Journal Home > Volume 16 , Issue 11

Breakthroughs in energy storage and conversion devices depend heavily on the exploration of low-cost and high-performance materials. Carbon-supported electrocatalysts with dimensional varieties have recently attracted significant attention due to their strong structural flexibility and easy accessibility. Nevertheless, understanding the connection between their electronic, structural properties, and catalytic performance must remain a top priority. Synchrotron radiation (SR) X-ray absorption spectroscopy (XAS) techniques, including hard XAS and soft XAS, are recognized as efficient and comprehensive platforms for probing the surface, interface, and bulk electronic structure of elements of interest in the materials community. In the past decade, the flourishing development of materials science and advanced characterization technologies have led to a deeper understanding at different temporal, longitudinal, and spatial scales. In this review, we briefly describe the concept of XAS techniques and summarize their recent progress in addressing scientific questions on carbon-supported electrocatalysts through the development of advanced instruments and experimental methods. We then discuss the remaining challenges and potential research directions in next-generation materials frontiers, and suggest challenges and perspectives for shedding light on the structure–activity relationship.


menu
Abstract
Full text
Outline
About this article

Application of X-ray absorption spectroscopy in carbon-supported electrocatalysts

Show Author's information Beibei Sheng,§Yongheng Chu,§Dengfeng CaoYujian XiaChongjing LiuShuangming Chen( )Li Song( )
National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei 230026, China

§ Beibei Sheng and Yongheng Chu contributed equally to this work.

Abstract

Breakthroughs in energy storage and conversion devices depend heavily on the exploration of low-cost and high-performance materials. Carbon-supported electrocatalysts with dimensional varieties have recently attracted significant attention due to their strong structural flexibility and easy accessibility. Nevertheless, understanding the connection between their electronic, structural properties, and catalytic performance must remain a top priority. Synchrotron radiation (SR) X-ray absorption spectroscopy (XAS) techniques, including hard XAS and soft XAS, are recognized as efficient and comprehensive platforms for probing the surface, interface, and bulk electronic structure of elements of interest in the materials community. In the past decade, the flourishing development of materials science and advanced characterization technologies have led to a deeper understanding at different temporal, longitudinal, and spatial scales. In this review, we briefly describe the concept of XAS techniques and summarize their recent progress in addressing scientific questions on carbon-supported electrocatalysts through the development of advanced instruments and experimental methods. We then discuss the remaining challenges and potential research directions in next-generation materials frontiers, and suggest challenges and perspectives for shedding light on the structure–activity relationship.

Keywords: synchrotron radiation, hard X-ray absorption spectroscopy (XAS), soft XAS, carbon-supported electrocatalysts

References(104)

[1]

Nitopi, S.; Bertheussen, E.; Scott, S. B.; Liu, X. Y.; Engstfeld, A. K.; Horch, S.; Seger, B.; Stephens, I. E. L.; Chan, K.; Hahn, C. et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 2019, 119, 7610–7672.

[2]

Handoko, A. D.; Wei, F. X.; Jenndy; Yeo, B. S.; Seh, Z. W. Understanding heterogeneous electrocatalytic carbon dioxide reduction through operando techniques. Nat. Catal. 2018, 1, 922–934.

[3]

De Luna, P.; Hahn, C.; Higgins, D.; Jaffer, S. A.; Jaramillo, T. F.; Sargent, E. H. What would it take for renewably powered electrosynthesis to displace petrochemical processes. Science 2019, 364, eaav3506.

[4]

Gao, D. F.; Arán-Ais, R. M.; Jeon, H. S.; Roldan Cuenya, B. Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products. Nat. Catal. 2019, 2, 198–210.

[5]

Zhao, Y. F.; Gao, W.; Li, S. W.; Williams, G. R.; Mahadi, A. H.; Ma, D. Solar- versus thermal-driven catalysis for energy conversion. Joule 2019, 3, 920–937.

[6]

Turner, J. A. Sustainable hydrogen production. Science 2004, 305, 972–974.

[7]

Sun, Z. Y.; Hu, Y. N.; Zhou, D. N.; Sun, M. R.; Wang, S.; Chen, W. X. Factors influencing the performance of copper-bearing catalysts in the CO2 reduction system. ACS Energy Lett. 2021, 6, 3992–4022.

[8]

Vasileff, A.; Zheng, Y.; Qiao, S. Z. Carbon solving carbon’s problems: Recent progress of nanostructured carbon-based catalysts for the electrochemical reduction of CO2. Adv. Energy Mater. 2017, 7, 1700759.

[9]

Jin, S.; Hao, Z. M.; Zhang, K.; Yan, Z. H.; Chen, J. Advances and challenges for the electrochemical reduction of CO2 to CO: From fundamentals to industrialization. Angew. Chem., Int. Ed. 2021, 60, 20627–20648.

