Journal Home > Volume 16 , Issue 11

Lithium-sulfur (Li-S) battery has attracted extensive attention because of its ultrahigh theoretical energy density and low cost. However, its commercialization is seriously hampered by its short cycling life, mainly due to the shuttle of soluble lithium polysulfides (LiPSs) and poor rate capability due to sluggish reaction kinetics. Although significant efforts have been devoted to solving the problems, it is still challenging to simultaneously address all the issues. Herein, titanium nitride hollow multishelled structure (TiN HoMS) sphere is designed as a multi-functional catalytic host for sulfur cathode. TiN, with good conductivity, can effectively catalyze the redox conversion of S and LiPSs, while its surficial oxidation passivation layer can strongly anchor LiPSs. Besides, HoMS enables TiN nanoparticle subunits to expose abundant active sites for anchoring and promoting conversion of LiPSs, while the multiple shells provide physical barriers to restrict the shuttle effect. In addition, HoMS can buffer the volume expansion of sulfur and shorten the charge transport pathway. As a result, the sulfur cathode based on triple-shelled TiN HoMS exhibits an initial specific capacity of 1016 mAh·g−1 at a high sulfur loading of 2.8 mg·cm−2 and maintains 823 mAh·g−1 after 100 cycles. Moreover, it shows a four times higher specific capacity than the one without TiN host at 2 C.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Hollow multishelled structural TiN as multi-functional catalytic host for high-performance lithium-sulfur batteries

Show Author's information Wei Xu1,2Ruyi Bi1,2Mei Yang1,4Jiangyan Wang1,3,4( )Ranbo Yu2( )Dan Wang1,3,4( )
State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China

Abstract

Lithium-sulfur (Li-S) battery has attracted extensive attention because of its ultrahigh theoretical energy density and low cost. However, its commercialization is seriously hampered by its short cycling life, mainly due to the shuttle of soluble lithium polysulfides (LiPSs) and poor rate capability due to sluggish reaction kinetics. Although significant efforts have been devoted to solving the problems, it is still challenging to simultaneously address all the issues. Herein, titanium nitride hollow multishelled structure (TiN HoMS) sphere is designed as a multi-functional catalytic host for sulfur cathode. TiN, with good conductivity, can effectively catalyze the redox conversion of S and LiPSs, while its surficial oxidation passivation layer can strongly anchor LiPSs. Besides, HoMS enables TiN nanoparticle subunits to expose abundant active sites for anchoring and promoting conversion of LiPSs, while the multiple shells provide physical barriers to restrict the shuttle effect. In addition, HoMS can buffer the volume expansion of sulfur and shorten the charge transport pathway. As a result, the sulfur cathode based on triple-shelled TiN HoMS exhibits an initial specific capacity of 1016 mAh·g−1 at a high sulfur loading of 2.8 mg·cm−2 and maintains 823 mAh·g−1 after 100 cycles. Moreover, it shows a four times higher specific capacity than the one without TiN host at 2 C.

Keywords: titanium nitride, lithium-sulfur batteries, rate capability, shuttle effect, hollow multishelled structure

References(67)

[1]

Evers, S.; Nazar, L. F. New approaches for high energy density lithium-sulfur battery cathodes. Acc. Chem. Res. 2013, 46, 1135–1143.

[2]

Li, H.; Song, J. P.; Wu, F. L.; Wang, R.; Liu, D.; Tang, H. L. Metal-nitrogen-doped hybrid ionic/electronic conduction triple-phase interfaces for high-performance all-solid-state lithium-sulfur batteries. Nano Res. 2023, 16, 10956–10965.

[3]

Ji, X. L.; Lee, K. T.; Nazar, L. F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 2009, 8, 500–506.

[4]

Yang, M.; Bi, R. Y.; Wang, J. Y.; Yu, R. B.; Wang, D. Decoding lithium batteries through advanced in situ characterization techniques. Int. J. Miner. Metall. Mater. 2022, 29, 965–989.

[5]

Ye, H. L.; Li, Y. G. Towards practical lean-electrolyte Li–S batteries: Highly solvating electrolytes or sparingly solvating electrolytes? Nano Res. Energy 2022, 1, e9120012.

