Journal Home > Volume 17 , Issue 4

The pH monitoring is significantly important in chemical industry, biological process, and pollution treatment. However, it remains a great challenge to measure pH in extreme alkalinity conditions. Herein, we employ an electrolyte-gated field-effect-transistor (FET) strategy using non-stoichiometric SrCoOx with rich oxygen-vacancy defects as channel materials for detecting extreme alkalinity. The corresponding channel can provide effective oxygen-ion-migration sites for reversible transformation of OH ↔ O2− + H+ driven by electric field. The resultant electrolyte-gated FET sensor exhibits a sensitive linear response to high concentrations of alkaline solution, 1–20 M. Significantly, the sensor has the ability to directly indicate the pH values ranging from 14.0 to 17.0 in consideration of ion-activity coefficient data. This work offers a great possibility for directly detecting base concentration as well as pH values in extreme alkaline solutions.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Electrolyte-gated SrCoOx FET sensor for highly sensitive detecting pH in extreme alkalinity solution

Show Author's information Han ZhouGaocan Qi( )Wenbin LiYuhang WangZhihao Yuan( )
School of Materials Science and Engineering, Tianjin Key Lab of Photoelectric Materials & Devices, and Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin University of Technology, Tianjin 300384, China

Abstract

The pH monitoring is significantly important in chemical industry, biological process, and pollution treatment. However, it remains a great challenge to measure pH in extreme alkalinity conditions. Herein, we employ an electrolyte-gated field-effect-transistor (FET) strategy using non-stoichiometric SrCoOx with rich oxygen-vacancy defects as channel materials for detecting extreme alkalinity. The corresponding channel can provide effective oxygen-ion-migration sites for reversible transformation of OH ↔ O2− + H+ driven by electric field. The resultant electrolyte-gated FET sensor exhibits a sensitive linear response to high concentrations of alkaline solution, 1–20 M. Significantly, the sensor has the ability to directly indicate the pH values ranging from 14.0 to 17.0 in consideration of ion-activity coefficient data. This work offers a great possibility for directly detecting base concentration as well as pH values in extreme alkaline solutions.

Keywords: pH sensor, extreme alkaline solution, oxygen-ion migration, field-effect-transistor (FET), SrCoOx

References(48)

[1]

Avolio, R.; Grozdanov, A.; Avella, M.; Barton, J.; Cocca, M.; De Falco, F.; Dimitrov, A. T.; Errico, M. E.; Fanjul-Bolado, P.; Gentile, G. et al. Review of pH sensing materials from macro- to nano-scale: Recent developments and examples of seawater applications. Crit. Rev. Environ. Sci. Technol. 2022, 52, 979–1021.

[2]

Mousa, H.; Awais, M.; Teker, K. Investigation of pH effect on the performance of undoped silicon carbide nanowire field-effect transistors for the development of chemical sensors and biosensors. J. Electron. Mater. 2022, 51, 2062–2069.

[3]

Bargeman, G. Recent developments in the preparation of improved nanofiltration membranes for extreme pH conditions. Sep. Purif. Technol. 2021, 279, 119725.

[4]

Manjakkal, L.; Szwagierczak, D.; Dahiya, R. Metal oxides based electrochemical pH sensors: Current progress and future perspectives. Prog. Mater. Sci. 2020, 109, 100635.

[5]

Ghoneim, M. T.; Nguyen, A.; Dereje, N.; Huang, J.; Moore, G. C.; Murzynowski, P. J.; Dagdeviren, C. Recent progress in electrochemical pH-sensing materials and configurations for biomedical applications. Chem. Rev. 2019, 119, 5248–5297.

[6]

Choi, S.; Lee, Y.; Hwang, J.; Chun, D.; Koo, H.; Lee, Y. Self-cleaving protein linkers with modulated pH-responsiveness: A new platform for selective control of protein drug function. Chem. Eng. J. 2023, 457, 141229.

[7]

Chao, D. Y.; Chen, J. X.; Dong, Q.; Wu, W. W.; Qi, D. S.; Dong, S. J. Ultrastable and ultrasensitive pH-switchable carbon dots with high quantum yield for water quality identification, glucose detection, and two starch-based solid-state fluorescence materials. Nano Res. 2020, 13, 3012–3018.

