Journal Home > Volume 17 , Issue 3

In the era of advanced wearable electronic devices, the triboelectric nanogenerators (TENGs) as energy harvesting and self-powered sensing units hold great promise. Selecting appropriate triboelectric material is the crucial factor to optimize the performance of TENG, while polytetrafluoroethylene (PTFE) stands out as a highly versatile option among the various materials. In this study, we present an ultrafine nanofibrous PTFE (NF-PTFE) films prepared by novel in-situ fibrillation strategy as the triboelectric material in TENG devices. The innovative processing methodology facilely addresses the dilemma between high porosity and fine pore size of traditional porous PTFE films, meanwhile achieves exceptional mechanical strength, hydrophobicity, air permeability, and chemical resistance of the films. With the integration of nanofibrous PTFE films into contact-separation mode TENG and droplet-based TENG, these devices realize the peak electrical output of 131 V/10.8 μA and 54 V/14 μA with great durability, which surpass the performance of TENGs using traditional expanded PTFE films. Furthermore, a smart glove capable of recognizing hand gestures is proposed, which demonstrates the versatility, flexibility, and practicality of this material for potential use in smart devices. This reported NF-PTFE film provides insights for the design of high-performance TENG device for advanced wearable electrical applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Robust, breathable, and chemical-resistant polytetrafluoroethylene (PTFE) films achieved by novel in-situ fibrillation strategy for high-performance triboelectric nanogenerators

Show Author's information Jialong Chai1Guilong Wang1( )Jinchuan Zhao2Guizhen Wang2Chao Wei1Aimin Zhang1Guoqun Zhao1
Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061, China
Key Laboratory of Chinese Education Ministry for Tropical Biological Resources, Hainan University, Haikou 570228, China

Abstract

In the era of advanced wearable electronic devices, the triboelectric nanogenerators (TENGs) as energy harvesting and self-powered sensing units hold great promise. Selecting appropriate triboelectric material is the crucial factor to optimize the performance of TENG, while polytetrafluoroethylene (PTFE) stands out as a highly versatile option among the various materials. In this study, we present an ultrafine nanofibrous PTFE (NF-PTFE) films prepared by novel in-situ fibrillation strategy as the triboelectric material in TENG devices. The innovative processing methodology facilely addresses the dilemma between high porosity and fine pore size of traditional porous PTFE films, meanwhile achieves exceptional mechanical strength, hydrophobicity, air permeability, and chemical resistance of the films. With the integration of nanofibrous PTFE films into contact-separation mode TENG and droplet-based TENG, these devices realize the peak electrical output of 131 V/10.8 μA and 54 V/14 μA with great durability, which surpass the performance of TENGs using traditional expanded PTFE films. Furthermore, a smart glove capable of recognizing hand gestures is proposed, which demonstrates the versatility, flexibility, and practicality of this material for potential use in smart devices. This reported NF-PTFE film provides insights for the design of high-performance TENG device for advanced wearable electrical applications.

Keywords: triboelectric nanogenerator, hydrophobic, polytetrafluoroethylene (PTFE), self-powered sensor, nanofibrous film

References(53)

[1]

Kim, W. G.; Kim, D. W.; Tcho, I. W.; Kim, J. K.; Kim, M. S.; Choi, Y. K. Triboelectric nanogenerator: Structure, mechanism, and applications. ACS Nano 2021, 15, 258–287.

[2]

Hu, X. Y.; Feng, J. R.; Liang, C. J.; Ning, H.; Chen, C. J.; Li, J. Y.; Wen, H. G.; Yao, H. L.; Wan, L. Y.; Liu, G. L. Round-trip oscillation triboelectric nanogenerator with high output response and low wear to harvest random wind energy. Nano Res. 2023, 16, 11259–11268.

[3]

Xu, W. H.; Zheng, H. X.; Liu, Y.; Zhou, X. F.; Zhang, C.; Song, Y. X.; Deng, X.; Leung, M.; Yang, Z. B.; Xu, R. X. et al. A droplet-based electricity generator with high instantaneous power density. Nature 2020, 578, 392–396.

[4]

Lu, L. J.; Ding, W. Q.; Liu, J. Q.; Yang, B. Flexible PVDF based piezoelectric nanogenerators. Nano Energy 2020, 78, 105251.

