Journal Home > Volume 16 , Issue 11

Despite advances in diagnostic and therapeutic technologies for cardiovascular diseases (CVDs), it remains a leading cause of mortality and morbidity worldwide. This underscores the urgency for innovative approaches aiming at early and precise detection and treatment of CVDs to reduce the disease burden. Iron oxide nanoparticles (IONPs), with their unique magnetism and bioproperties, have shown great potential in this regard. In this review, we will begin with a brief overview of the synthesis and properties of IONPs. We will then focus on the latest applications of IONPs in CVDs, including diagnosis and treatment. The use of IONPs in the integration of diagnosis and treatment for CVDs is a promising field, and will be addressed in a separate section. The translational potential and challenges of IONPs will also be discussed. In conclusion, ongoing research and development of IONP-based strategies are highly likely to address current challenges effectively, and offer more personalized and efficient options for the diagnosis and treatment of CVDs.


menu
Abstract
Full text
Outline
About this article

Iron oxide nanoparticles: A promising approach for diagnosis and treatment of cardiovascular diseases

Show Author's information Xue Bao1,§Yu Mao1,2,§Guangxiang Si2Lina Kang1Biao Xu1( )Ning Gu1,2( )
Cardiovascular Disease Research Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Medical School, Nanjing University, Nanjing 210093, China
State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, China

§ Xue Bao and Yu Mao contributed equally to this work.

Abstract

Despite advances in diagnostic and therapeutic technologies for cardiovascular diseases (CVDs), it remains a leading cause of mortality and morbidity worldwide. This underscores the urgency for innovative approaches aiming at early and precise detection and treatment of CVDs to reduce the disease burden. Iron oxide nanoparticles (IONPs), with their unique magnetism and bioproperties, have shown great potential in this regard. In this review, we will begin with a brief overview of the synthesis and properties of IONPs. We will then focus on the latest applications of IONPs in CVDs, including diagnosis and treatment. The use of IONPs in the integration of diagnosis and treatment for CVDs is a promising field, and will be addressed in a separate section. The translational potential and challenges of IONPs will also be discussed. In conclusion, ongoing research and development of IONP-based strategies are highly likely to address current challenges effectively, and offer more personalized and efficient options for the diagnosis and treatment of CVDs.

Keywords: treatment, diagnosis, atherosclerosis, cardiovascular disease, iron oxide nanoparticles, theranostic

References(148)

[1]

Daghem, M.; Bing, R.; Fayad, Z. A.; Dweck, M. R. Noninvasive imaging to assess atherosclerotic plaque composition and disease activity: Coronary and carotid applications. JACC Cardiovasc. Imaging 2020, 13, 1055–1068.

[2]

Levine, G. N.; Bates, E. R.; Blankenship, J. C.; Bailey, S. R.; Bittl, J. A.; Cercek, B.; Chambers, C. E.; Ellis, S. G.; Guyton, R. A.; Hollenberg, S. M. et al. 2015 ACC/AHA/SCAI focused update on primary percutaneous coronary intervention for patients with ST-elevation myocardial infarction: An update of the 2011 ACCF/AHA/SCAI guideline for percutaneous coronary intervention and the 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: A report of the american college of cardiology/american heart association task force on clinical practice guidelines and the society for cardiovascular angiography and interventions. Circulation 2016, 133, 1135–1147.

[3]

Knuuti, J.; Wijns, W.; Saraste, A.; Capodanno, D.; Barbato, E.; Funck-Brentano, C.; Prescott, E.; Storey, R. F.; Deaton, C.; Cuisset, T. et al. 2019 ESC guidelines for the diagnosis and management of chronic coronary syndromes: The task force for the diagnosis and management of chronic coronary syndromes of the European society of cardiology (ESC). Eur. Heart J. 2020, 41, 407–477.

[4]

Li, Y.; Cao, G. Y.; Jing, W. Z.; Liu, J.; Liu, M. Global trends and regional differences in incidence and mortality of cardiovascular disease, 1990-2019: Findings from 2019 global burden of disease study. Eur. J. Prev. Cardiol. 2023, 30, 276–286.

[5]

Marquina, C.; Talic, S.; Vargas-Torres, S.; Petrova, M.; Abushanab, D.; Owen, A.; Lybrand, S.; Thomson, D.; Liew, D.; Zomer, E. et al. Future burden of cardiovascular disease in Australia: Impact on health and economic outcomes between 2020 and 2029. Eur. J. Prev. Cardiol. 2022, 29, 1212–1219.

[6]

Hu, Q. Q.; Fang, Z. Y.; Ge, J. B.; Li, H. Nanotechnology for cardiovascular diseases. Innovation 2022, 3, 100214.

[7]

Younis, N. K.; Ghoubaira, J. A.; Bassil, E. P.; Tantawi, H. N.; Eid, A. H. Metal-based nanoparticles: Promising tools for the management of cardiovascular diseases. Nanomedicine 2021, 36, 102433.

[8]

Alam, S. R.; Stirrat, C.; Richards, J.; Mirsadraee, S.; Semple, S. I. K.; Tse, G.; Henriksen, P.; Newby, D. E. Vascular and plaque imaging with ultrasmall superparamagnetic particles of iron oxide. J. Cardiovasc. Magn. Reson. 2015, 17, 83.

[9]

Bietenbeck, M.; Florian, A.; Faber, C.; Sechtem, U.; Yilmaz, A. Remote magnetic targeting of iron oxide nanoparticles for cardiovascular diagnosis and therapeutic drug delivery: Where are we now. Int. J. Nanomedicine 2016, 11, 3191–3203.

[10]

Montiel Schneider, M. G.; Lassalle, V. L. Magnetic iron oxide nanoparticles as novel and efficient tools for atherosclerosis diagnosis. Biomed. Pharmacother. 2017, 93, 1098–1115.

[11]

Billings, C.; Langley, M.; Warrington, G.; Mashali, F.; Johnson, J. A. Magnetic particle imaging: Current and future applications, magnetic nanoparticle synthesis methods and safety measures. Int. J. Mol. Sci. 2021, 22, 7651.

[12]

Renella, P.; Li, J.; Prosper, A. E.; Finn, J. P.; Nguyen, K. L. Ferumoxytol-enhanced cardiac magnetic resonance angiography and 4D flow: Safety and utility in pediatric and adult congenital heart disease. Children 2022, 9, 1810.

[13]

Lu, Y.; Huang, J.; Neverova, N. V.; Nguyen, K. L. USPIOs as targeted contrast agents in cardiovascular magnetic resonance imaging. Curr. Cardiovasc. Imaging Rep. 2021, 14, 2.