[8]

Zhang, X.; Chen, J.; Hu, J. W.; Du Rietz, A.; Wu, X. Y.; Zhang, R. L.; Zhang, Z. P.; Uvdal, K.; Hu, Z. J. Single-wavelength-excited fluorogenic nanoprobe for accurate realtime ratiometric analysis of broad pH fluctuations in mitophagy. Nano Res. 2022, 15, 6515–6521.

[9]

Khan, M. I.; Mukherjee, K.; Shoukat, R.; Dong, H. A review on pH sensitive materials for sensors and detection methods. Microsyst. Technol. 2017, 23, 4391–4404.

[10]

Chen, Q. H.; Zhai, J. Y.; Li, J.; Wang, Y. F.; Xie, X. J. Exploring ratiometric endolysosomal pH nanosensors with hydrophobic indicators responding at the nanoscale interface and multiple fluorescence resonance energy transfers. Nano Res. 2022, 15, 3471–3478.

[11]

Vivaldi, F.; Salvo, P.; Poma, N.; Bonini, A.; Biagini, D.; Del Noce, L.; Melai, B.; Lisi, F.; Di Francesco, F. Recent advances in optical, electrochemical and field effect pH sensors. Chemosensors 2021, 9, 33.

[12]

Jamal, M.; Dey, T. K.; Nasrin, T.; Khosla, A.; Razeeb, K. M. Review-nanostructured materials for sensing pH: Evolution, fabrication and challenges. J. Electrochem. Soc. 2022, 169, 057517.

[13]

Nikolić, M. P.; Pavlović, K. V.; Stanojević-Nikolić, S.; Maričić, A.; Srdić, V. V. Synthesis and characterization of silica core/multilayered cobalt ferrite-silica shell particles for lipase immobilization. Mater. Res. 2021, 24, e20210130.

[14]

Torapava, N.; Radkevich, A.; Davydov, D.; Titov, A.; Persson, I. Composition and structure of polynuclear chromium(III) hydroxo complexes. Inorg. Chem. 2009, 48, 10383–10388.

[15]

Giza, K.; Bala, H.; Pavlyuk, V. V. Electrochemical corrosion characteristics of ZrNi5−xCox alloys. Corros. Sci. 2003, 45, 2055–2062.

[16]

Kazemian, A.; Gholizadeh Vayghan, A.; Rajabipour, F. Quantitative assessment of parameters that affect strength development in alkali activated fly ash binders. Constr. Build. Mater. 2015, 93, 869–876.

[17]

Ueki, Y.; Seko, N. Synthesis of fibrous metal adsorbent with a piperazinyl-dithiocarbamate group by radiation-induced grafting and its performance. ACS Omega 2020, 5, 2947–2956.

[18]

Dhamole, P. B.; Nair, R. R.; D’souza, S. F.; Lele, S. S. Denitrification of highly alkaline nitrate waste using adapted sludge. Appl. Biochem. Biotechnol. 2008, 151, 433–440.

[19]

Ma, X. Y.; Chen, S. Y.; Yu, H.; Guan, Y. W.; Li, J. J.; Yan, X. W.; Zhang, Z. H. A phenanthroline-based fluorescent probe for highly selective detection of extreme alkalinity (pH > 14) in aqueous solution. Nanoscale Res. Lett. 2019, 14, 318.

[20]

Li, Q.; Li, H.; Zhang, J.; Xu, Z. H. A novel pH potentiometric sensor based on electrochemically synthesized polybisphenol A films at an ITO electrode. Sens. Actuators B Chem. 2011, 155, 730–736.

[21]

Kang, X. M.; Hu, H. S.; Wu, Z. L.; Wang, J. Q.; Cheng, P.; Li, J.; Zhao, B. An ultrastable matryoshka [Hf13] nanocluster as a luminescent sensor for concentrated alkali and acid. Angew. Chem., Int. Ed. 2019, 58, 16610–16616.

[22]

Ohno, Y.; Maehashi, K.; Yamashiro, Y.; Matsumoto, K. Electrolyte-gated graphene field-effect transistors for detecting pH and protein adsorption. Nano Lett. 2009, 9, 3318–3322.

