Hu, C. G.; Yang, J. H.; Ren, Z. H.; Li, B.; Liu, Y. Y. et al. In-plane optical and electrical anisotropy of 2D black arsenic. ACS Nano 2021, 15, 1701–1709.

[18]

Zhou, L.; Huang, J. W.; Windgaetter, L.; Ong, C. S.; Zhao, X. X.; Zhang, C. R.; Tang, M.; Li, Z. Y.; Qiu, C. Y.; Latini, S. et al. Unconventional excitonic states with phonon sidebands in layered silicon diphosphide. Nat. Mater. 2022, 21, 773–778.

[19]

Georgescu, A. B.; Millis, A. J.; Rondinelli, J. M. Trigonal symmetry breaking and its electronic effects in the two-dimensional dihalides MX2 and trihalides MX3. Phys. Rev. B 2022, 105, 245153.

[20]

Davydova, E. I.; Sevastianova, T. N.; Timoshkin, A. Y. Molecular complexes of group 13 element trihalides, pentafluorophenyl derivatives and Lewis superacids. Coord. Chem. Rev. 2015, 297–298, 91–126.

[21]

Kim, H. H.; Yang, B. W.; Li, S. W.; Jiang, S. W.; Jin, C. H.; Tao, Z.; Nichols, G.; Sfigakis, F.; Zhong, S. Z.; Li, C. H. et al. Evolution of interlayer and intralayer magnetism in three atomically thin chromium trihalides. Proc. Natl. Acad. Sci. USA 2019, 116, 11131–11136.

[22]

Huang, B.; Clark, G.; Klein, D. R.; MacNeill, D.; Navarro-Moratalla, E.; Seyler, K. L.; Wilson, N.; McGuire, M. A.; Cobden, D. H.; Xiao, D. et al. Electrical control of 2D magnetism in bilayer CrI3. Nat. Nanotechnol. 2018, 13, 544–548.

[23]

Sun, J. X.; Zhong, X.; Cui, W. W.; Shi, J. M.; Hao, J.; Xu, M. L.; Li, Y. W. The intrinsic magnetism, quantum anomalous Hall effect and Curie temperature in 2D transition metal trihalides. Phys. Chem. Chem. Phys. 2020, 22, 2429–2436.

[24]

Xu, C. S.; Feng, J. S.; Prokhorenko, S.; Nahas, Y.; Xiang, H. J.; Bellaiche, L. Topological spin texture in Janus monolayers of the chromium trihalides Cr(I, X)3. Phys. Rev. B 2020, 101, 060404.

[25]

Huang, B.; Clark, G.; Navarro-Moratalla, E.; Klein, D. R.; Cheng, R.; Seyler, K. L.; Zhong, D.; Schmidgall, E.; McGuire, M. A.; Cobden, D. H. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 2017, 546, 270–273.

[26]

Do, S. H.; Park, S. Y.; Yoshitake, J.; Nasu, J.; Motome, Y.; Kwon, Y. S.; Adroja, D. T.; Voneshen, D. J.; Kim, K.; Jang, T. H. et al. Majorana fermions in the Kitaev quantum spin system α-RuCl3. Nat. Phys. 2017, 13, 1079–1084.

[27]

Soriano, D.; Katsnelson, M. I.; Fernández-Rossier, J. Magnetic two-dimensional chromium trihalides: A theoretical perspective. Nano Lett. 2020, 20, 6225–6234.

[28]

McGuire, M. A. Crystal and magnetic structures in layered, transition metal dihalides and trihalides. Crystals 2017, 7, 121.

[29]

Kim, M.; Han, S.; Kim, J. H.; Lee, J. U.; Lee, Z.; Cheong, H. Determination of the thickness and orientation of few-layer tungsten ditelluride using polarized Raman spectroscopy. 2D Mater. 2016, 3, 034004.

[30]

Ni, Z. H.; Yu, T.; Lu, Y. H.; Wang, Y. Y.; Feng, Y. P.; Shen, Z. X. Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening. ACS Nano 2008, 2, 2301–2305.

[31]

Cheng, F. H.; Huang, J. W.; Qin, F.; Zhou, L.; Dai, X. T.; Bi, X. Y.; Zhang, C. R.; Li, Z. Y.; Tang, M.; Qiu, C. Y. et al. Strain engineering of anisotropic light-matter interactions in one-dimensional P-P chain of SiP2. Nano Res. 2022, 15, 7378–7383.