[10]

Tang, C.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Electrocatalytic refinery for sustainable production of fuels and chemicals. Angew. Chem., Int. Ed. 2021, 60, 19572–19590.

[11]

Wang, J. L.; Tan, H. Y.; Zhu, Y. P.; Chu, H.; Chen, H. M. Linking the dynamic chemical state of catalysts with the product profile of electrocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 17254–17267.

[12]

Burdyny, T.; Smith, W. A. CO2 reduction on gas-diffusion electrodes and why catalytic performance must be assessed at commercially-relevant conditions. Energy Environ. Sci. 2019, 12, 1442–1453.

[13]

Ross, M. B.; De Luna, P.; Li, Y. F.; Dinh, C. T.; Kim, D.; Yang, P. D.; Sargent, E. H. Designing materials for electrochemical carbon dioxide recycling. Nat. Catal. 2019, 2, 648–658.

[14]

Birdja, Y. Y.; Pérez-Gallent, E.; Figueiredo, M. C.; Göttle, A. J.; Calle-Vallejo, F.; Koper, M. T. M. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 2019, 4, 732–745.

[15]

Kundu, D.; Hosseini Vajargah, S.; Wan, L. W.; Adams, B.; Prendergast, D.; Nazar, L. F. Aqueous vs. nonaqueous Zn-ion batteries:Consequences of the desolvation penalty at the interface. Energy Environ. Sci. 2018, 11, 881–892.

[16]

Wang, S. B.; Ran, Q.; Yao, R. Q.; Shi, H.; Wen, Z.; Zhao, M.; Lang, X. Y.; Jiang, Q. Lamella-nanostructured eutectic zinc-aluminum alloys as reversible and dendrite-free anodes for aqueous rechargeable batteries. Nat. Commun. 2020, 11, 1634.

[17]

Zhong, C.; Liu, B.; Ding, J.; Liu, X. R.; Zhong, Y. W.; Li, Y.; Sun, C. B.; Han, X. P.; Deng, Y. D.; Zhao, N. Q. et al. Decoupling electrolytes towards stable and high-energy rechargeable aqueous zinc-manganese dioxide batteries. Nat. Energy 2020, 5, 440–449.

[18]

Cao, D. F.; Sheng, B. B.; Qi, Z. H.; Xu, W. J.; Chen, S. M.; Moses, O. A.; Long, R.; Xiong, Y. J.; Wu, X. J.; Song, L. Self-optimizing iron phosphorus oxide for stable hydrogen evolution at high current. Appl. Catal. B Environ. 2021, 298, 120559.

[19]

Zhang, Y. K.; Lin, Y. X.; Duan, T.; Song, L. Interfacial engineering of heterogeneous catalysts for electrocatalysis. Mater. Today 2021, 48, 115–134.

[20]

Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

[21]

Zhang, B.; Zheng, X. L.; Voznyy, O.; Comin, R.; Bajdich, M.; García-Melchor, M.; Han, L. L.; Xu, J. X.; Liu, M.; Zheng, L. R. et al. Homogeneously dispersed multimetal oxygen-evolving catalysts. Science 2016, 352, 333–337.

[22]

Lin, F.; Liu, Y. J.; Yu, X. Q.; Cheng, L.; Singer, A.; Shpyrko, O. G.; Xin, H. L.; Tamura, N.; Tian, C. X.; Weng, T. C. et al. Synchrotron X-ray analytical techniques for studying materials electrochemistry in rechargeable batteries. Chem. Rev. 2017, 117, 13123–13186.

[23]

Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 2004, 104, 4303–4418.

[24]

Sheng, B. B.; Cao, D. F.; Liu, C. J.; Chen, S. M.; Song, L. Support effects in electrocatalysis and their synchrotron radiation-based characterizations. J. Phys. Chem. Lett. 2021, 12, 11543–11554.

[25]

Sheng, B. B.; Cao, D. F.; Shou, H. W.; Moses, O. A.; Xu, W. J.; Xia, Y. J.; Zhou, Y. Z.; Wang, H. J.; Wan, P.; Zhu, S. et al. Support induced phase engineering toward superior electrocatalyst. Nano Res. 2022, 15, 1831–1837.

[26]

Lu, S. S.; Cheng, C. Q.; Shi, Y. M.; Wu, Y. M.; Zhang, Z. P.; Zhang, B. Unveiling the structural transformation and activity origin of heteroatom-doped carbons for hydrogen evolution. Proc. Natl. Acad. Sci. USA 2023, 120, e2300549120.