[23]

Mao, S.; Chang, J. B.; Pu, H. H.; Lu, G. H.; He, Q. Y.; Zhang, H.; Chen, J. H. Two-dimensional nanomaterial-based field-effect transistors for chemical and biological sensing. Chem. Soc. Rev. 2017, 46, 6872–6904.

[24]

Bhat, K. S.; Ahmad, R.; Mahmoudi, T.; Hahn, Y. B. High performance chemical sensor with field-effect transistors array for selective detection of multiple ions. Chem. Eng. J. 2021, 417, 128064.

[25]

Shin, C. J.; Seo, S. E.; Nam, Y.; Kim, K. H.; Kim, L.; Kim, J.; Ryu, E.; Hwang, J. Y.; Kim, G. J.; Jung, M. W. et al. Real-time monitoring of cyanobacterial harmful algal blooms by graphene field-effect transistor. Chem. Eng. J. 2023, 459, 141419.

[26]

Zhang, X.; Zhao, X. T.; Rao, L. M.; Zhang, J.; Xiao, M. C.; Zhu, D. L.; Li, C. L.; Shi, X. S.; Liu, J.; Liu, J. et al. Solution-processed top-contact electrodes strategy for organic crystalline field-effect transistor arrays. Nano Res. 2022, 15, 858–863.

[27]

Rollo, S.; Rani, D.; Olthuis, W.; Pascual García, C. High performance Fin-FET electrochemical sensor with high-k dielectric materials. Sens. Actuators B Chem. 2020, 303, 127215.

[28]

Chajanovsky, I.; Cohen, S.; Shtenberg, G.; Suckeveriene, R. Y. Development and characterization of integrated nano-sensors for organic residues and pH field detection. Sensors 2021, 21, 5842.

[29]

Firek, P.; Krawczyk, S.; Wronka, H.; Czerwosz, E.; Szmidt, J. Hydrogen sensor based on field effect transistor with C-Pd layer. Metrol. Meas. Syst. 2020, 27, 313–321.

[30]

Pfattner, R.; Foudeh, A. M.; Chen, S. C.; Niu, W. J.; Matthews, J. R.; He, M. Q.; Bao, Z. N. Dual-gate organic field-effect transistor for pH sensors with tunable sensitivity. Adv. Electron. Mater. 2019, 5, 1800381.

[31]

Xing, C.; Zhang, J. H.; Jing, J. Y.; Li, J. Z.; Shi, F. Preparations, properties and applications of low-dimensional black phosphorus. Chem. Eng. J. 2019, 370, 120–135.

[32]

Zhao, W. Q.; Ghaznavi, A.; Gao, Y.; Wu, M. R.; Xu, J. Synthesis of a functionalized carbon nanotube graphene composite enabling pH-responsive electrochemical sensing for biomedical applications. ACS Appl. Electron. Mater. 2023, 5, 1224–1233.

[33]

Li, H. J.; Liu, S. B.; Li, X. X.; Hao, R.; Wang, X. J.; Zhang, W. B.; Zheng, Z. X.; Feng, Q. L. All-solid, ultra-micro, and ultrasensitive pH sensor by monolayer MoS2-based array field-effect transistors. ACS Appl. Nano Mater. 2021, 4, 8950–8957.

[34]

Li, P. F.; Lei, N.; Xu, J.; Xue, W. High-yield fabrication of graphene chemiresistors with dielectrophoresis. IEEE Trans. Nanotechnol. 2012, 11, 751–759.

[35]

Neubert, T. J.; Krieg, J.; Yadav, A.; Balasubramanian, K. pH sensitivity of edge-gated graphene field-effect devices with covalent edge functionalization. ACS Appl Electron Mater. 2022, 4, 4668–4676.

[36]

Lu, N. P.; Zhang, P. F.; Zhang, Q. H.; Qiao, R. M.; He, Q.; Li, H. B.; Wang, Y. J.; Guo, J. W.; Zhang, D.; Duan, Z. et al. Electric-field control of tri-state phase transformation with a selective dual-ion switch. Nature 2017, 546, 124–128.