[6]

Liu, Y. S.; Zhao, X. H.; Li, S. S.; Zhang, Q.; Wang, K. X.; Chen, J. S. Towards high-performance lithium-sulfur batteries: The modification of polypropylene separator by 3D porous carbon structure embedded with Fe3C/Fe nanoparticles. Chem. Res. Chin. Univ. 2022, 38, 147–154.

[7]

Wang, F.; Zuo, Z. C.; Li, L.; He, F.; Li, Y. L. Graphdiyne nanostructure for high-performance lithium-sulfur batteries. Nano Energy 2019, 68, 104307.

[8]

Li, B. Q.; Peng, H. J.; Chen, X.; Zhang, S. Y.; Xie, J.; Zhao, C. X.; Zhang, Q. Polysulfide electrocatalysis on framework porphyrin in high-capacity and high-stable lithium-sulfur batteries. CCS Chem. 2019, 1, 128–137.

[9]

Lu, R. C.; Cheng, M.; Mao, L. J.; Zhang, M.; Yuan, H. X.; Amin, K.; Yang, C.; Cheng, Y. L.; Meng, Y. N.; Wei, Z. X. Nitrogen-doped nanoarray-modified 3D hierarchical graphene as a cofunction host for high-performance flexible Li-S battery. EcoMat 2020, 2, e12010.

[10]

Du, L. Y.; Wang, H. M.; Yang, M.; Liu, L. L.; Niu, Z. Q. Free-standing nanostructured architecture as a promising platform for high-performance lithium-sulfur batteries. Small Struct. 2020, 1, 2000047.

[11]

Razaq, R.; Zhang, N. N.; Xin, Y.; Li, Q.; Wang, J.; Zhang, Z. L. Electrocatalytic conversion of lithium polysulfides by highly dispersed ultrafine Mo2C nanoparticles on hollow N-doped carbon flowers for Li-S batteries. EcoMat 2020, 2, e12020.

[12]

Pan, H.; Cheng, Z. B.; Fransaer, J.; Luo, J. S.; Wübbenhorst, M. Cobalt-embedded 3D conductive honeycomb architecture to enable high-sulphur-loading Li-S batteries under lean electrolyte conditions. Nano Res. 2022, 15, 8091–8100.

[13]

Liu, H. T.; Liu, F.; Qu, Z. H.; Chen, J. L.; Liu, H.; Tan, Y. Q.; Guo, J. B.; Yan, Y.; Zhao, S.; Zhao, X. S. et al. High sulfur loading and shuttle inhibition of advanced sulfur cathode enabled by graphene network skin and N, P, F-doped mesoporous carbon interfaces for ultra-stable lithium sulfur battery. Nano Res. Energy 2023, 2, e9120049.

[14]

Li, Z.; Hou, L. P.; Zhang, X. Q.; Li, B. Q.; Huang, J. Q.; Chen, C. M.; Liu, Q. B.; Xiang, R.; Zhang, Q. A Nafion protective layer for stabilizing lithium metal anodes in working lithium-sulfur batteries. Battery Energy. 2022, 1, 20220006.

[15]

Wang, C. D.; Ma, Y.; Du, X. F.; Zhang, H. R.; Xu, G. J.; Cui, G. L. A polysulfide radical anions scavenging binder achieves long-life lithium-sulfur batteries. Battery Energy. 2022, 1, 20220010.

[16]

Wei Seh, Z.; Li, W. Y.; Cha, J. J.; Zheng, G. Y.; Yang, Y.; McDowell, M. T.; Hsu, P. C.; Cui, Y. Sulphur-TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries. Nat. Commun. 2013, 4, 1331.

[17]

Li, Z.; Zhang, J. T.; Guan, B. Y.; Wang, D.; Liu, L. M.; Lou, X. W. A sulfur host based on titanium monoxide@carbon hollow spheres for advanced lithium-sulfur batteries. Nat Commun. 2016, 7, 13065.