[14]

Arias, L. S.; Pessan, J. P.; Vieira, A. P. M.; de Lima, T. M. T.; Delbem, A. C. B.; Monteiro, D. R. Iron oxide nanoparticles for biomedical applications: A perspective on synthesis, drugs, antimicrobial activity, and toxicity. Antibiotics 2018, 7, 46.

[15]

Ali, A.; Zafar, H.; Zia, M.; Ul Haq, I.; Phull, A. R.; Ali, J. S.; Hussain, A. Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol. Sci. Appl. 2016, 9, 49–67.

[16]

Dadfar, S. M.; Roemhild, K.; Drude, N. I.; von Stillfried, S.; Knüchel, R.; Kiessling, F.; Lammers, T. Iron oxide nanoparticles: Diagnostic, therapeutic and theranostic applications. Adv. Drug Deliv. Rev. 2019, 138, 302–325.

[17]

Wu, W.; Wu, Z. H.; Yu, T.; Jiang, C. Z.; Kim, W. S. Recent progress on magnetic iron oxide nanoparticles: Synthesis, surface functional strategies and biomedical applications. Sci. Technol. Adv. Mater. 2015, 16, 023501.

[18]

Mao, Y.; Li, Y.; Gu, N. Progress in the preparation of iron based magnetic nanoparticles for biomedical applications. J. Harbin Inst. Technol. (New Ser. ) 2019, 26, 1–18.

[19]

Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Vander Elst, L.; Muller, R. N. Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 2008, 108, 2064–2110.

[20]

Minamihara, H.; Kusada, K.; Wu, D. S.; Yamamoto, T.; Toriyama, T.; Matsumura, S.; Kumara, L. S. R.; Ohara, K.; Sakata, O.; Kawaguchi, S. et al. Continuous-flow reactor synthesis for homogeneous 1 nm-sized extremely small high-entropy alloy nanoparticles. J. Am. Chem. Soc. 2022, 144, 11525–11529.

[21]

Mao, Y.; Li, Y.; Zang, F. C.; Yu, H. L.; Yan, S.; Song, Q. S.; Qin, Z. G.; Sun, J. F.; Chen, B.; Huang, X. et al. Continuous synthesis of extremely small-sized iron oxide nanoparticles used for T1-weighted magnetic resonance imaging via a fluidic reactor. Sci. China Mater. 2022, 65, 1646–1654.

[22]

Mao, Y.; Li, Y.; Guo, Z. H.; Chen, B.; Qin, Z. G.; Zhang, Z. H.; Sun, J. F.; Gu, N. The coprecipitation formation study of iron oxide nanoparticles with the assist of a gas/liquid mixed phase fluidic reactor. Colloids Surf. A Physicochem. Eng. Asp. 2022, 647, 129107.

[23]

La Mer, V. K.; Dinegar, R. H. Theory, production and mechanism of formation of monodispersed hydrosols. J. Am. Chem. Soc. 1950, 72, 4847–4854.

[24]

Cotin, G.; Kiefer, C.; Perton, F.; Ihiawakrim, D.; Blanco-Andujar, C.; Moldovan, S.; Lefevre, C.; Ersen, O.; Pichon, B.; Mertz, D. et al. Unravelling the thermal decomposition parameters for the synthesis of anisotropic iron oxide nanoparticles. Nanomaterials 2018, 8, 881.

[25]

Hatakeyama, M.; Kishi, H.; Kita, Y.; Imai, K.; Nishio, K.; Karasawa, S.; Masaike, Y.; Sakamoto, S.; Sandhu, A.; Tanimoto, A. et al. A two-step ligand exchange reaction generates highly water-dispersed magnetic nanoparticles for biomedical applications. J. Mater. Chem. 2011, 21, 5959–5966.

[26]

Cai, W.; Wan, J. Q. Facile synthesis of superparamagnetic magnetite nanoparticles in liquid polyols. J. Colloid Interface Sci. 2007, 305, 366–370.

[27]

Hachani, R.; Lowdell, M.; Birchall, M.; Hervault, A.; Mertz, D.; Begin-Colin, S.; Thanh, N. T. Polyol synthesis, functionalisation, and biocompatibility studies of superparamagnetic iron oxide nanoparticles as potential MRI contrast agents. Nanoscale 2016, 8, 3278–3287.

[28]

Zhang, B. L.; Tu, Z. J.; Zhao, F. Y.; Wang, J. Superparamagnetic iron oxide nanoparticles prepared by using an improved polyol method. Appl. Surf. Sci. 2013, 266, 375–379.

[29]

Cui, H. T.; Liu, Y.; Ren, W. Z. Structure switch between α-Fe2O3, γ-Fe2O3 and Fe3O4 during the large scale and low temperature sol-gel synthesis of nearly monodispersed iron oxide nanoparticles. Adv. Powder Technol. 2013, 24, 93–97.

[30]

Lee, N.; Yoo, D.; Ling, D. S.; Cho, M. H.; Hyeon, T.; Cheon, J. Iron oxide based nanoparticles for multimodal imaging and magnetoresponsive therapy. Chem. Rev. 2015, 115, 10637–10689.

[31]

Jeon, M.; Halbert, M. V.; Stephen, Z. R.; Zhang, M. Q. Iron oxide nanoparticles as T1 contrast agents for magnetic resonance imaging: Fundamentals, challenges, applications, and prospectives. Adv. Mater. 2021, 33, 1906539.

[32]

Zhou, Z. J.; Yang, L. J.; Gao, J. H.; Chen, X. Y. Structure-relaxivity relationships of magnetic nanoparticles for magnetic resonance imaging. Adv. Mater. 2019, 31, 1804567.

[33]

Tay, Z. W.; Savliwala, S.; Hensley, D. W.; Fung, K. L. B.; Colson, C.; Fellows, B. D.; Zhou, X. Y.; Huynh, Q.; Lu, Y.; Zheng, B. et al. Superferromagnetic nanoparticles enable order-of-magnitude resolution & sensitivity gain in magnetic particle imaging. Small Methods 2021, 5, 2100796.

[34]

Song, G. S.; Kenney, M.; Chen, Y. S.; Zheng, X. C.; Deng, Y.; Chen, Z.; Wang, S. X.; Gambhir, S. S.; Dai, H. J.; Rao, J. H. Carbon-coated FeCo nanoparticles as sensitive magnetic-particle-imaging tracers with photothermal and magnetothermal properties. Nat. Biomed. Eng. 2020, 4, 325–334.

[35]

Lak, A.; Disch, S.; Bender, P. Embracing defects and disorder in magnetic nanoparticles. Adv. Sci. 2021, 8, 2002682.

[36]

Stueber, D. D.; Villanova, J.; Aponte, I.; Xiao, Z.; Colvin, V. L. Magnetic nanoparticles in biology and medicine: Past, present, and future trends. Pharmaceutics 2021, 13, 943.