[5]

Ahmed, A.; Hassan, I.; El-Kady, M. F.; Radhi, A.; Jeong, C. K.; Selvaganapathy, P. R.; Zu, J.; Ren, S. Q.; Wang, Q.; Kaner, R. B. Integrated triboelectric nanogenerators in the era of the Internet of Things. Adv. Sci. 2019, 6, 1802230.

[6]

Xu, S. J.; de Souza Barbosa, P. H.; Wu, W. Z. Biopolymers-based skin-interfaced triboelectric sensors. Nano Res. 2023, 16, 11753–11782.

[7]
Ma, T. B.; Ruan, K. P.; Guo, Y. Q.; Han, Y. X.; Gu, J. W. Controlled length and number of thermally conductive pathways for copper wire/poly(lactic acid) composites via 3D printing. Sci. China Mater., in press, https://doi.org/10.1007/s40843-023-2540-9.
DOI
[8]

Zhang, J. H.; Li, Y.; Du, J. H.; Hao, X. H.; Huang, H. T. A high-power wearable triboelectric nanogenerator prepared from self-assembled electrospun poly(vinylidene fluoride) fibers with a heart-like structure. J. Mater. Chem. A 2019, 7, 11724–11733.

[9]

Li, Z. K.; Zhang, L.; Guo, L. H.; Hu, W. W.; Yu, A. F.; Zhai, J. Y. Manipulating functional groups between polyvinylidene difluoride and nanoparticles for high-performance triboelectric nanogenerator. Nano Res. 2023, 16, 11855–11861.

[10]

Zhang, R. Y.; Dahlström, C.; Zou, H. Y.; Jonzon, J.; Hummelgård, M.; Örtegren, J.; Blomquist, N.; Yang, Y.; Andersson, H.; Olsen, M. et al. Cellulose-based fully green triboelectric nanogenerators with output power density of 300 W·m−2. Adv. Mater. 2020, 32, 2002824.

[11]

Jia, C. Y.; Xia, Y. F.; Zhu, Y.; Wu, M.; Zhu, S. L.; Wang, X. High-brightness, high-resolution, and flexible triboelectrification-induced electroluminescence skin for real-time imaging and human-machine information interaction. Adv. Funct. Mater. 2022, 32, 2201292.

[12]

Tanguy, N. R.; Rana, M.; Khan, A. A.; Zhang, X.; Tratnik, N.; Chen, H. Y.; Ban, D. Y.; Yan, N. Natural lignocellulosic nanofibrils as tribonegative materials for self-powered wireless electronics. Nano Energy 2022, 98, 107337.

[13]

Ma, Y.; Zheng, Q.; Liu, Y.; Shi, B. J.; Xue, X.; Ji, W. P.; Liu, Z.; Jin, Y. M.; Zou, Y.; An, Z. et al. Self-powered, one-stop, and multifunctional implantable triboelectric active sensor for real-time biomedical monitoring. Nano Lett. 2016, 16, 6042–6051.

[14]

Lin, Z. H.; Cheng, G.; Yang, Y.; Zhou, Y. S.; Lee, S.; Wang, Z. L. Triboelectric nanogenerator as an active UV photodetector. Adv. Funct. Mater. 2014, 24, 2810–2816.

[15]

Zhang, R. Y.; Olin, H. Material choices for triboelectric nanogenerators: A critical review. EcoMat 2020, 2, e12062.

[16]

Zou, H. Y.; Zhang, Y.; Guo, L. T.; Wang, P. H.; He, X.; Dai, G. Z.; Zheng, H. W.; Chen, C. Y.; Wang, A. C.; Xu, C. et al. Quantifying the triboelectric series. Nat. Commun. 2019, 10, 1427.

[17]

Zhao, Z. H.; Zhou, L. L.; Li, S. X.; Liu, D.; Li, Y. H.; Gao, Y. K.; Liu, Y. B.; Dai, Y. J.; Wang, J.; Wang, Z. L. Selection rules of triboelectric materials for direct-current triboelectric nanogenerator. Nat. Commun. 2021, 12, 4686.

[18]

Biswas, S. K.; Vijayan, K. Friction and wear of PTFE—A review. Wear 1992, 158, 193–211.