[32]

Castellanos-Gomez, A.; Roldán, R.; Cappelluti, E.; Buscema, M.; Guinea, F.; Van Der Zant, H. S. J.; Steele, G. A. Local strain engineering in atomically thin MoS2. Nano Lett. 2013, 13, 5361–5366.

[33]

Yagmurcukardes, M.; Bacaksiz, C.; Unsal, E.; Akbali, B.; Senger, R. T.; Sahin, H. Strain mapping in single-layer two-dimensional crystals via Raman activity. Phys. Rev. B 2018, 97, 115427.

[34]

Si, C.; Sun, Z. M.; Liu, F. Strain engineering of graphene: A review. Nanoscale 2016, 8, 3207–3217.

[35]

Dai, Z. H.; Liu, L. Q.; Zhang, Z. Strain engineering of 2D materials: Issues and opportunities at the interface. Adv. Mater. 2019, 31, 1805417.

[36]

Yang, S. X.; Chen, Y. J.; Jiang, C. B. Strain engineering of two-dimensional materials: Methods, properties, and applications. InfoMat 2021, 3, 397–420.

[37]

Wang, Z.; Han, Y. L.; Liang, J.; Huang, H. L.; Hu, C. S.; Liu, P.; Xiang, J. X.; Qi, Z. M.; Lu, Y. L.; Liu, K. H. et al. Hydrogenation-induced phase transition in atomic-layered α-MoCl3 driven by laser illumination in a moist atmosphere. ACS Appl. Electron. Mater. 2020, 2, 2678–2684.

[38]

Miró, P.; Audiffred, M.; Heine, T. An atlas of two-dimensional materials. Chem. Soc. Rev. 2014, 43, 6537–6554.

[39]

McGuire, M. A.; Yan, J. Q.; Lampen-Kelley, P.; May, A. F.; Cooper, V. R.; Lindsay, L.; Puretzky, A.; Liang, L. B.; KC, S.; Cakmak, E. et al. High-temperature magnetostructural transition in van der Waals-layered α-MoCl3. Phys. Rev. Mater. 2017, 1, 064001.

[40]

Li, S. L.; Miyazaki, H.; Song, H. S.; Kuramochi, H.; Nakaharai, S.; Tsukagoshi, K. Quantitative Raman spectrum and reliable thickness identification for atomic layers on insulating substrates. ACS Nano 2012, 6, 7381–7388.

[41]

Mai, T. T.; McCreary, A.; Lampen-Kelley, P.; Butch, N.; Simpson, J. R.; Yan, J. Q.; Nagler, S. E.; Mandrus, D.; Walker, A. R. H.; Aguilar, R. V. Polarization-resolved Raman spectroscopy of α-RuCl3 and evidence of room-temperature two-dimensional magnetic scattering. Phys. Rev. B 2019, 100, 134419.

[42]

Li, M. L.; Wu, Y. M.; Li, T. S.; Chen, Y. L.; Ding, H. Y.; Lin, Y.; Pan, N.; Wang, X. P. Revealing anisotropy and thickness dependence of Raman spectra for SnS flakes. RSC Adv. 2017, 7, 48759–48765.

[43]

Xu, B.; Mao, N. N.; Zhao, Y.; Tong, L. M.; Zhang, J. Polarized Raman spectroscopy for determining crystallographic orientation of low-dimensional materials. J. Phys. Chem. Lett. 2021, 12, 7442–7452.

[44]

Sahoo, S.; Palai, R.; Katiyar, R. S. Polarized Raman scattering in monolayer, bilayer, and suspended bilayer graphene. J. Appl. Phys. 2011, 110, 044320.

[45]

Wang, Y. L.; Cong, C. X.; Fei, R. X.; Yang, W. H.; Chen, Y.; Cao, B. C.; Yang, L.; Yu, T. Remarkable anisotropic phonon response in uniaxially strained few-layer black phosphorus. Nano Res. 2015, 8, 3944–3953.

[46]

Wang, Y. L.; Cong, C. X.; Qiu, C. Y.; Yu, T. Raman spectroscopy study of lattice vibration and crystallographic orientation of monolayer MoS2 under uniaxial strain. Small 2013, 9, 2857–2861.

File
12274_2023_6162_MOESM1_ESM.pdf (2.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 30 June 2023
Revised: 20 August 2023
Accepted: 05 September 2023
Published: 18 October 2023
Issue date: April 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Nos. 92365203, 52072168, 51861145201, and 523B1010), the National Key Basic Research Program of the Ministry of Science and Technology of China (No. 2021YFA1202901), and the Natural Science Foundation of Jiangsu Province (No. BK20200341).

Return