[37]

Huang, X.; Lin, C. Y.; Luo, C. C.; Guo, Y. H.; Li, J.; Wang, Y. P.; Xu, J. H.; Zhang, Y. W.; Wang, H.; Liu, Z. M. et al. Fe3O4@M nanoparticles for MRI-targeted detection in the early lesions of atherosclerosis. Nanomedicine 2021, 33, 102348.

[38]

Vaalma, S.; Rahmer, J.; Panagiotopoulos, N.; Duschka, R. L.; Borgert, J.; Barkhausen, J.; Vogt, F. M.; Haegele, J. Magnetic particle imaging (MPI): Experimental quantification of vascular stenosis using stationary stenosis phantoms. PLoS One 2017, 12, e0168902.

[39]

Yang, W.; Fei, J. W.; Xu, W.; Jiang, H. Y.; Sakran, M.; Hong, J. L.; Zhu, W. Y.; Zhou, X. M. A biosensor based on the biomimetic oxidase Fe3O4@MnO2 for colorimetric determination of uric acid. Colloids Surf. B Biointerfaces 2022, 212, 112347.

[40]

Marques da Silva, M.; Wanderley Duarte Neto, J. M.; Barros Regueira, B. V.; Torres do Couto, M. T.; Vitória da Silva Sobral, R.; Sales Conniff, A. E.; Pedrosa Brandão Costa, R. M.; Cajubá de Britto Lira Nogueira, M.; Pereira da Silva Santos, N.; Pastrana, L. et al. Immobilization of fibrinolytic protease from Mucor subtilissimus UCP 1262 in magnetic nanoparticles. Protein Expr. Purif. 2022, 192, 106044.

[41]

Vazquez-Prada, K. X.; Moonshi, S. S.; Wu, Y.; Akther, F.; Tse, B. W. C.; Sokolowski, K. A.; Peter, K.; Wang, X.; Xu, G.; Ta, H. T. A Spiky Silver-Iron Oxide Nanoparticle for Highly Efficient Targeted Photothermal Therapy and Multimodal Imaging of Thrombosis. Small 2023, 19, e2205744.

[42]

Friedrich, R. P.; Cicha, I.; Alexiou, C. Iron oxide nanoparticles in regenerative medicine and tissue engineering. Nanomaterials 2021, 11, 2337.

[43]

Fuster, V.; Moreno, P. R.; Fayad, Z. A.; Corti, R.; Badimon, J. J. Atherothrombosis and high-risk plaque: Part I: Evolving concepts. J. Am. Coll. Cardiol. 2005, 46, 937–954.

[44]

Bakhshi, H.; Meyghani, Z.; Kishi, S.; Magalhães, T. A.; Vavere, A.; Kitslaar, P. H.; George, R. T.; Niinuma, H.; Reiber, J. H. C.; Betoko, A. et al. Comparative effectiveness of CT-derived atherosclerotic plaque metrics for predicting myocardial ischemia. JACC Cardiovasc. Imaging 2019, 12, 1367–1376.

[45]

Gulani, V.; Calamante, F.; Shellock, F. G.; Kanal, E.; Reeder, S. B. Gadolinium deposition in the brain: Summary of evidence and recommendations. Lancet Neurol. 2017, 16, 564–570.

[46]

Woollard, K. J.; Geissmann, F. Monocytes in atherosclerosis: Subsets and functions. Nat. Rev. Cardiol. 2010, 7, 77–86.

[47]

Kao, C. W.; Wu, P. T.; Liao, M. Y.; Chung, I. J.; Yang, K. C.; Tseng, W. Y. I.; Yu, J. Magnetic nanoparticles conjugated with peptides derived from monocyte chemoattractant protein-1 as a tool for targeting atherosclerosis. Pharmaceutics 2018, 10, 62.

[48]

Kim, M.; Sahu, A.; Kim, G. B.; Nam, G. H.; Um, W.; Shin, S. J.; Jeong, Y. Y.; Kim, I. S.; Kim, K.; Kwon, I. C. et al. Comparison of in vivo targeting ability between cRGD and collagen-targeting peptide conjugated nano-carriers for atherosclerosis. J Control. Release 2018, 269, 337–346.

[49]

Simberg, D.; Duza, T.; Park, J. H.; Essler, M.; Pilch, J.; Zhang, L. L.; Derfus, A. M.; Yang, M.; Hoffman, R. M.; Bhatia, S. et al. Biomimetic amplification of nanoparticle homing to tumors. Proc. Natl. Acad. Sci. USA 2007, 104, 932–936.

[50]

Poon, C.; Gallo, J.; Joo, J.; Chang, T.; Bañobre-López, M.; Chung, E. J. Hybrid, metal oxide-peptide amphiphile micelles for molecular magnetic resonance imaging of atherosclerosis. J. Nanobiotechnology 2018, 16, 92.

[51]

Ridker, P. M.; Rifai, N.; Stampfer, M. J.; Hennekens, C. H. Plasma concentration of interleukin-6 and the risk of future myocardial infarction among apparently healthy men. Circulation 2000, 101, 1767–1772.

[52]

Mo, H. Q.; Fu, C. X.; Wu, Z. Y.; Liu, P.; Wen, Z. B.; Hong, Q. Q.; Cai, Y. B.; Li, G. X. IL-6-targeted ultrasmall superparamagnetic iron oxide nanoparticles for optimized MRI detection of atherosclerotic vulnerable plaques in rabbits. RSC Adv. 2020, 10, 15346–15353.

[53]

Ardissino, D.; Merlini, P. A.; Bauer, K. A.; Bramucci, E.; Ferrario, M.; Coppola, R.; Fetiveau, R.; Lucreziotti, S.; Rosenberg, R. D.; Mannucci, P. M. Thrombogenic potential of human coronary atherosclerotic plaques. Blood 2001, 98, 2726–2729.

[54]

Wei, Q. Z.; Wang, J.; Shi, W.; Zhang, B.; Jiang, H. W.; Du, M. Y.; Mei, H.; Hu, Y. Improved in vivo detection of atherosclerotic plaques with a tissue factor-targeting magnetic nanoprobe. Acta Biomater. 2019, 90, 324–336.

[55]

Tong, W.; Hui, H.; Shang, W. T.; Zhang, Y. Q.; Tian, F.; Ma, Q.; Yang, X.; Tian, J.; Chen, Y. D. Highly sensitive magnetic particle imaging of vulnerable atherosclerotic plaque with active myeloperoxidase-targeted nanoparticles. Theranostics 2021, 11, 506–521.