[19]

Li, P.; Liu, Y. B.; Zhang, H.; Hu, Z. P.; Jia, L. N.; Liu, D. K.; Yu, L.; Li, B.; Yao, Y. W. All-nanofiber self-powered PTFE/PA66 device for real-time breathing monitor by scalable solution blow spinning technology. Nano Res. 2022, 15, 8458–8464.

[20]

Liang, X.; Jiang, T.; Feng, Y. W.; Lu, P. J.; An, J.; Wang, Z. L. Triboelectric nanogenerator network integrated with charge excitation circuit for effective water wave energy harvesting. Adv. Energy Mater. 2020, 10, 2002123.

[21]

Wang, Y.; Chen, T. Y.; Sun, S. W.; Liu, X. Y.; Hu, Z. Y.; Lian, Z. H.; Liu, L.; Shi, Q. F.; Wang, H.; Mi, J. C. et al. A humidity resistant and high performance triboelectric nanogenerator enabled by vortex-induced vibration for scavenging wind energy. Nano Res. 2022, 15, 3246–3253.

[22]

Xie, Y. B.; Hu, J. S.; Li, H.; Mi, H. Y.; Ni, G. L.; Zhu, X. S.; Jing, X.; Wang, Y. M.; Zheng, G. Q.; Liu, C. T. et al. Green fabrication of double-sided self-supporting triboelectric nanogenerator with high durability for energy harvesting and self-powered sensing. Nano Energy 2022, 93, 106827.

[23]

Mi, H. Y.; Jing, X.; Cai, Z. Y.;, Liu, Y. J.; Turng, L. S.; Gong, S. Q. Highly porous composite aerogel based triboelectric nanogenerators for high performance energy generation and versatile self-powered sensing. Nanoscale 2018, 10, 23131–23140.

[24]

Chen, H.; Lu, Q. X.; Cao, X.; Wang, N.; Wang, Z. L. Natural polymers based triboelectric nanogenerator for harvesting biomechanical energy and monitoring human motion. Nano Res. 2022, 15, 2505–2511.

[25]

Wang, A. C.; Liu, Z.; Hu, M.; Wang, C. C.; Zhang, X. D.; Shi, B. J.; Fan, Y. B.; Cui, Y. G.; Li, Z.; Ren, K. L. Piezoelectric nanofibrous scaffolds as in vivo energy harvesters for modifying fibroblast alignment and proliferation in wound healing. Nano Energy 2018, 43, 63–71.

[26]

Khandelwal, G.; Raj, N. P. M. J.; Kim, S. J. Triboelectric nanogenerator for healthcare and biomedical applications. Nano Today 2020, 33, 100882.

[27]

Ma, T. B.; Ma, H.; Ruan, K. P.; Shi, X. T.; Qiu, H.; Gao, S. Y.; Gu, J. W. Thermally conductive poly(lactic acid) composites with superior electromagnetic shielding performances via 3D printing technology. Chin. J. Polym. Sci. 2022, 40, 248–255.

[28]

Yang, Y.; Zhang, H. L.; Chen, J.; Jing, Q. S.; Zhou, Y. S.; Wen, X. N.; Wang, Z. L. Single-electrode-based sliding triboelectric nanogenerator for self-powered displacement vector sensor system. ACS Nano 2013, 7, 7342–7351.

[29]

Varghese, H.; Hakkeem, H. M. A.; Chauhan, K.; Thouti, E.; Pillai, S.; Chandran, A. A high-performance flexible triboelectric nanogenerator based on cellulose acetate nanofibers and micropatterned PDMS films as mechanical energy harvester and self-powered vibrational sensor. Nano Energy 2022, 98, 107339.

[30]

He, X. M.; Mu, X. J.; Wen, Q.; Wen, Z. Y.; Yang, J.; Hu, C. G.; Shi, H. F. Flexible and transparent triboelectric nanogenerator based on high performance well-ordered porous PDMS dielectric film. Nano Res. 2016, 9, 3714–3724.

[31]

Pan, R. Z.; Xuan, W. P.; Chen, J. K.; Dong, S. R.; Jin, H.; Wang, X. Z.; Li, H. L.; Luo, J. K. Fully biodegradable triboelectric nanogenerators based on electrospun polylactic acid and nanostructured gelatin films. Nano Energy 2018, 45, 193–202.

