Journal Home > Volume 17 , Issue 4

Single-atom alloys (SAAs) have gained significant attention due to their remarkable atomic utilization efficiency, interactions between single atoms (SAs) and metal supports, and free-atom-like electronic structure of dopant elements. In this work, we observed the formation of SAs in pre-deposited metal particles by a two-step thermal evaporation technique, thereby establishing the first instance of discovering SAAs by thermal evaporation. The discovery of SAAs by thermal evaporation extends the range of SAAs preparation methods to include this traditional synthetic technique, which offers convenience, cost-efficiency, and universality. The formation mechanism of SAAs prepared using this technique was elucidated by density functional theory calculations. It was demonstrated that thermal evaporation can be utilized to prepare SAAs with multiple SAs, further highlighting its universal applicability.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Single-atom alloys prepared by two-step thermal evaporation

Show Author's information Honglin Wang1,§Jing Li1,2,§Meirong Huang1Jizhe Cui1Zhiying Cheng1Rong Yu1Hongwei Zhu1( )
State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
State Key Lab of Solid Waste Reuse for Building Materials, Beijing Building Materials Academy of Science Research, Beijing 100041, China

§ Honglin Wang and Jing Li contributed equally to this work.

Abstract

Single-atom alloys (SAAs) have gained significant attention due to their remarkable atomic utilization efficiency, interactions between single atoms (SAs) and metal supports, and free-atom-like electronic structure of dopant elements. In this work, we observed the formation of SAs in pre-deposited metal particles by a two-step thermal evaporation technique, thereby establishing the first instance of discovering SAAs by thermal evaporation. The discovery of SAAs by thermal evaporation extends the range of SAAs preparation methods to include this traditional synthetic technique, which offers convenience, cost-efficiency, and universality. The formation mechanism of SAAs prepared using this technique was elucidated by density functional theory calculations. It was demonstrated that thermal evaporation can be utilized to prepare SAAs with multiple SAs, further highlighting its universal applicability.

Keywords: density functional theory, thermal evaporation, single-atom alloys

References(31)

[1]

Liang, S. X.; Hao, C.; Shi, Y. T. The power of single-atom catalysis. ChemCatChem 2015, 7, 2559–2567.

[2]

Chen, Y. J.; Ji, S. F.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysts: Synthetic strategies and electrochemical applications. Joule 2018, 2, 1242–1264.

[3]

Fei, H. L.; Dong, J. C.; Feng, Y. X.; Allen, C. S.; Wan, C. Z.; Volosskiy, B.; Li, M. F.; Zhao, Z. P.; Wang, Y. L.; Sun, H. T. et al. General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nat. Catal. 2018, 1, 63–72.

[4]

Giannakakis, G.; Flytzani-Stephanopoulos, M.; Sykes, E. C. H. Single-atom alloys as a reductionist approach to the rational design of heterogeneous catalysts. Acc. Chem. Res. 2019, 52, 237–247.

[5]

Hannagan, R. T.; Giannakakis, G.; Flytzani-Stephanopoulos, M.; Sykes, E. C. H. Single-atom alloy catalysis. Chem. Rev. 2020, 120, 12044–12088.

[6]

Lucci, F. R.; Liu, J. L.; Marcinkowski, M. D.; Yang, M.; Allard, L. F.; Flytzani-Stephanopoulos, M.; Sykes, E. C. H. Selective hydrogenation of 1,3-butadiene on platinum-copper alloys at the single-atom limit. Nat. Commun. 2015, 6, 8550.

[7]

Zhang, X.; Cui, G. Q.; Feng, H. S.; Chen, L. F.; Wang, H.; Wang, B.; Zhang, X.; Zheng, L. R.; Hong, S.; Wei, M. Platinum-copper single atom alloy catalysts with high performance towards glycerol hydrogenolysis. Nat. Commun. 2019, 10, 5812.

[8]

Mao, J. J.; Yin, J. S.; Pei, J. J.; Wang, D. S.; Li, Y. D. Single atom alloy: An emerging atomic site material for catalytic applications. Nano Today 2020, 34, 100917.

[9]

Sun, G. D.; Zhao, Z. J.; Mu, R. T.; Zha, S. J.; Li, L. L.; Chen, S.; Zang, K. T.; Luo, J.; Li, Z. L.; Purdy, S. C. et al. Breaking the scaling relationship via thermally stable Pt/Cu single atom alloys for catalytic dehydrogenation. Nat. Commun. 2018, 9, 4454.

[10]

Pei, G. X.; Liu, X. Y.; Yang, X. F.; Zhang, L. L.; Wang, A. Q.; Li, L.; Wang, H.; Wang, X. D.; Zhang, T. Performance of Cu-alloyed Pd single-atom catalyst for semihydrogenation of acetylene under simulated front-end conditions. ACS Catal. 2017, 7, 1491–1500.

[11]

Kim, J.; Roh, C. W.; Sahoo, S. K.; Yang, S.; Bae, J.; Han, J. W.; Lee, H. Highly durable platinum single-atom alloy catalyst for electrochemical reactions. Adv. Energy Mater. 2018, 8, 1701476.

[12]

Yang, T. Y.; Qin, F. J.; Zhang, S. P.; Rong, H. P.; Chen, W. X.; Zhang, J. T. Atomically dispersed Ru in Pt3Sn intermetallic alloy as an efficient methanol oxidation electrocatalyst. Chem. Commun. 2021, 57, 2164–2167.