[27]

Lu, S. S.; Shi, Y. M.; Zhou, W.; Zhang, Z. P.; Wu, F.; Zhang, B. Dissolution of the heteroatom dopants and formation of ortho-quinone moieties in the doped carbon materials during water electrooxidation. J. Am. Chem. Soc. 2022, 144, 3250–3258.

[28]

Lu, S. S.; Zhou, W.; Shi, Y. M.; Liu, C. B.; Yu, Y. F.; Zhang, B. Phenanthrenequinone-like moiety functionalized carbon for electrocatalytic acidic oxygen evolution. Chem 2022, 8, 1415–1426.

[29]

Qiao, S. C.; He, Q.; Zhang, P. J.; Zhou, Y. Z.; Chen, S. M.; Song, L.; Wei, S. Q. Synchrotron-radiation spectroscopic identification towards diverse local environments of single-atom catalysts. J. Mater. Chem. A 2022, 10, 5771–5791.

[30]

Zhou, Y. Z.; Zhou, Q.; Liu, H. J.; Xu, W. J.; Wang, Z. X.; Qiao, S. C.; Ding, H. H.; Chen, D. L.; Zhu, J. F.; Qi, Z. M. et al. Asymmetric dinitrogen-coordinated nickel single-atomic sites for efficient CO2 electroreduction. Nat. Commun. 2023, 14, 3776.

[31]

He, Q.; Zhou, Y. Z.; Shou, H. W.; Wang, X. Y.; Zhang, P. J.; Xu, W. J.; Qiao, S. C.; Wu, C. Q.; Liu, H. J.; Liu, D. B. et al. Synergic reaction kinetics over adjacent ruthenium sites for superb hydrogen generation in alkaline media. Adv. Mater. 2022, 34, 2110604.

[32]

Guan, Y. Y.; Liu, Y. T.; Ren, Q. Y.; Dong, Z. J.; Luo, L. L. Oxidation-induced phase separation of carbon-supported CuAu nanoparticles for electrochemical reduction of CO2. Nano Res. 2023, 16, 2119–2125.

[33]

Shadike, Z.; Lee, H.; Borodin, O.; Cao, X.; Fan, X. L.; Wang, X. L.; Lin, R. Q.; Bak, S. M.; Ghose, S.; Xu, K. et al. Identification of LiH and nanocrystalline LiF in the solid–electrolyte interphase of lithium metal anodes. Nat. Nanotechnol. 2021, 16, 549–554.

[34]

Jiang, H. L.; He, Q.; Zhang, Y. K.; Song, L. Structural self-reconstruction of catalysts in electrocatalysis. Acc. Chem. Res. 2018, 51, 2968–2977.

[35]

Li, J. K.; Gong, J. L. Operando characterization techniques for electrocatalysis. Energy Environ. Sci. 2020, 13, 3748–3779.

[36]

Zheng, X. R.; Han, X. P.; Cao, Y. H.; Zhang, Y.; Nordlund, D.; Wang, J. H.; Chou, S. L.; Liu, H.; Li, L. L.; Zhong, C. et al. Identifying dense NiSe2/CoSe2 heterointerfaces coupled with surface high-valence bimetallic sites for synergistically enhanced oxygen electrocatalysis. Adv. Mater. 2020, 32, 2000607.

[37]

Piao, J. Y.; Gu, L.; Wei, Z. X.; Ma, J. M.; Wu, J. P.; Yang, W. L.; Gong, Y.; Sun, Y. G.; Duan, S. Y.; Tao, X. S. et al. Phase control on surface for the stabilization of high energy cathode materials of lithium ion batteries. J. Am. Chem. Soc. 2019, 141, 4900–4907.

[38]

Lin, R. Q.; Hu, E. Y.; Liu, M. J.; Wang, Y.; Cheng, H.; Wu, J. P.; Zheng, J. C.; Wu, Q.; Bak, S.; Tong, X. et al. Anomalous metal segregation in lithium-rich material provides design rules for stable cathode in lithium-ion battery. Nat. Commun. 2019, 10, 1650.

[39]

Zhu, K. F.; Wei, S. Q.; Shou, H. W.; Shen, F. R.; Chen, S. M.; Zhang, P. J.; Wang, C. D.; Cao, Y. Y.; Guo, X.; Luo, M. et al. Defect engineering on V2O3 cathode for long-cycling aqueous zinc metal batteries. Nat. Commun. 2021, 12, 6878.

[40]

Liu, Y. S.; Glans, P. A.; Chuang, C. H.; Kapilashrami, M.; Guo, J. H. Perspectives of in situ/operando resonant inelastic X-ray scattering in catalytic energy materials science. J. Electron. Spectrosc. Relat. Phenom. 2015, 200, 282–292.