[32]

Sun, N.; Wang, G. G.; Zhao, H. X.; Cai, Y. W.; Li, J. Z.; Li, G. Z.; Zhang, X. N.; Wang, B. L.; Han, J. C.; Wang, Y. H. et al. Waterproof, breathable and washable triboelectric nanogenerator based on electrospun nanofiber films for wearable electronics. Nano Energy 2021, 90, 106639.

[33]

Li, Z. L.; Zhu, M. M.; Qiu, Q.; Yu, J. Y.; Ding, B. Multilayered fiber-based triboelectric nanogenerator with high performance for biomechanical energy harvesting. Nano Energy 2018, 53, 726–733.

[34]

Abir, S. S. H.; Sadaf, M. U. K.; Saha, S. K.; Touhami, A.; Lozano, K.; Uddin, M. J. Nanofiber-based substrate for a triboelectric nanogenerator: High-performance flexible energy fiber mats. ACS Appl. Mater. Interfaces 2021, 13, 60401–60412.

[35]

Kim, W. G.; Kim, D.; Jeon, S. B.; Park, S. J.; Tcho, I. W.; Jin, I. K.; Han, J. K.; Choi, Y. K. Multidirection and multiamplitude triboelectric nanogenerator composed of porous conductive polymer with prolonged time of current generation. Adv. Energy Mater. 2018, 8, 1800654.

[36]

Ni, G. L.; Zhu, X. S.; Mi, H. Y.; Feng, P. Y.; Li, J.; Jing, X.; Dong, B. B.; Liu, C. T.; Shen, C. Y. Skinless porous films generated by supercritical CO2 foaming for high-performance complementary shaped triboelectric nanogenerators and self-powered sensors. Nano Energy 2021, 87, 106148.

[37]

Wang, D. F.; Wang, C.; Bi, Z. J.; Zhou, B. K.; Wang, L. X.; Li, Q.; Turng, L. S. Expanded polytetrafluoroethylene/poly(3-hydroxybutyrate) (ePTFE/PHB) triboelectric nanogenerators and their potential applications as self-powered and sensing vascular grafts. Chem. Eng. J. 2023, 455, 140494.

[38]

Zhang, Z.; Xu, Y. Y.; Wang, D. F.; Yang, H. G.; Guo, J. S.; Turng, L. S. Enhanced performance of an expanded polytetrafluoroethylene-based triboelectric nanogenerator for energy harvesting. Nano Energy 2019, 60, 903–911.

[39]

Hu, Y.; Shi, Y. D.; Cao, X. Y.; Liu, Y. P.; Guo, S. Y.; Shen, J. B. Enhanced output and wearable performances of triboelectric nanogenerator based on ePTFE microporous membranes for motion monitoring. Nano Energy 2021, 86, 106103.

[40]

Zhao, P. F.; Soin, N.; Prashanthi, K.; Chen, J. K.; Dong, S. R.; Zhou, E. P.; Zhu, Z. G.; Narasimulu, A. A.; Montemagno, C. D.; Yu, L. Y. et al. Emulsion electrospinning of polytetrafluoroethylene (PTFE) nanofibrous membranes for high-performance triboelectric nanogenerators. ACS Appl. Mater. Interfaces 2018, 10, 5880–5891.

[41]

Wu, J. P.; Liang, W.; Song, W. Z.; Zhou, L. N.; Wang, X. X.; Ramakrishna, S.; Long, Y. Z. An acid and alkali-resistant triboelectric nanogenerator. Nanoscale 2020, 12, 23225–23233.

[42]

Chai, J. L.; Wang, G. L.; Zhang, A. M.; Li, X. Y.; Xu, Z. R.; Zhao, J. C.; Zhao, G. Q. Robust polytetrafluoroethylene (PTFE) nanofibrous membrane achieved by shear-induced in-situ fibrillation for fast oil/water separation and solid removal in harsh solvents. Chem. Eng. J. 2023, 461, 141971.