[18]

Zhang, C.; Liu, D. H.; Geng, C. N.; Hua, W. X.; Tang, Q. J.; Ling, G. W.; Yang, Q. H. Solution-based preparation of high sulfur content sulfur/graphene cathode material for Li-S battery. Chem. Res. Chin. Univ. 2021, 37, 323–327.

[19]

Huang, X.; Qiu, T. F.; Zhang, X. H.; Wang, L.; Luo, B.; Wang, L. Z. Recent advances of hollow-structured sulfur cathodes for lithium-sulfur batteries. Mater. Chem. Front. 2020, 4, 2517–2547.

[20]

Yuan, K.; Yuan, L. X.; Chen, J.; Xiang, J. W.; Liao, Y. Q.; Li, Z.; Huang, Y. H. Methods and cost estimation for the synthesis of nanosized lithium sulfide. Small Struct. 2021, 2, 2000059.

[21]

Wang, L.; Li, G. R.; Liu, S.; Gao, X. P. Hollow molybdate microspheres as catalytic hosts for enhancing the electrochemical performance of sulfur cathode under high sulfur loading and lean electrolyte. Adv. Funct. Mater. 2021, 31, 2010693.

[22]

Chen, W. J.; Xia, H. C.; Guo, K.; Jin, W. Z.; Du, Y.; Yan, W. F.; Qu, G.; Zhang, J. N. Atomically dispersed Fe-N4 sites and Fe3C particles catalyzing polysulfides conversion in Li-S batteries. Chem. Res. Chin. Univ. 2022, 38, 1232–1238.

[23]

Qian, J.; Xing, Y.; Yang, Y.; Li, Y.; Yu, K. X.; Li, W. L.; Zhao, T.; Ye, Y. S.; Li, L.; Wu, F. et al. Enhanced electrochemical kinetics with highly dispersed conductive and electrocatalytic mediators for lithium-sulfur batteries. Adv. Mater. 2021, 33, e2100810.

[24]

Zhang, J. T.; Hu, H.; Li, Z.; Lou, X. W. Double-shelled nanocages with cobalt hydroxide inner shell and layered double hydroxides outer shell as high-efficiency polysulfide mediator for lithium-sulfur batteries. Angew. Chem., Int. Ed. 2016, 55, 3982–3986.

[25]

Salhabi, E. H. M.; Zhao, J. L.; Wang, J. Y.; Yang, M.; Wang, B.; Wang, D. Hollow multi-shelled structural TiO2−x with multiple spatial confinement for long-life lithium-sulfur batteries. Angew. Chem., Int. Ed. 2019, 58, 9078–9082.

[26]

Wei, Y. Z.; You, F. F.; Zhao, D. C.; Wan, J. W.; Gu, L.; Wang, D. Heterogeneous hollow multi-shelled structures with amorphous-crystalline outer-shells for sequential photoreduction of CO2. Angew. Chem., Int. Ed. 2022, 61, e202212049.

[27]

Zhao, D. C.; Wei, Y. Z.; Jin, Q.; Yang, N. L.; Yang, Y.; Wang, D. PEG-functionalized hollow multishelled structures with on-off switch and rate-regulation for controllable antimicrobial release. Angew. Chem., Int. Ed. 2022, 61, e202206807.

[28]

Wei, Y. Z.; Wan, J. W.; Yang, N. L.; Yang, Y.; Ma, Y. W.; Wang, S. C.; Wang, J. Y.; Yu, R. B.; Gu, L.; Wang, L. H. et al. Efficient sequential harvesting of solar light by heterogeneous hollow shells with hierarchical pores. Natl. Sci. Rev. 2020, 7, 1638–1646.

[29]

Chen, X. B.; Yang, N. L.; Wang, Y. L.; He, H. Y.; Wang, J. Y.; Wan, J. W.; Jiang, H. Y.; Xu, B.; Wang, L. M.; Yu, R. B. et al. Highly efficient photothermal conversion and water transport during solar evaporation enabled by amorphous hollow multishelled nanocomposites. Adv. Mater. 2022, 34, 2107400.