[56]

Kwon, H. J.; Shim, W. H.; Cho, G.; Cho, H. J.; Jung, H. S.; Lee, C. K.; Lee, Y. S.; Baek, J. H.; Kim, E. J.; Suh, J. Y. et al. Simultaneous evaluation of vascular morphology, blood volume and transvascular permeability using SPION-based, dual-contrast MRI: Imaging optimization and feasibility test. NMR Biomed. 2015, 28, 624–632.

[57]

Chen, C.; Ge, J. X.; Gao, Y.; Chen, L.; Cui, J. B.; Zeng, J. F.; Gao, M. Y. Ultrasmall superparamagnetic iron oxide nanoparticles: A next generation contrast agent for magnetic resonance imaging. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2022, 14, e1740.

[58]

Wang, J.; Jia, Y. H.; Wang, Q. Y.; Liang, Z. Y.; Han, G. X.; Wang, Z. J.; Lee, J.; Zhao, M.; Li, F. Y.; Bai, R. L. et al. An ultrahigh-field-tailored T1-T2 dual-mode MRI contrast agent for high-performance vascular imaging. Adv. Mater. 2021, 33, 2004917.

[59]

Franke, J.; Baxan, N.; Lehr, H.; Heinen, U.; Reinartz, S.; Schnorr, J.; Heidenreich, M.; Kiessling, F.; Schulz, V. Hybrid MPI-MRI system for dual-modal in situ cardiovascular assessments of real-time 3D blood flow quantification-a pre-clinical in vivo feasibility investigation. IEEE Trans. Med. Imaging 2020, 39, 4335–4345.

[60]

Mohtashamdolatshahi, A.; Kratz, H.; Kosch, O.; Hauptmann, R.; Stolzenburg, N.; Wiekhorst, F.; Sack, I.; Hamm, B.; Taupitz, M.; Schnorr, J. In vivo magnetic particle imaging: Angiography of inferior vena cava and aorta in rats using newly developed multicore particles. Sci. Rep. 2020, 10, 17247.

[61]

Herz, S.; Vogel, P.; Kampf, T.; Ruckert, M. A.; Veldhoen, S.; Behr, V. C.; Bley, T. A. Magnetic particle imaging for quantification of vascular stenoses: A phantom study. IEEE Trans. Med. Imaging 2018, 37, 61–67.

[62]

Xia, R.; Zhu, T.; Zhang, Y.; He, B.; Wang, L.; Zheng, J.; Gao, F. B. Microcirculation of intramyocardial hemorrhage caused by reperfused myocardial infarctions with ultrasmall superparamagnetic iron oxide cardiac magnetic resonance imaging. Acta Radiol. 2022, 63, 1469–1474.

[63]

Members, W. C.; Gulati, M.; Levy, P. D.; Mukherjee, D.; Amsterdam, E.; Bhatt, D. L.; Birtcher, K. K.; Blankstein, R.; Boyd, J.; Bullock-Palmer, R. P. et al. 2021 AHA/ACC/ASE/CHEST/SAEM/SCCT/SCMR guideline for the evaluation and diagnosis of chest pain:A report of the American college of cardiology/American heart association joint committee on clinical practice guidelines. J. Am. Coll. Cardiol. 2021, 78, e187–e285.

[64]

Fathil, M. F. M.; Md Arshad, M. K.; Gopinath, S. C. B.; Hashim, U.; Adzhri, R.; Ayub, R. M.; Ruslinda, A. R.; Nuzaihan M N, M.; Azman, A. H.; Zaki, M. et al. Diagnostics on acute myocardial infarction: Cardiac troponin biomarkers. Biosens. Bioelectron. 2015, 70, 209–220.

[65]

Qureshi, A.; Gurbuz, Y.; Niazi, J. H. Biosensors for cardiac biomarkers detection: A review. Sens. Actuators B Chem. 2012, 171–172, 62–76.

[66]

Mohammed, M. I.; Desmulliez, M. P. Y. Lab-on-a-chip based immunosensor principles and technologies for the detection of cardiac biomarkers: A review. Lab Chip 2011, 11, 569–595.

[67]

Sun, D. P.; Lin, X. G.; Lu, J.; Wei, P.; Luo, Z. B.; Lu, X. G.; Chen, Z. G.; Zhang, L. Y. DNA nanotetrahedron-assisted electrochemical aptasensor for cardiac troponin I detection based on the co-catalysis of hybrid nanozyme, natural enzyme and artificial DNAzyme. Biosens. Bioelectron. 2019, 142, 111578.

[68]

Lin, C. B.; Li, L. J.; Feng, J.; Zhang, Y.; Guo, H. Y. X.; Lin, X.; Li, R. A novel Apt-SERS platform for the determination of cardiac troponin I based on coral-like silver-modified magnetic substrate and BCA method. Anal. Chim. Acta 2022, 1225, 340253.

[69]

Orlov, A. V.; Malkerov, J. A.; Novichikhin, D. O.; Znoyko, S. L.; Nikitin, P. I. Multiplex label-free kinetic characterization of antibodies for rapid sensitive cardiac troponin i detection based on functionalized magnetic nanotags. Int. J. Mol. Sci. 2022, 23, 4474.

[70]

Li, X. Q.; Cai, L. J.; Wang, Y.; Hong, J.; Zhang, D. G. Hydrogel encapsulated core-shell photonic barcodes for multiplex biomarker quantification. Anal. Chem. 2023, 95, 3806–3810.

[71]

Koupenova, M.; Clancy, L.; Corkrey, H. A.; Freedman, J. E. Circulating platelets as mediators of immunity, inflammation, and thrombosis. Circ. Res. 2018, 122, 337–351.

[72]

Rink, T. J.; Sage, S. O. Calcium signaling in human platelets. Annu. Rev. Physiol. 1990, 52, 431–449.

[73]

Sage, S. O.; Pugh, N.; Farndale, R. W.; Harper, A. G. S. Pericellular Ca2+ recycling potentiates thrombin-evoked Ca2+ signals in human platelets. Physiol. Rep. 2013, 1, e00085.

[74]

Cabrera, D.; Walker, K.; Moise, S.; Telling, N. D.; Harper, A. G. S. Controlling human platelet activation with calcium-binding nanoparticles. Nano Res. 2020, 13, 2697–2705.

[75]

Zhong, Y. X.; Zhang, Y.; Xu, J.; Zhou, J.; Liu, J.; Ye, M.; Zhang, L.; Qiao, B.; Wang, Z. G.; Ran, H. T. et al. Low-intensity focused ultrasound-responsive phase-transitional nanoparticles for thrombolysis without vascular damage: A synergistic nonpharmaceutical strategy. ACS Nano 2019, 13, 3387–3403.