[41]

Wu, J.; Yang, Y.; Yang, W. L. Advances in soft X-ray RIXS for studying redox reaction states in batteries. Dalton Trans. 2020, 49, 13519–13527.

[42]

Yang, W. L.; Devereaux, T. P. Anionic and cationic redox and interfaces in batteries: Advances from soft X-ray absorption spectroscopy to resonant inelastic scattering. J. Power Sources 2018, 389, 188–197.

[43]

Yang, W. L.; Liu, X. S.; Qiao, R. M.; Olalde-Velasco, P.; Spear, J. D.; Roseguo, L.; Pepper, J. X.; Chuang, Y. D.; Denlinger, J. D.; Hussain, Z. Key electronic states in lithium battery materials probed by soft X-ray spectroscopy. J. Electron. Spectrosc. Relat. Phenom. 2013, 190, 64–74.

[44]

Takao, S. X-ray absorption fine structure and scanning transmission electron microscopic analysis of polymer electrolyte fuel cells. Curr. Opin. Electrochem. 2020, 21, 283–288.

[45]

Liu, D. Q.; Shadike, Z.; Lin, R. Q.; Qian, K.; Li, H.; Li, K. K.; Wang, S. W.; Yu, Q. P.; Liu, M.; Ganapathy, S. et al. Review of recent development of in situ/operando characterization techniques for lithium battery research. Adv. Mater. 2019, 31, 1806620.

[46]

Yang, Y.; Xiong, Y.; Zeng, R.; Lu, X. Y.; Krumov, M.; Huang, X.; Xu, W. X.; Wang, H. S.; DiSalvo, F. J.; Brock, J. D. et al. Operando methods in electrocatalysis. ACS Catal. 2021, 11, 1136–1178.

[47]

Sedigh Rahimabadi, P.; Khodaei, M.; Koswattage, K. R. Review on applications of synchrotron-based X-ray techniques in materials characterization. X-Ray Spectrom. 2020, 49, 348–373.

[48]

Wang, Y.; Yang, Y.; Jia, S. F.; Wang, X. M.; Lyu, K.; Peng, Y. Q.; Zheng, H.; Wei, X.; Ren, H.; Xiao, L. et al. Synergistic Mn-Co catalyst outperforms Pt on high-rate oxygen reduction for alkaline polymer electrolyte fuel cells. Nat. Commun. 2019, 10, 1506.

[49]

Wu, Z. B.; Kong Pang, W.; Chen, L. B.; Johannessen, B.; Guo, Z. P. In situ synchrotron X-ray absorption spectroscopy studies of anode materials for rechargeable batteries. Batter. Supercaps 2021, 4, 1547–1566.

[50]

Li, Q. H.; Qiao, R. M.; Wray, L. A.; Chen, J.; Zhuo, Z. Q.; Chen, Y. X.; Yan, S. S.; Pan, F.; Hussain, Z.; Yang, W. L. Quantitative probe of the transition metal redox in battery electrodes through soft X-ray absorption spectroscopy. J. Phys. D Appl. Phys. 2016, 49, 413003.

[51]

Rehr, J. J.; Albers, R. C. Theoretical approaches to X-ray absorption fine structure. Rev. Mod. Phys. 2000, 72, 621–654.

[52]

de Groot, F. High-resolution X-ray emission and X-ray absorption spectroscopy. Chem. Rev. 2001, 101, 1779–1808.

[53]

Wang, M. Y.; Árnadóttir, L.; Xu, Z. J.; Feng, Z. X. In situ X-ray absorption spectroscopy studies of nanoscale electrocatalysts. Nanomicro Lett. 2019, 11, 47.

[54]

Russell, A. E.; Rose, A. X-ray absorption spectroscopy of low temperature fuel cell catalysts. Chem. Rev. 2004, 104, 4613–4636.

[55]

Rehr, J. J.; Kas, J. J.; Vila, F. D.; Prange, M. P.; Jorissen, K. Parameter-free calculations of X-ray spectra with FEFF9. Phys. Chem. Chem. Phys. 2010, 12, 5503–5513.

[56]

Li, J.; Che, F. L.; Pang, Y. J.; Zou, C. Q.; Howe, J. Y.; Burdyny, T.; Edwards, J. P.; Wang, Y. H.; Li, F. W.; Wang, Z. Y. et al. Copper adparticle enabled selective electrosynthesis of n-propanol. Nat. Commun. 2018, 9, 4614.

[57]

Nam, D. H.; Bushuyev, O. S.; Li, J.; De Luna, P.; Seifitokaldani, A.; Dinh, C. T.; García de Arquer, F. P.; Wang, Y. H.; Liang, Z. Q.; Proppe, A. H. et al. Metal–organic frameworks mediate Cu coordination for selective CO2 electroreduction. J. Am. Chem. Soc. 2018, 140, 11378–11386.