[30]

Zhao, D. C.; Yang, N. L.; Wei, Y.; Jin, Q.; Wang, Y. L.; He, H. Y.; Yang, Y.; Han, B.; Zhang, S. J.; Wang, D. Sequential drug release via chemical diffusion and physical barriers enabled by hollow multishelled structures. Nat. Commun. 2020, 11, 4450.

[31]

Wang, L.; Wan, J. W.; Wang, J. Y.; Wang, D. Small structures bring big things: Performance control of hollow multishelled structures. Small Struct. 2021, 2, 2000041.

[32]

Zhang, Y. T.; Ran, L.; Li, Z. W.; Zhai, P. L.; Zhang, B.; Fan, Z. Z.; Wang, C.; Zhang, X. M.; Hou, J. G.; Sun, L. C. Simultaneously efficient solar light harvesting and charge transfer of hollow octahedral Cu2S/CdS p–n heterostructures for remarkable photocatalytic hydrogen generation. Trans. Tianjin Univ. 2021, 27, 348–357.

[33]

Wang, J. Y.; Yang, M.; Wang, D. Progress and perspectives of hollow multishelled structures. Chin. J. Chem. 2022, 40, 1190–1203.

[34]

Wang, J. Y.; Tang, H. J.; Zhang, L. J.; Ren, H.; Yu, R. B.; Jin, Q.; Qi, J.; Mao, D.; Yang, M.; Wang, Y. et al. Multi-shelled metal oxides prepared via an anion-adsorption mechanism for lithium-ion batteries. Nat. Energy 2016, 1, 16050.

[35]

Wang, J. Y.; Wan, J. W.; Yang, N. L.; Li, Q.; Wang, D. Hollow multishell structures exercise temporal–spatial ordering and dynamic smart behaviour. Nat. Rev. Chem. 2020, 4, 159–168.

[36]

Luo, D.; Li, G. R.; Deng, Y. P.; Zhang, Z.; Li, J. D.; Liang, R. L.; Li, M.; Jiang, Y.; Zhang, W. W.; Liu, Y. S. et al. Synergistic engineering of defects and architecture in binary metal chalcogenide toward fast and reliable lithium-sulfur batteries. Adv. Energy Mater. 2019, 9, 1900228.

[37]

Mao, D.; Wan, J. W.; Wang, J. Y.; Wang, D. Sequential templating approach: A groundbreaking strategy to create hollow multishelled structures. Adv. Mater. 2019, 31, 1802874.

[38]

Zhao, J. L.; Wang, J. Y.; Bi, R. Y.; Yang, M.; Wan, J. W.; Jiang, H. Y.; Gu, L.; Wang, D. General synthesis of multiple-cores@multiple-shells hollow composites and their application to lithium-ion batteries. Angew. Chem., Int. Ed. 2021, 60, 25719–25722.

[39]

Wang, J. Y.; Wang, Z. M.; Mao, D.; Wang, D. The development of hollow multishelled structure: From the innovation of synthetic method to the discovery of new characteristics. Sci. China Chem. 2022, 65, 7–19.

[40]

Li, B.; Bi, R. Y.; Yang, M.; Gao, W.; Wang, J. Y. Coating conductive polypyrrole layers on multiple shells of hierarchical SnO2 spheres and their enhanced cycling stability as lithium-ion battery anode. Appl. Surf. Sci. 2022, 586, 152836.

[41]

Li, B.; Wang, J. Y.; Bi, R. Y.; Yang, N. L.; Wan, J. W.; Jiang, H. Y.; Gu, L.; Du, J.; Cao, A. M.; Gao, W. et al. Accurately localizing multiple nanoparticles in a multishelled matrix through shell-to-core evolution for maximizing energy-storage capability. Adv. Mater. 2022, 34, 2200206.

[42]

Zhou, T. H.; Lv, W.; Li, J.; Zhou, G. M.; Zhao, Y.; Fan, S. X.; Liu, B. L.; Li, B. H.; Kang, F. Y.; Yang, Q. H. Twinborn TiO2–TiN heterostructures enabling smooth trapping–diffusion–conversion of polysulfides towards ultralong life lithium-sulfur batteries. Energy Environ. Sci. 2017, 10, 1694–1703.