[37]

Hamer, W. J.; Wu, Y. C. Osmotic coefficients and mean activity coefficients of uni-univalent electrolytes in water at 25°C. J. Phys. Chem. Ref. Data 1972, 1, 1047–1100.

[38]

Mitra, C.; Fishman, R. S.; Okamoto, S.; Lee, H. N.; Reboredo, F. A. Ground-state and spin-wave dynamics in Brownmillerite SrCoO2.5-a combined hybrid functional and LSDA + U study. J. Phys. Condens. Matter. 2014, 26, 036004.

[39]

Lim, J.; Yu, J. Role of oxygen vacancy in the spin-state change and magnetic ordering in SrCoO3−δ. Phys. Rev. B 2018, 98, 085106.

[40]

Hu, S.; Seidel, J. Oxygen content modulation by nanoscale chemical and electrical patterning in epitaxial SrCoO3−δ (0 ≤ δ ≤ 0.5) thin films. Nanotechnology 2016, 27, 325301.

[41]

Tang, Y. C.; Li, X. J.; Lv, H. M.; Xie, D.; Wang, W. L.; Zhi, C. Y.; Li, H. F. Stabilized Co3+/Co4+ redox pair in in situ produced CoSe2−x-derived cobalt oxides for alkaline Zn batteries with 10 000-cycle lifespan and 1.9 V voltage plateau. Adv. Energy. Mater. 2020, 10, 2000892.

[42]

Fu, D. Y.; Zhu, C. L.; Zhang, X. T.; Li, C. Y.; Chen, Y. J. Two-dimensional net-like SnO2/ZnO heteronanostructures for high-performance H2S gas sensor. J. Mater. Chem. A 2016, 4, 1390–1398.

[43]

Qi, G. C.; Liu, X. J.; Li, C.; Wang, C.; Yuan, Z. H. The origin of superhydrophobicity for intrinsically hydrophilic metal oxides: A preferential O2 adsorption dominated by oxygen vacancies. Angew. Chem. 2019, 131, 17567–17572.

[44]

Lu, Q. Y.; Yildiz, B. Voltage-controlled topotactic phase transition in thin-film SrCoOx monitored by in situ X-ray diffraction. Nano Lett. 2016, 16, 1186–1193.

[45]

Choi, W. S.; Jeen, H.; Lee, J. H.; Seo, S. S. A.; Cooper, V. R.; Rabe, K. M.; Lee, H. N. Reversal of the lattice structure in SrCoOx epitaxial thin films studied by real-time optical spectroscopy and first-principles calculations. Phys. Rev. Lett. 2013, 111, 097401.

[46]

Wang, W. H.; Yang, Y.; Huan, D. M.; Wang, L. K.; Shi, N.; Xie, Y.; Xia, C. R.; Peng, R. R.; Lu, Y. L. An excellent OER electrocatalyst of cubic SrCoO3−δ prepared by a simple F-doping strategy. J. Mater. Chem. A Mater. 2019, 7, 12538–12546.

[47]

Langell, M. A.; Gevrey, F.; Nydegger, M. W. Surface composition of MnxCo1−xO solid solutions by X-ray photoelectron and auger spectroscopies. Appl. Surf. Sci. 2000, 153, 114–127.

[48]

Zhang, R.; Lu, Y.; Wei, L.; Fang, Z. G.; Lu, C. H.; Ni, Y. R.; Xu, Z. Z.; Tao, S. Y.; Li, P. W. Synthesis and conductivity properties of Gd0.8Ca0.2BaCo2O5+δ double perovskite by sol-gel combustion. J. Mater. Sci. Mater. Electron. 2015, 26, 9941–9948.

File
12274_2023_6148_MOESM1_ESM.pdf (774.5 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 16 August 2023
Revised: 30 August 2023
Accepted: 30 August 2023
Published: 23 October 2023
Issue date: April 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Nature Science Foundation of China (No. 21501132), the Natural Science Foundation of Tianjin City (No. 20JCZDJC00280), and the National Key R&D Program of China (No. 2017YFA0700104). We are grateful to Dr. Xudong Zhao, Dr. Jia He and Dr. Yuehu Wang from Tianjin University of Technology for their technical assistance and valuable discussions on DFT calculations.

Return