[76]

Haegele, J.; Biederer, S.; Wojtczyk, H.; Gräser, M.; Knopp, T.; Buzug, T. M.; Barkhausen, J.; Vogt, F. M. Toward cardiovascular interventions guided by magnetic particle imaging: First instrument characterization. Magn. Reson. Med. 2013, 69, 1761–1767.

[77]

Haegele, J.; Rahmer, J.; Gleich, B.; Borgert, J.; Wojtczyk, H.; Panagiotopoulos, N.; Buzug, T. M.; Barkhausen, J.; Vogt, F. M. Magnetic particle imaging: Visualization of instruments for cardiovascular intervention. Radiology 2012, 265, 933–938.

[78]

Haegele, J.; Vaalma, S.; Panagiotopoulos, N.; Barkhausen, J.; Vogt, F. M.; Borgert, J.; Rahmer, J. Multi-color magnetic particle imaging for cardiovascular interventions. Phys. Med. Biol. 2016, 61, N415–N426.

[79]

Lotz, J. Interventional vascular MRI: Moving forward. Eur. Heart J. 2013, 34, 327–329.

[80]

Blanco, E.; Segura-Ibarra, V.; Bawa, D.; Nafiujjaman, M.; Wu, S. H.; Liu, H. R.; Ferrari, M.; Lumsden, A. B.; Shah, D. J.; Lin, C. H. Functionalization of endovascular devices with superparamagnetic iron oxide nanoparticles for interventional cardiovascular magnetic resonance imaging. Biomed. Microdevices 2019, 21, 38.

[81]

Giustino, G.; Colombo, A.; Camaj, A.; Yasumura, K.; Mehran, R.; Stone, G. W.; Kini, A.; Sharma, S. K. Coronary in-stent restenosis: JACC state-of-the-art review. J. Am. Coll. Cardiol. 2022, 80, 348–372.

[82]

Shlofmitz, E.; Iantorno, M.; Waksman, R. Restenosis of drug-eluting stents: A new classification system based on disease mechanism to guide treatment and state-of-the-art review. Circ. Cardiovasc. Interv. 2019, 12, e007023.

[83]

Pislaru, S. V.; Harbuzariu, A.; Gulati, R.; Witt, T.; Sandhu, N. P.; Simari, R. D.; Sandhu, G. S. Magnetically targeted endothelial cell localization in stented vessels. J. Am. Coll. Cardiol. 2006, 48, 1839–1845.

[84]

Lee, J. S.; Han, P.; Song, E.; Kim, D.; Lee, H.; Labowsky, M.; Taavitsainen, J.; Ylä-Herttuala, S.; Hytönen, J.; Gülcher, M. et al. Magnetically coated bioabsorbable stents for renormalization of arterial vessel walls after stent implantation. Nano Lett. 2018, 18, 272–281.

[85]

Tefft, B. J.; Uthamaraj, S.; Harbuzariu, A.; Harburn, J. J.; Witt, T. A.; Newman, B.; Psaltis, P. J.; Hlinomaz, O.; Holmes, D. R. Jr.; Gulati, R. et al. Nanoparticle-mediated cell capture enables rapid endothelialization of a novel bare metal stent. Tissue Eng. Part A 2018, 24, 1157–1166.

[86]

Akhmedov, S.; Afanasyev, S.; Trusova, M.; Postnikov, P.; Rogovskaya, Y.; Grakova, E.; Kopeva, K.; Carreon Paz, R. K.; Balakin, S.; Wiesmann, H. P. et al. Chemically modified biomimetic carbon-coated iron nanoparticles for stent coatings: In vitro cytocompatibility and in vivo structural changes in human atherosclerotic plaques. Biomedicines 2021, 9, 802.

[87]

Hataminia, F.; Majidi, R. F.; Najafi Tireh Shabankareh, A.; Ghanbari, H. Green synthesis of oxidized starch with a novel catalyst based on Fe3O4 nanoparticles and H2O2 reagent to form thermoplastic as a stable gel coating on the cardiovascular stents. Int. J. Biol. Macromol. 2022, 219, 290–303.

[88]

Piccolo, R.; Bonaa, K. H.; Efthimiou, O.; Varenne, O.; Baldo, A.; Urban, P.; Kaiser, C.; Remkes, W.; Räber, L.; de Belder, A. et al. Drug-eluting or bare-metal stents for percutaneous coronary intervention: A systematic review and individual patient data meta-analysis of randomised clinical trials. Lancet 2019, 393, 2503–2510.

[89]

Li, M. X.; Deng, D. W.; Chen, Z.; Liu, W. T.; Zhao, G. T.; Zhang, Y.; Yang, F.; Ni, Z. H. Magnetic nanoparticle loaded biodegradable vascular stents for magnetic resonance imaging and long-term visualization. J. Mater. Chem. B 2023, 11, 3669–3678.

[90]

Fontana, A. R.; Camargo, A.; Martinez, L. D.; Altamirano, J. C. Dispersive solid-phase extraction as a simplified clean-up technique for biological sample extracts. Determination of polybrominated diphenyl ethers by gas chromatography-tandem mass spectrometry. J. Chromatogr. A 2011, 1218, 2490–2496.

[91]

Farajzadeh, M. A.; Yadeghari, A.; Abbaspour, M. Dispersive solid phase extraction using magnetic nanoparticles performed in a narrow-bored tube for extraction of atorvastatin, losartan, and valsartan in plasma. Adv. Pharm. Bull. 2019, 9, 138–146.

[92]

ALOthman, Z. A.; Alsheetan, K. M.; Aboul-Enein, H. Y.; Ali, I. Applications of shun shell column and nanocomposite sorbent for analysis of eleven anti-hypertensive in human plasma. J. Chromatogr. B 2020, 1146, 122125.

[93]

Yu, Y. M.; Ma, B. Y.; Jiang, X. B.; Guo, C.; Liu, Z.; Li, N.; Chai, Y. M.; Wang, L. C.; Du, Y. Z.; Wang, B. et al. Amphiphilic shell nanomagnetic adsorbents for selective and highly efficient capture of low-density lipoprotein from hyperlipidaemia serum. J. Mater. Chem. B 2022, 10, 4856–4866.

[94]

Patra, J. K.; Das, G.; Fraceto, L. F.; Campos, E. V. R.; Rodriguez-Torres, M. D. P.; Acosta-Torres, L. S.; Diaz-Torres, L. A.; Grillo, R.; Swamy, M. K.; Sharma, S. et al. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnology 2018, 16, 71.

[95]

Puglisi, A.; Bassini, S.; Reimhult, E. Cyclodextrin-appended superparamagnetic iron oxide nanoparticles as cholesterol-mopping agents. Front. Chem. 2021, 9, 795598.