[43]

Cui, Z. M.; Zu, C. X.; Zhou, W. D.; Manthiram, A.; Goodenough, J. B. Mesoporous titanium nitride-enabled highly stable lithium-sulfur batteries. Adv. Mater. 2016, 28, 6926–6931.

[44]

Qi, B.; Zhao, X. S.; Wang, S. G.; Chen, K.; Wei, Y. J.; Chen, G.; Gao, Y.; Zhang, D.; Sun, Z. H.; Li, F. Mesoporous TiN microspheres as an efficient polysulfide barrier for lithium-sulfur batteries. J. Mater. Chem. A 2018, 6, 14359–14366.

[45]

Deng, D. R.; An, T. H.; Li, Y. J.; Wu, Q. H.; Zheng, M. S.; Dong, Q. F. Hollow porous titanium nitride tubes as a cathode electrode for extremely stable Li-S batteries. J. Mater. Chem. A 2016, 4, 16184–16190.

[46]

Yao, Y.; Wang, H. Y.; Yang, H.; Zeng, S. F.; Xu, R.; Liu, F. F.; Shi, P. C.; Feng, Y. Z.; Wang, K.; Yang, W. J. et al. A dual-functional conductive framework embedded with TiN–VN heterostructures for highly efficient polysulfide and lithium regulation toward stable Li-S full batteries. Adv. Mater. 2020, 32, 1905658.

[47]

Wang, Y. K.; Zhang, R. F.; Pang, Y. C.; Chen, X.; Lang, J. X.; Xu, J. J.; Xiao, C. H.; Li, H. L.; Xi, K.; Ding, S. J. Carbon@titanium nitride dual shell nanospheres as multi-functional hosts for lithium sulfur batteries. Energy Storage Mater. 2019, 16, 228–235.

[48]

Mosavati, N.; Chitturi, V. R.; Salley, S. O.; Ng, K. Y. S. Nanostructured titanium nitride as a novel cathode for high performance lithium/dissolved polysulfide batteries. J. Power Sources 2016, 321, 87–93.

[49]

Li, Z.; Zhang, J. T.; Guan, B. Y.; Lou, X. W. Mesoporous carbon@titanium nitride hollow spheres as an efficient SeS2 host for advanced Li-SeS2 batteries. Angew. Chem., Int. Ed. 2017, 56, 16003–16007.

[50]

Yu, Y.; Yan, M.; Dong, W. D.; Wu, L.; Tian, Y. W.; Deng, Z.; Chen, L. H.; Hasan, T.; Li, Y.; Su, B. L. Optimizing inner voids in yolk–shell TiO2 nanostructure for high-performance and ultralong-life lithium-sulfur batteries. Chem. Eng. J. 2021, 417, 129241.

[51]

Zhang, C. F.; Wu, H. B.; Yuan, C. Z.; Guo, Z. P.; Lou, X. W. Confining sulfur in double-shelled hollow carbon spheres for lithium-sulfur batteries. Angew. Chem., Int. Ed. 2012, 51, 9592–9595.

[52]

Tan, X. N.; Wang, X. G.; Wang, X. Q.; Wang, Y. F.; Li, C.; Xia, D. G. NiCo2S4 yolk–shell hollow spheres with physical and chemical interaction toward polysulfides for advanced lithium-sulfur batteries. Ionics 2019, 25, 4047–4056.

[53]

Zhu, Y. J.; Wang, J. Y.; Xie, C.; Yang, M.; Zheng, Z. J.; Yu, R. B. Hollow multishelled structural NiO as a “shelter” for high-performance Li-S batteries. Mater. Chem. Front. 2020, 4, 2971–2975.

[54]

Wei, Y. Z.; Cheng, Y. P.; Zhao, D. C.; Feng, Y.; Wei, P.; Wang, J. Y.; Ge, W.; Wang, D. A universal formation mechanism of hollow multi-shelled structures dominated by concentration waves. Angew. Chem., Int. Ed. 2023, 62, e202302621.