[58]
Wulan, B.; Cao, X. Y.; Tan, D. X.; Shu, X. X.; Ma, J. Z.; Hou, S. Q.; Zhang, J. T. Atomic bridging of Sn single atom with nitrogen and oxygen atoms for the selective electrocatalytic reduction of CO2. CCS Chem., in press, https://doi.org/10.31635/ccschem.022.202202464.
DOI
[59]

Wan, J. W.; Zhao, Z. H.; Shang, H. S.; Peng, B.; Chen, W. X.; Pei, J. J.; Zheng, L. R.; Dong, J. C.; Cao, R.; Sarangi, R. et al. In situ phosphatizing of triphenylphosphine encapsulated within metal–organic frameworks to design atomic Co1-P1N3 interfacial structure for promoting catalytic performance. J. Am. Chem. Soc. 2020, 142, 8431–8439.

[60]

Wei, S. Q.; Chen, S. M.; Su, X. Z.; Qi, Z. H.; Wang, C. D.; Ganguli, B.; Zhang, P. J.; Zhu, K. F.; Cao, Y. Y.; He, Q. et al. Manganese buffer induced high-performance disordered MnVO cathodes in zinc batteries. Energy Environ. Sci. 2021, 14, 3954–3964.

[61]

Cao, D. F.; Ye, K.; Moses, O. A.; Xu, W. J.; Liu, D. B.; Song, P.; Wu, C. Q.; Wang, C. D.; Ding, S. Q.; Chen, S. M. et al. Engineering the in-plane structure of metallic phase molybdenum disulfide via Co and O dopants toward efficient alkaline hydrogen evolution. ACS Nano 2019, 13, 11733–11740.

[62]

He, Q.; Qiao, S. C.; Zhou, Q.; Zhou, Y. Z.; Shou, H. W.; Zhang, P. J.; Xu, W. J.; Liu, D. B.; Chen, S. M.; Wu, X. et al. Confining high-valence iridium single sites onto nickel oxyhydroxide for robust oxygen evolution. Nano Lett. 2022, 22, 3832–3839.

[63]

Liu, D. B.; Li, X. Y.; Chen, S. M.; Yan, H.; Wang, C. D.; Wu, C. Q.; Haleem, Y. A.; Duan, S.; Lu, J. L.; Ge, B. H. et al. Atomically dispersed platinum supported on curved carbon supports for efficient electrocatalytic hydrogen evolution. Nat. Energy 2019, 4, 512–518.

[64]

Zhao, J. Q.; Liu, J. J.; Li, Z. H.; Wang, K. W.; Shi, R.; Wang, P.; Wang, Q.; Waterhouse, G. I. N.; Wen, X. D.; Zhang, T. R. Ruthenium-cobalt single atom alloy for CO photo-hydrogenation to liquid fuels at ambient pressures. Nat. Commun. 2023, 14, 1909.

[65]

Cao, X. Y.; Zhao, L. L.; Wulan, B.; Tan, D. X.; Chen, Q. W.; Ma, J. Z.; Zhang, J. T. Atomic bridging structure of nickel-nitrogen-carbon for highly efficient electrocatalytic reduction of CO2. Angew. Chem., Int. Ed. 2022, 61, e202113918.

[66]

Liu, D. B.; Zhao, Y.; Wu, C. Q.; Xu, W. J.; Xi, S. B.; Chen, M. X.; Yang, L.; Zhou, Y. Z.; He, Q.; Li, X. Y. et al. Triggering electronic coupling between neighboring hetero-diatomic metal sites promotes hydrogen evolution reaction kinetics. Nano Energy 2022, 98, 107296.

[67]

He, Q.; Liu, D. B.; Lee, J. H.; Liu, Y. M.; Xie, Z. H.; Hwang, S.; Kattel, S.; Song, L.; Chen, J. G. Electrochemical conversion of CO2 to syngas with controllable CO/H2 ratios over Co and Ni single-atom catalysts. Angew. Chem., Int. Ed. 2020, 59, 3033–3037.

[68]

Song, L.; Ci, L.; Lv, L.; Zhou, Z.; Yan, X.; Liu, D.; Yuan, H.; Gao, Y.; Wang, J.; Liu, L. et al. Direct synthesis of a macroscale single-walled carbon nanotube non-woven material. Adv. Mater. 2004, 16, 1529–1534.