[96]

Nazari, H.; Heirani-Tabasi, A.; Hajiabbas, M.; Salimi Bani, M.; Nazari, M.; Pirhajati Mahabadi, V.; Rad, I.; Kehtari, M.; Ahmadi Tafti, S. H.; Soleimani, M. Incorporation of SPION-casein core-shells into silk-fibroin nanofibers for cardiac tissue engineering. J. Cell. Biochem. 2020, 121, 2981–2993.

[97]

Zwi-Dantsis, L.; Wang, B.; Marijon, C.; Zonetti, S.; Ferrini, A.; Massi, L.; Stuckey, D. J.; Terracciano, C. M.; Stevens, M. M. Remote magnetic nanoparticle manipulation enables the dynamic patterning of cardiac tissues. Adv. Mater. 2020, 32, 1904598.

[98]

Mou, Y. C.; Lv, S. H.; Xiong, F.; Han, Y.; Zhao, Y. W.; Li, J. J.; Gu, N.; Zhou, J. Effects of different doses of 2, 3-dimercaptosuccinic acid-modified Fe2O3 nanoparticles on intercalated discs in engineered cardiac tissues. J. Biomed. Mater. Res. B Appl. Biomater. 2018, 106, 121–130.

[99]

Burnham, M. P.; Harvey, R.; Sargeant, R.; Fertig, N.; Haddrick, M. A scalable approach reveals functional responses of iPSC cardiomyocyte 3D spheroids. SLAS Discov. 2021, 26, 352–363.

[100]

Rama, E.; Mohapatra, S. R.; Melcher, C.; Nolte, T.; Dadfar, S. M.; Brueck, R.; Pathak, V.; Rix, A.; Gries, T.; Schulz, V. et al. Monitoring the remodeling of biohybrid tissue-engineered vascular grafts by multimodal molecular imaging. Adv. Sci. 2022, 9, 2105783.

[101]

Al-Ansari, D. E.; Mohamed, N. A.; Marei, I.; Zekri, A.; Kameno, Y.; Davies, R. P.; Lickiss, P. D.; Rahman, M. M.; Abou-Saleh, H. Internalization of metal-organic framework nanoparticles in human vascular cells: Implications for cardiovascular disease therapy. Nanomaterials 2020, 10, 1028.

[102]

Liu, Y. Y.; Shi, M. R.; Xu, M. M.; Yang, H.; Wu, C. H. Multifunctional nanoparticles of Fe3O4@SiO2(FITC)/PAH conjugated the recombinant plasmid of pIRSE2-EGFP/VEGF165 with dual functions for gene delivery and cellular imaging. Expert Opin. Drug Deliv. 2012, 9, 1197–1207.

[103]

Mannell, H.; Pircher, J.; Räthel, T.; Schilberg, K.; Zimmermann, K.; Pfeifer, A.; Mykhaylyk, O.; Gleich, B.; Pohl, U.; Krötz, F. Targeted endothelial gene delivery by ultrasonic destruction of magnetic microbubbles carrying lentiviral vectors. Pharm. Res. 2012, 29, 1282–1294.

[104]

Zhang, L.; Tian, X. Y.; Chan, C. K. W.; Bai, Q. Q.; Cheng, C. K.; Chen, F. M.; Cheung, M. S. H.; Yin, B. H.; Yang, H. R.; Yung, W. Y. et al. Promoting the delivery of nanoparticles to atherosclerotic plaques by DNA coating. ACS Appl. Mater. Interfaces 2019, 11, 13888–13904.

[105]

Zhang, W.; Veisi, H.; Sharifi, R.; Salamat, D.; Karmakar, B.; Hekmati, M.; Hemmati, S.; Zangeneh, M. M.; Zhang, Z. Y.; Su, Q. Fabrication of Pd NPs on pectin-modified Fe3O4 NPs: A magnetically retrievable nanocatalyst for efficient C-C and C-N cross coupling reactions and an investigation of its cardiovascular protective effects. Int. J. Biol. Macromol. 2020, 160, 1252–1262.

[106]

Hewlin, R. L. Jr.; Tindall, J. M. Computational assessment of magnetic nanoparticle targeting efficiency in a simplified circle of willis arterial model. Int. J. Mol. Sci. 2023, 24, 2545.

[107]

Hewlin, R. L. Jr.; Ciero, A.; Kizito, J. P. Development of a two-way coupled eulerian-lagrangian computational magnetic nanoparticle targeting model for pulsatile flow in a patient-specific diseased left carotid bifurcation artery. Cardiovasc Eng. Technol. 2019, 10, 299–313.

[108]

Zhang, S. H.; Xu, W.; Gao, P.; Chen, W. L.; Zhou, Q. Construction of dual nanomedicines for the imaging and alleviation of atherosclerosis. Artif. Cells Nanomed. Biotechnol. 2020, 48, 169–179.

[109]

Bonnet, S.; Prévot, G.; Mornet, S.; Jacobin-Valat, M. J.; Mousli, Y.; Hemadou, A.; Duttine, M.; Trotier, A.; Sanchez, S.; Duonor-Cérutti, M. et al. A nano-emulsion platform functionalized with a fully human scFv-Fc antibody for atheroma targeting: Towards a theranostic approach to atherosclerosis. Int. J. Mol. Sci. 2021, 22, 5188.

[110]

Gao, B. Y.; Xu, J. S.; Zhou, J.; Zhang, H.; Yang, R.; Wang, H.; Huang, J. B.; Yan, F.; Luo, Y. Multifunctional pathology-mapping theranostic nanoplatforms for US/MR imaging and ultrasound therapy of atherosclerosis. Nanoscale 2021, 13, 8623–8638.

[111]

Banik, B.; Surnar, B.; Askins, B. W.; Banerjee, M.; Dhar, S. Dual-targeted synthetic nanoparticles for cardiovascular diseases. ACS Appl. Mater. Interfaces 2020, 12, 6852–6862.

[112]

Qiu, P. D.; Xu, Y. H. The construction of multifunctional nanoparticles system for dual-modal imaging and arteriosclerosis targeted therapy. Am. J. Transl. Res. 2021, 13, 4026–4039.

[113]

Hou, J. X.; Zhou, J.; Chang, M. Q.; Bao, G. C.; Xu, J.; Ye, M.; Zhong, Y. X.; Liu, S. L.; Wang, J. R.; Zhang, W. et al. LIFU-responsive nanomedicine enables acoustic droplet vaporization-induced apoptosis of macrophages for stabilizing vulnerable atherosclerotic plaques. Bioact. Mater 2022, 16, 120–133.