[13]

Giannakakis, G.; Trimpalis, A.; Shan, J. J.; Qi, Z.; Cao, S. F.; Liu, J. L.; Ye, J. C.; Biener, J.; Flytzani-Stephanopoulos, M. NiAu single atom alloys for the non-oxidative dehydrogenation of ethanol to acetaldehyde and hydrogen. Top. Catal. 2018, 61, 475–486.

[14]

Ouyang, M. Y.; Papanikolaou, K. G.; Boubnov, A.; Hoffman, A. S.; Giannakakis, G.; Bare, S. R.; Stamatakis, M.; Flytzani-Stephanopoulos, M.; Sykes, E. C. H. Directing reaction pathways via in situ control of active site geometries in PdAu single-atom alloy catalysts. Nat. Commun. 2021, 12, 1549.

[15]

Wang, Y. X.; Cao, L.; Libretto, N. J.; Li, X.; Li, C. Y.; Wan, Y. D.; He, C.; Lee, J.; Gregg, J.; Zong, H. et al. Ensemble effect in bimetallic electrocatalysts for CO2 reduction. J. Am. Chem. Soc. 2019, 141, 16635–16642.

[16]

Shan, J. J.; Liu, J. L.; Li, M. W.; Lustig, S.; Lee, S.; Flytzani-Stephanopoulos, M. NiCu single atom alloys catalyze the C–H bond activation in the selective non-oxidative ethanol dehydrogenation reaction. Appl. Catal. B: Environ. 2018, 226, 534–543.

[17]

Marcinkowski, M. D.; Darby, M. T.; Liu, J. L.; Wimble, J. M.; Lucci, F. R.; Lee, S.; Michaelides, A.; Flytzani-Stephanopoulos, M.; Stamatakis, M.; Sykes, E. C. H. Pt/Cu single-atom alloys as coke-resistant catalysts for efficient C–H activation. Nat. Chem. 2018, 10, 325–332.

[18]

Yao, Y. C.; Hu, S. L.; Chen, W. X.; Huang, Z. Q.; Wei, W. C.; Yao, T.; Liu, R. R.; Zang, K. T.; Wang, X. Q.; Wu, G. et al. Engineering the electronic structure of single atom Ru sites via compressive strain boosts acidic water oxidation electrocatalysis. Nat. Catal. 2019, 2, 304–313.

[19]

Kyriakou, G.; Boucher, M. B.; Jewell, A. D.; Lewis, E. A.; Lawton, T. J.; Baber, A. E.; Tierney, H. L.; Flytzani-Stephanopoulos, M.; Sykes, E. C. H. Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations. Science 2012, 335, 1209–1212.

[20]

Lv, J.; Lai, F. C.; Lin, L. M.; Lin, Y. Z.; Huang, Z. G.; Chen, R. Thermal stability of Ag films in air prepared by thermal evaporation. Appl. Surf. Sci. 2007, 253, 7036–7040.

[21]

Yao, B. D.; Chan, Y. F.; Wang, N. Formation of ZnO nanostructures by a simple way of thermal evaporation. Appl. Phys. Lett. 2002, 81, 757–759.

[22]

Bouhssira, N.; Abed, S.; Tomasella, E.; Cellier, J.; Mosbah, A.; Aida, M. S.; Jacquet, M. Influence of annealing temperature on the properties of ZnO thin films deposited by thermal evaporation. Appl. Surf. Sci. 2006, 252, 5594–5597.

[23]

Li, J.; Chen, W. D.; Lin, R.; Huang, M. R.; Wang, M.; Chai, M. S.; Zhu, H. W. Thermally evaporated Ag–Au bimetallic catalysts for efficient electrochemical CO2 reduction. Part. Part. Syst. Char. 2021, 38, 2100148.

[24]

Canzian, A.; Mosca, H. O.; Bozzolo, G. Surface alloying of Pd on Cu (111). Surf. Sci. 2004, 551, 9–22.

[25]

Bach Aaen, A.; Lægsgaard, E.; Ruban, A. V.; Stensgaard, I. Submonolayer growth of Pd on Cu (111) studied by scanning tunneling microscopy. Surf. Sci. 1998, 408, 43–56.

[26]

Tierney, H. L.; Baber, A. E.; Sykes, E. C. H. Atomic-scale imaging and electronic structure determination of catalytic sites on Pd/Cu near surface alloys. J. Phys. Chem. C 2009, 113, 7246–7250.

[27]

Chang, S. J.; Bao, H. L.; Huang, W. X. Size-dependent redispersion or agglomeration of Ag clusters on CeO2. J. Phys. Chem. C 2022, 126, 11537–11543.

[28]

Ji, Y. J.; Chen, X. L.; Liu, S. M.; Song, S. J.; Xu, W. Q.; Jiang, R. H.; Chen, W. X.; Li, H. F.; Zhu, T. Y.; Li, Z. X. et al. Tailoring the electronic structure of single Ag atoms in Ag/WO3 for efficient NO reduction by CO in the presence of O2. ACS Catal. 2023, 13, 1230–1239.

[29]

Zhao, Z. Y.; Li, Z. S.; Zou, Z. G. Electronic structure and optical properties of monoclinic clinobisvanite BiVO4. Phys. Chem. Chem. Phys. 2011, 13, 4746–4753.

[30]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[31]

Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 1990, 41, 7892–7895.

File
12274_2023_6146_MOESM1_ESM.pdf (730.1 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 31 July 2023
Revised: 29 August 2023
Accepted: 30 August 2023
Published: 28 September 2023
Issue date: April 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 52172046).

Return