[69]

Cao, D. F.; Liu, D. B.; Chen, S. M.; Moses, O. A.; Chen, X. J.; Xu, W. J.; Wu, C. Q.; Zheng, L. R.; Chu, S. Q.; Jiang, H. L. et al. Operando X-ray spectroscopy visualizing the chameleon-like structural reconstruction on an oxygen evolution electrocatalyst. Energy Environ. Sci. 2021, 14, 906–915.

[70]

Cao, L. L.; Luo, Q. Q.; Liu, W.; Lin, Y.; Liu, X. K.; Cao, Y. J.; Zhang, W.; Wu, Y. E.; Yang, J. L.; Yao, T. et al. Identification of single-atom active sites in carbon-based cobalt catalysts during electrocatalytic hydrogen evolution. Nat. Catal. 2019, 2, 134–141.

[71]

Lin, S. C.; Chang, C. C.; Chiu, S. Y.; Pai, H. T.; Liao, T. Y.; Hsu, C. S.; Chiang, W. H.; Tsai, M. K.; Chen, H. M. Operando time-resolved X-ray absorption spectroscopy reveals the chemical nature enabling highly selective CO2 reduction. Nat. Commun. 2020, 11, 3525.

[72]

Tromp, M.; Dent, A. J.; Headspith, J.; Easun, T. L.; Sun, X. Z.; George, M. W.; Mathon, O.; Smolentsev, G.; Hamilton, M. L.; Evans, J. Energy dispersive XAFS: Characterization of electronically excited states of copper(I) complexes. J. Phys. Chem. B 2013, 117, 7381–7387.

[73]

Niwa, Y.; Sato, T.; Ichiyanagi, K.; Takahashi, K.; Kimura, M. Time-resolved observation of structural change of copper induced by laser shock using synchrotron radiation with dispersive XAFS. High Pressure Res. 2016, 36, 471–478.

[74]

Sekizawa, O.; Uruga, T.; Takagi, Y.; Nitta, K.; Kato, K.; Tanida, H.; Uesugi, K.; Hoshino, M.; Ikenaga, E.; Takeshita, K. et al. SPring-8 BL36XU: Catalytic reaction dynamics for fuel cells. J. Phys. Conf. Ser. 2016, 712, 012142.

[75]

Hu, Y. G.; Zhan, F.; Wang, Q.; Sun, Y. J.; Yu, C.; Zhao, X.; Wang, H.; Long, R.; Zhang, G. Z.; Gao, C. et al. Tracking mechanistic pathway of photocatalytic CO2 reaction at Ni sites using operando, time-resolved spectroscopy. J. Am. Chem. Soc. 2020, 142, 5618–5626.

[76]

Lee, S. H.; Lin, J. C.; Farmand, M.; Landers, A. T.; Feaster, J. T.; Avilés Acosta, J. E.; Beeman, J. W.; Ye, Y.; Yano, J.; Mehta, A. et al. Oxidation state and surface reconstruction of Cu under CO2 reduction conditions from in situ X-ray characterization. J. Am. Chem. Soc. 2021, 143, 588–592.

[77]

Mei, B. B.; Liu, C.; Li, J.; Gu, S. Q.; Du, X. L.; Lu, S. Y.; Song, F.; Xu, W. L.; Jiang, Z. Operando HERFD-XANES and surface sensitive Δμ analyses identify the structural evolution of copper(II) phthalocyanine for electroreduction of CO2. J. Energy Chem. 2022, 64, 1–7.

[78]

Zheng, Y. C.; Zhang, G. K.; Zhang, P. J.; Chu, S. Q.; Wu, D. J.; Sun, C. C.; Qian, B.; Chen, S. M.; Tao, S.; Song, L. Structural investigation of metallic Ni nanoparticles with N-doped carbon for efficient oxygen evolution reaction. Chem. Eng. J. 2022, 429, 132122.

[79]

Czioska, S.; Boubnov, A.; Escalera-López, D.; Geppert, J.; Zagalskaya, A.; Röse, P.; Saraçi, E.; Alexandrov, V.; Krewer, U.; Cherevko, S. et al. Increased Ir–Ir interaction in iridium oxide during the oxygen evolution reaction at high potentials probed by operando spectroscopy. ACS Catal. 2021, 11, 10043–10057.

[80]

Chu, S. Q.; Zheng, L. R.; Che, R. Z.; Zhou, A. Y.; Zhang, J.; Liu, J.; Hu, T. D. Development of pressure-modulated EXAFS method. Chin. Phys. C 2012, 36, 184–187.

[81]

Xu, W.; Zhang, G.; Shou, H.; Zhou, J.; Chen, S.; Chu, S.; Zhang, J.; Song, L. Approach to electrochemical modulating differential extended X-ray absorption fine structure. J. Synchrotron Radiat. 2022, 29, 1065–1073.