[43]

Chai, J. L.; Wang, G. L.; Zhang, A. M.; Li, S.; Zhao, J. C.; Zhao, G. Q.; Park, C. B. Ultra-ductile and strong in-situ fibrillated PLA/PTFE nanocomposites with outstanding heat resistance derived by CO2 treatment. Compos. Part A Appl. Sci. Manuf. 2022, 155, 106849.

[44]

Chai, J. L.; Wang, G. L.; Zhang, A. M.; Dong, G. W.; Li, S.; Zhao, J. C.; Zhao, G. Q. Microcellular injection molded lightweight and tough poly (L-lactic acid)/in-situ polytetrafluoroethylene nanocomposite foams with enhanced surface quality and thermally-insulating performance. Int. J. Biol. Macromol. 2022, 215, 57–66.

[45]

Li, F. R.; Wang, Z. R.; Huang, S. C.; Pan, Y. L.; Zhao, X. Z. Flexible, durable, and unconditioned superoleophobic/superhydrophilic surfaces for controllable transport and oil-water separation. Adv. Funct. Mater. 2018, 28, 1706867.

[46]

Hernández, A.; Calvo, J. I.; Prádanos, P.; Tejerina, F. Pore size distributions in microporous membranes. A critical analysis of the bubble point extended method. J. Memb. Sci. 1996, 112, 1–12.

[47]

He, Y. L.; Wang, H. Y.; Sha, Z.; Boyer, C.; Wang, C. H.; Zhang, J. Enhancing output performance of PVDF-HFP fiber-based nanogenerator by hybridizing silver nanowires and perovskite oxide nanocrystals. Nano Energy. 2022, 98, 107343.

[48]

Peng, F.; Liu, D.; Zhao, W.; Zheng, G. Q.; Ji, Y. X.; Dai, K.; Mi, L. W.; Zhang, D. B.; Liu, C. T.; Shen, C. Y. Facile fabrication of triboelectric nanogenerator based on low-cost thermoplastic polymeric fabrics for large-area energy harvesting and self-powered sensing. Nano Energy 2019, 65, 104068.

[49]

Ye, C. Y.; Liu, D.; Peng, X.; Jiang, Y.; Cheng, R. W.; Ning, C.; Sheng, F. F.; Zhang, Y. H.; Dong, K.; Wang, Z. L. A hydrophobic self-repairing power textile for effective water droplet energy harvesting. ACS Nano 2021, 15, 18172–18181.

[50]

Wang, X.; Fang, S. M.; Tan, J.; Hu, T.; Chu, W. C.; Yin, J.; Zhou, J. X.; Guo, W. L. Dynamics for droplet-based electricity generators. Nano Energy 2021, 80, 105558.

[51]

Zhang, Q.; Li, Y. H.; Cai, H.; Yao, M. F.; Zhang, H. D.; Guo, L. Q.; Lv, Z. J.; Li, M. Q.; Lu, X. C.; Ren, C. et al. A single-droplet electricity generator achieves an ultrahigh output over 100 V without pre-charging. Adv. Mater. 2021, 33, 2105761.

[52]

Wang, L. L.; Song, Y. X.; Xu, W. H.; Li, W. B.; Jin, Y. K.; Gao, S. W.; Yang, S. Y.; Wu, C. Y.; Wang, S.; Wang, Z. K. Harvesting energy from high-frequency impinging water droplets by a droplet-based electricity generator. EcoMat 2021, 3, e12116.

[53]

Zhang, N.; Gu, H. J.; Lu, K. Y.; Ye, S. M.; Xu, W. H.; Zheng, H. X.; Song, Y. X.; Liu, C. R.; Jiao, J. W.; Wang, Z. K. et al. A universal single electrode droplet-based electricity generator (SE-DEG) for water kinetic energy harvesting. Nano Energy 2021, 82, 105735.

Video
12274_2023_6147_MOESM2_ESM.mp4
12274_2023_6147_MOESM3_ESM.mp4
File
12274_2023_6147_MOESM1_ESM.pdf (2.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 07 August 2023
Revised: 23 August 2023
Accepted: 30 August 2023
Published: 02 October 2023
Issue date: March 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This study received financial support from the National Natural Science Foundation of China (No. 52175341) and Shandong Provincial Natural Science Foundation (No. ZR2022JQ24).

Return