[114]

Mu, D.; Wang, W. S.; Li, J. H.; Lv, P.; Liu, R. Y.; Tan, Y.; Zhong, C. X.; Qi, Y.; Sun, X.; Liu, Y. H. et al. Ultrasmall Fe(III)-tannic acid nanoparticles to prevent progression of atherosclerotic plaques. ACS Appl. Mater. Interfaces 2021, 13, 33915–33925.

[115]

Mu, D.; Wang, X.; Wang, H. T.; Sun, X.; Dai, Q.; Lv, P.; Liu, R. Y.; Qi, Y.; Xie, J.; Xu, B. et al. Chemiexcited photodynamic therapy integrated in polymeric nanoparticles capable of mri against atherosclerosis. Int. J. Nanomedicine 2022, 17, 2353–2366.

[116]

Wendelboe, A. M.; Raskob, G. E. Global burden of thrombosis: Epidemiologic aspects. Circ. Res. 2016, 118, 1340–1347.

[117]

Capilupi, M. J.; Kerath, S. M.; Becker, L. B. Vagus nerve stimulation and the cardiovascular system. Cold Spring Harb. Perspect. Med. 2020, 10, a034173.

[118]

Sun, X.; Wei, Z. L.; Li, Y. Y.; Wang, J. Z.; Hu, J. X.; Yin, Y.; Xie, J.; Xu, B. Renal denervation restrains the inflammatory response in myocardial ischemia-reperfusion injury. Basic Res. Cardiol. 2020, 115, 15.

[119]

Wang, K.; Qi, Y.; Gu, R.; Dai, Q.; Shan, A. Q.; Li, Z.; Gong, C. Y.; Chang, L.; Hao, H.; Duan, J. F. et al. Renal denervation attenuates adverse remodeling and intramyocardial inflammation in acute myocardial infarction with ischemia-reperfusion injury. Front. Cardiovasc. Med. 2022, 9, 832014.

[120]

Bao, S. Y.; Lu, Y.; Zhang, J.; Xue, L.; Zhang, Y. W.; Wang, P.; Zhang, F. X.; Gu, N.; Sun, J. F. Rapid improvement of heart repair in rats after myocardial infarction by precise magnetic stimulation on the vagus nerve with an injectable magnetic hydrogel. Nanoscale 2023, 15, 3532–3541.

[121]

Sosnovik, D. E.; Nahrendorf, M.; Weissleder, R. Magnetic nanoparticles for MR imaging: Agents, techniques and cardiovascular applications. Basic Res. Cardiol. 2008, 103, 122–130.

[122]

Chen, J. L.; Yang, J.; Liu, R. Y.; Qiao, C. M.; Lu, Z. G.; Shi, Y. J.; Fan, Z. M.; Zhang, Z. Z.; Zhang, X. Dual-targeting theranostic system with mimicking apoptosis to promote myocardial infarction repair via modulation of macrophages. Theranostics 2017, 7, 4149–4167.

[123]

Li, M. X.; Li, J.; Chen, J. P.; Liu, Y.; Cheng, X.; Yang, F.; Gu, N. Platelet membrane biomimetic magnetic nanocarriers for targeted delivery and in situ generation of nitric oxide in early ischemic stroke. ACS Nano 2020, 14, 2024–2035.

[124]

Zhao, J. X.; Li, X. L.; Hu, J. X.; Chen, F.; Qiao, S. H.; Sun, X.; Gao, L.; Xie, J.; Xu, B. Mesenchymal stromal cell-derived exosomes attenuate myocardial ischaemia-reperfusion injury through miR-182-regulated macrophage polarization. Cardiovasc. Res. 2019, 115, 1205–1216.

[125]

Wei, Z. L.; Chen, Z. Y.; Zhao, Y. C.; Fan, F.; Xiong, W. D.; Song, S.; Yin, Y.; Hu, J. J.; Yang, K.; Yang, L. B. et al. Mononuclear phagocyte system blockade using extracellular vesicles modified with CD47 on membrane surface for myocardial infarction reperfusion injury treatment. Biomaterials 2021, 275, 121000.

[126]

Wang, J. Z.; Chen, Z. W.; Dai, Q.; Zhao, J. X.; Wei, Z. L.; Hu, J. X.; Sun, X.; Xie, J.; Xu, B. Intravenously delivered mesenchymal stem cells prevent microvascular obstruction formation after myocardial ischemia/reperfusion injury. Basic Res. Cardiol. 2020, 115, 40.

[127]

Gong, C. Y.; Chang, L.; Sun, X.; Qi, Y.; Huang, R.; Chen, K.; Wang, B.; Kang, L.; Wang, L. N.; Xu, B. Infusion of two-dose mesenchymal stem cells is more effective than a single dose in a dilated cardiomyopathy rat model by upregulating indoleamine 2, 3-dioxygenase expression. Stem Cell Res. Ther. 2022, 13, 409.

[128]

Amir, G.; Ma, X. Y.; Reddy, V. M.; Hanley, F. L.; Reinhartz, O.; Ramamoorthy, C.; Riemer, R. K. Dynamics of human myocardial progenitor cell populations in the neonatal period. Ann. Thorac. Surg. 2008, 86, 1311–1319.

[129]

Goodfellow, F. T.; Simchick, G. A.; Mortensen, L. J.; Stice, S. L.; Zhao, Q. Tracking and quantification of magnetically labeled stem cells using magnetic resonance imaging. Adv. Funct. Mater. 2016, 26, 3899–3915.

[130]

Santoso, M. R.; Yang, P. C. Magnetic nanoparticles for targeting and imaging of stem cells in myocardial infarction. Stem Cells Int. 2016, 2016, 4198790.

[131]

Sun, R.; Wang, X. D.; Nie, Y.; Hu, A.; Liu, H. R.; Zhang, K.; Zhang, L.; Wu, Q. H.; Li, K.; Liu, C. C. et al. Targeted trapping of endogenous endothelial progenitor cells for myocardial ischemic injury repair through neutrophil-mediated SPIO nanoparticle-conjugated CD34 antibody delivery and imaging. Acta Biomater. 2022, 146, 421–433.

[132]

Liu, H. R.; Sun, R.; Wang, L.; Chen, X. Y.; Li, G. L.; Cheng, Y.; Zhai, G. H.; Bay, B. H.; Yang, F.; Gu, N. et al. Biocompatible iron oxide nanoring-labeled mesenchymal stem cells: An innovative magnetothermal approach for cell tracking and targeted stroke therapy. ACS Nano 2022, 16, 18806–18821.

[133]

Wang, H. Y.; Ge, Y. Q.; Sun, J. F.; Wang, H.; Gu, N. Magnetic sensor based on image processing for dynamically tracking magnetic moment of single magnetic mesenchymal stem cell. Biosens. Bioelectron. 2020, 169, 112593.