[82]

Wang, J.; Gao, Y.; Kong, H.; Kim, J.; Choi, S.; Ciucci, F.; Hao, Y.; Yang, S. H.; Shao, Z. P.; Lim, J. Non-precious-metal catalysts for alkaline water electrolysis: Operando characterizations, theoretical calculations, and recent advances. Chem. Soc. Rev. 2020, 49, 9154–9196.

[83]

Pan, Y.; Chen, Y. J.; Wu, K. L.; Chen, Z.; Liu, S. J.; Cao, X.; Cheong, W. C.; Meng, T.; Luo, J.; Zheng, L. R. et al. Regulating the coordination structure of single-atom Fe-NxCy catalytic sites for benzene oxidation. Nat. Commun. 2019, 10, 4290.

[84]

Chen, C. T.; Sette, F.; Ma, Y.; Modesti, S. Soft-X-ray magnetic circular dichroism at the L2, 3-edges of nickel. Phys. Rev. B 1990, 42, 7262–7265.

[85]

Hung, S. F. In-situ X-ray techniques for non-noble electrocatalysts. Pure Appl. Chem. 2020, 92, 733–749.

[86]

Yang, Y.; Xu, R.; Zhang, K.; Lee, S. J.; Mu, L. Q.; Liu, P. F.; Waters, C. K.; Spence, S.; Xu, Z. R.; Wei, C. X. et al. Quantification of heterogeneous degradation in Li-ion batteries. Adv. Energy Mater. 2019, 9, 1900674.

[87]

Wu, S. F.; Wang, W. X.; Li, M. C.; Cao, L. J.; Lyu, F.; Yang, M. Y.; Wang, Z. Y.; Shi, Y.; Nan, B.; Yu, S. C. et al. Highly durable organic electrode for sodium-ion batteries via a stabilized α-C radical intermediate. Nat. Commun. 2016, 7, 13318.

[88]

Xu, W. J.; Cao, D. F.; Moses, O. A.; Sheng, B. B.; Wu, C. Q.; Shou, H. W.; Wu, X. J.; Chen, S. M.; Song, L. Probing self-optimization of carbon support in oxygen evolution reaction. Nano Res. 2021, 14, 4534–4540.

[89]

Qiao, R. M.; Lucas, I. T.; Karim, A.; Syzdek, J.; Liu, X. S.; Chen, W.; Persson, K.; Kostecki, R.; Yang, W. L. Distinct solid–electrolyte-interphases on Sn (100) and (001) electrodes studied by soft X-ray spectroscopy. Adv. Mater. Interfaces 2014, 1, 1300115.

[90]

Lin, F.; Nordlund, D.; Markus, I. M.; Weng, T. C.; Xin, H. L.; Doeff, M. M. Profiling the nanoscale gradient in stoichiometric layered cathode particles for lithium-ion batteries. Energy Environ. Sci. 2014, 7, 3077–3085.

[91]

Han, L. L.; Hou, M. C.; Ou, P. F.; Cheng, H.; Ren, Z. H.; Liang, Z. X.; Boscoboinik, J. A.; Hunt, A.; Waluyo, I.; Zhang, S. S. et al. Local modulation of single-atomic Mn sites for enhanced ambient ammonia electrosynthesis. ACS Catal. 2021, 11, 509–516.

[92]

Han, L. L.; Liu, X. J.; He, J.; Liang, Z. X.; Wang, H. T.; Bak, S. M.; Zhang, J. M.; Hunt, A.; Waluyo, I.; Pong, W. F. et al. Modification of the coordination environment of active sites on MoC for high-efficiency CH4 production. Adv. Energy Mater. 2021, 11, 2100044.

[93]

Zheng, X. L.; Zhang, B.; De Luna, P.; Liang, Y. F.; Comin, R.; Voznyy, O.; Han, L. L.; García de Arquer, F. P.; Liu, M.; Dinh, C. T. et al. Theory-driven design of high-valence metal sites for water oxidation confirmed using in situ soft X-ray absorption. Nat. Chem. 2018, 10, 149–154.

[94]

Tesch, M. F.; Bonke, S. A.; Jones, T. E.; Shaker, M. N.; Xiao, J.; Skorupska, K.; Mom, R.; Melder, J.; Kurz, P.; Knop-Gericke, A. et al. Evolution of oxygen–metal electron transfer and metal electronic states during manganese oxide catalyzed water oxidation revealed with in situ soft X-ray spectroscopy. Angew. Chem., Int. Ed. 2019, 58, 3426–3432.

[95]

Lien, H. T.; Chang, S. T.; Chen, P. T.; Wong, D. P.; Chang, Y. C.; Lu, Y. R.; Dong, C. L.; Wang, C. H.; Chen, K. H.; Chen, L. C. Probing the active site in single-atom oxygen reduction catalysts via operando X-ray and electrochemical spectroscopy. Nat. Commun. 2020, 11, 4233.

[96]

Lv, L. Y.; Tang, B.; Ji, Q. Q.; Li, N.; Wang, Y.; Feng, S. H.; Duan, H. L.; Wang, C.; Tan, H.; Yan, W. S. Highly exposed NiFeOx nanoclusters supported on boron doped carbon nanotubes for electrocatalytic oxygen evolution reaction. Chin. Chem. Lett. 2023, 34, 107524.

[97]

Jiang, H. L.; Lin, Y. X.; Chen, B. X.; Zhang, Y. K.; Liu, H. J.; Duan, X. Z.; Chen, D.; Song, L. Ternary interfacial superstructure enabling extraordinary hydrogen evolution electrocatalysis. Mater. Today 2018, 21, 602–610.

[98]

Yang, Z. K.; Wang, X. L.; Zhu, M. Z.; Leng, X. Y.; Chen, W. X.; Wang, W. Y.; Xu, Q.; Yang, L. M.; Wu, Y. E. Structural revolution of atomically dispersed Mn sites dictates oxygen reduction performance. Nano Res. 2021, 14, 4512–4519.

[99]

Jiang, Z. L.; Wang, T.; Pei, J. J.; Shang, H. S.; Zhou, D. N.; Li, H. J.; Dong, J. C.; Wang, Y.; Cao, R.; Zhuang, Z. B. et al. Discovery of main group single Sb-N4 active sites for CO2 electroreduction to formate with high efficiency. Energy Environ. Sci. 2020, 13, 2856–2863.

[100]

Tian, Y. H.; Li, M.; Wu, Z. Z.; Sun, Q.; Yuan, D.; Johannessen, B.; Xu, L.; Wang, Y.; Dou, Y. H.; Zhao, H. J. et al. Edge-hosted atomic Co-N4 sites on hierarchical porous carbon for highly selective two-electron oxygen reduction reaction. Angew. Chem., Int. Ed. 2022, 61, e202213296.

[101]

Cao, D. F.; Shou, H. W.; Chen, S. M.; Song, L. Manipulating and probing the structural self-optimization in oxygen evolution reaction catalysts. Curr. Opin. Electrochem. 2021, 30, 100788.

[102]

Cao, D. F.; Xu, W. J.; Chen, S. M.; Liu, C. J.; Sheng, B. B.; Song, P.; Moses, O. A.; Song, L.; Wei, S. Q. Visualizing catalytic dynamics processes via synchrotron radiation multitechniques. Adv. Mater. 2023, 35, 2205346.

[103]

Sekizawa, O.; Uruga, T.; Higashi, K.; Kaneko, T.; Yoshida, Y.; Sakata, T.; Iwasawa, Y. Simultaneous operando time-resolved XAFS-XRD measurements of a Pt/C cathode catalyst in polymer electrolyte fuel cell under transient potential operations. ACS Sustainable Chem. Eng. 2017, 5, 3631–3636.

[104]

Ajayi, T. M.; Shirato, N.; Rojas, T.; Wieghold, S.; Cheng, X. Y.; Latt, K. Z.; Trainer, D. J.; Dandu, N. K.; Li, Y. M.; Premarathna, S. et al. Characterization of just one atom using synchrotron X-rays. Nature 2023, 618, 69–73.

Publication history
Copyright
Acknowledgements

Publication history

Received: 17 July 2023
Revised: 23 August 2023
Accepted: 03 September 2023
Published: 30 September 2023
Issue date: November 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was financially supported in part by the National Key R&D Program of China (Nos. 2020YFA0405800, 2022YFA1504104, and 2022YFA1605400), the National Natural Science Foundation of China (Nos. 12225508, 12322515, U1932201, U2032113, and 22075264), the Youth Innovation Promotion Association of CAS (No. 2022457), the Institute of Energy, Hefei Comprehensive National Science Center, University Synergy Innovation Program of Anhui Province (No. GXXT-2020-002), and the CAS Iterdisciplinary Innovation Team. We thank the Shanghai Synchrotron Radiation Facility (BL14W1, BL14B1, and SSRF), the Beijing Synchrotron Radiation Facility (1W1B, 4B7A, and BSRF), the Hefei Synchrotron Radiation Facility (Infrared Spectroscopy and Microspectroscopy, MCD-A and MCD-B Soochow Beamline for Energy Materials at NSRL), and the USTC Center for Micro and Nanoscale Research and Fabrication for helps in characterizations. We sincerely appreciate the kind guidance and great inspiration from Prof. Sishen Xie.

Return