[134]

Yan, S.; Hu, K.; Zhang, M.; Sheng, J. Y.; Xu, X. Q.; Tang, S. J.; Li, Y.; Yang, S.; Si, G. X.; Mao, Y. et al. Extracellular magnetic labeling of biomimetic hydrogel-induced human mesenchymal stem cell spheroids with ferumoxytol for MRI tracking. Bioact. Mater. 2023, 19, 418–428.

[135]

Segers, F. M. E.; Ruder, A. V.; Westra, M. M.; Lammers, T.; Dadfar, S. M.; Roemhild, K.; Lam, T. S.; Kooi, M. E.; Cleutjens, K. B. J. M.; Verheyen, F. K. et al. Magnetic resonance imaging contrast-enhancement with superparamagnetic iron oxide nanoparticles amplifies macrophage foam cell apoptosis in human and murine atherosclerosis. Cardiovasc. Res. 2023, 118, 3346–3359.

[136]

Chen, B.; Sun, J. F.; Fan, F. G.; Zhang, X. Z.; Qin, Z. G.; Wang, P.; Li, Y.; Zhang, X. Q.; Liu, F.; Liu, Y. L. et al. Ferumoxytol of ultrahigh magnetization produced by hydrocooling and magnetically internal heating co-precipitation. Nanoscale 2018, 10, 7369–7376.

[137]

Hedgire, S.; Krebill, C.; Wojtkiewicz, G. R.; Oliveira, I.; Ghoshhajra, B. B.; Hoffmann, U.; Harisinghani, M. G. Ultrasmall superparamagnetic iron oxide nanoparticle uptake as noninvasive marker of aortic wall inflammation on MRI: Proof of concept study. Br. J. Radiol. 2018, 91, 20180461.

[138]

Shahrouki, P.; Khan, S. N.; Yoshida, T.; Iskander, P. J.; Ghahremani, S.; Finn, J. P. High-resolution three-dimensional contrast-enhanced magnetic resonance venography in children: Comparison of gadofosveset trisodium with ferumoxytol. Pediatr. Radiol. 2022, 52, 501–512.

[139]

Roy, C. W.; Di Sopra, L.; Whitehead, K. K.; Piccini, D.; Yerly, J.; Heerfordt, J.; Ghosh, R. M.; Fogel, M. A.; Stuber, M. Free-running cardiac and respiratory motion-resolved 5D whole-heart coronary cardiovascular magnetic resonance angiography in pediatric cardiac patients using ferumoxytol. J. Cardiovasc. Magn. Reson. 2022, 24, 39.

[140]

Yoshida, T.; Nguyen, K. L.; Shahrouki, P.; Quinones-Baldrich, W. J.; Lawrence, P. F.; Finn, J. P. Intermodality feature fusion combining unenhanced computed tomography and ferumoxytol-enhanced magnetic resonance angiography for patient-specific vascular mapping in renal impairment. J. Vasc. Surg. 2020, 71, 1674–1684.

[141]

Usman, A.; Patterson, A. J.; Yuan, J. M.; Cluroe, A.; Patterson, I.; Graves, M. J.; Gillard, J. H.; Sadat, U. Ferumoxytol-enhanced three-dimensional magnetic resonance imaging of carotid atheroma- a feasibility and temporal dependence study. Sci. Rep. 2020, 10, 1808.

[142]

Stirrat, C. G.; Alam, S.; MacGillivray, T. J.; Gray, C.; Dweck, M. R.; Jones, V.; Wallace, W.; Payne, J. R.; Prasad, S. K.; Gardner, R. S. et al. Ferumoxytol-enhanced MRI in patients with prior cardiac transplantation. Open Heart 2019, 6, e001115.

[143]

Stirrat, C. G.; Alam, S. R.; MacGillivray, T. J.; Gray, C. D.; Dweck, M. R.; Dibb, K.; Spath, N.; Payne, J. R.; Prasad, S. K.; Gardner, R. S. et al. Ferumoxytol-enhanced magnetic resonance imaging in acute myocarditis. Heart 2018, 104, 300–305.

[144]

Nguyen, K. L.; Moriarty, J. M.; Plotnik, A. N.; Aksoy, O.; Yoshida, T.; Shemin, R. J.; Suh, W. M.; Finn, J. P. Ferumoxytol-enhanced MR angiography for vascular access mapping before transcatheter aortic valve replacement in patients with renal impairment: A step toward patient-specific care. Radiology 2018, 286, 326–337.

[145]

Dong, Z.; Si, G. X.; Zhu, X. M.; Li, C.; Hua, R.; Teng, J. Z.; Zhang, W. H.; Xu, L. L.; Qian, W.; Liu, B. et al. Diagnostic performance and safety of a novel ferumoxytol-enhanced coronary magnetic resonance angiography. Circ. Cardiovasc. Imaging 2023, 16, 580–590.

[146]

Lagan, J.; Naish, J. H.; Simpson, K.; Zi, M.; Cartwright, E. J.; Foden, P.; Morris, J.; Clark, D.; Birchall, L.; Caldwell, J. et al. Substrate for the myocardial inflammation-heart failure hypothesis identified using novel USPIO methodology. JACC Cardiovasc. Imaging 2021, 14, 365–376.

[147]

Zheng, K. H.; Schoormans, J.; Stiekema, L. C. A.; Calcagno, C.; Cicha, I.; Alexiou, C.; Strijkers, G. J.; Nederveen, A. J.; Stroes, E. S. G.; Coolen, B. F. Plaque permeability assessed with DCE-MRI associates with USPIO uptake in patients with peripheral artery disease. JACC Cardiovasc. Imaging 2019, 12, 2081–2083.

[148]

Zheng, X. W.; Chen, Y. J.; Wang, Z. M.; Song, L. N.; Zhang, Y.; Gu, N.; Xiong, F. Preparation and in vitro cellular uptake assessment of multifunctional rubik-like magnetic nano-assemblies. J. Nanosci. Nanotechnol. 2019, 19, 3301–3309.

Publication history
Copyright
Acknowledgements

Publication history

Received: 30 June 2023
Revised: 03 September 2023
Accepted: 04 September 2023
Published: 10 October 2023
Issue date: November 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was financially supported by the National Key R&D Program of Ministry of Science and Technology (No. 2022YFA1205904), the National Natural Science Innovative Research Group Project (No. 61821002), the Key Project of the National Natural Science Foundation of China (No. 51832001), the Frontier Fundamental Research Program of Jiangsu Province for Leading Technology (No. BK20222002), the Jiangsu Planned Projects for Postdoctoral Research Funds (No. 2021K287B), the National Natural Science Foundation of China (Nos. 82100478, and 52302349) and the open research fund of Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University (No. 202201). The authors also would like to acknowledge Freepik.com for providing assets to create the graphs.

Return