[55]

Qi, J.; Lai, X. Y.; Wang, J. Y.; Tang, H. J.; Ren, H.; Yang, Y.; Jin, Q.; Zhang, L. J.; Yu, R. B.; Ma, G. H. et al. Multi-shelled hollow micro-/nanostructures. Chem. Soc. Rev. 2015, 44, 6749–6773.

[56]

Li, Z. M.; Lai, X. Y.; Wang, H.; Mao, D.; Xing, C. J.; Wang, D. General synthesis of homogeneous hollow core–shell ferrite microspheres. J. Phys. Chem. C 2009, 113, 2792–2797.

[57]

Lai, X. Y.; Li, J.; Korgel, B. A.; Dong, Z. H.; Li, Z. M.; Su, F. B.; Du, J.; Wang, D. General synthesis and gas-sensing properties of multiple-shell metal oxide hollow microspheres. Angew. Chem., Int. Ed. 2011, 50, 2738–2741.

[58]

Ren, H.; Yu, R. B.; Wang, J. Y.; Jin, Q.; Yang, M.; Mao, D.; Kisailus, D.; Zhao, H. J.; Wang, D. Multishelled TiO2 hollow microspheres as anodes with superior reversible capacity for lithium ion batteries. Nano Lett. 2014, 14, 6679–6684.

[59]

Sun, X. M.; Li, Y. D. Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles. Angew. Chem., Int. Ed. 2004, 43, 597–601.

[60]

Liao, Y. Q.; Xiang, J. W.; Yuan, L. X.; Hao, Z. X.; Gu, J. F.; Chen, X.; Yuan, K.; Kalambate, P. K.; Huang, Y. H. Biomimetic root-like TiN/C@S nanofiber as a freestanding cathode with high sulfur loading for lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2018, 10, 37955–37962.

[61]

Huang, S. Z.; Lim, Y. V.; Zhang, X. M.; Wang, Y.; Zheng, Y.; Kong, D. Z.; Ding, M.; Yang, S. A.; Yang, H. Y. Regulating the polysulfide redox conversion by iron phosphide nanocrystals for high-rate and ultrastable lithium-sulfur battery. Nano Energy 2018, 51, 340–348.

[62]

Fan, F. Y.; Carter, W. C.; Chiang, Y. M. Mechanism and kinetics of Li2S precipitation in lithium-sulfur batteries. Adv. Mater. 2015, 27, 5203–5209.

[63]

Wild, M.; O'Neill, L.; Zhang, T.; Purkayastha, R.; Minton, G.; Marinescu, M.; Offer, G. J. Lithium sulfur batteries, a mechanistic review. Energy Environ. Sci. 2015, 8, 3477–3494.

[64]

Li, Z. J.; Zhou, Y. C.; Wang, Y.; Lu, Y. C. Solvent-mediated Li2S electrodeposition: A critical manipulator in lithium-sulfur batteries. Adv. Energy Mater. 2019, 9, 1802207.

[65]

Bi, R. Y.; Xu, N.; Ren, H.; Yang, N. L.; Sun, Y. G.; Cao, A. M.; Yu, R. B.; Wang, D. A hollow multi-shelled structure for charge transport and active sites in lithium-ion capacitors. Angew. Chem., Int. Ed. 2020, 59, 4865–4868.

[66]

Mahankali, K.; Thangavel, N. K.; Gopchenko, D.; Arava, L. M. R. Atomically engineered transition metal dichalcogenides for liquid polysulfide adsorption and their effective conversion in Li-S batteries. ACS Appl. Mater. Interfaces 2020, 12, 27112–27121.

[67]

Zhu, W.; Paolella, A.; Kim, C. S.; Liu, D.; Feng, Z.; Gagnon, C.; Trottier, J.; Vijh, A.; Guerfi, A.; Mauger, A. et al. Investigation of the reaction mechanism of lithium sulfur batteries in different electrolyte systems by in situ Raman spectroscopy and in situ X-ray diffraction. Sustainable Energy Fuels 2017, 1, 737–747.

File
12274_2023_6144_MOESM1_ESM.pdf (2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 06 July 2023
Revised: 30 August 2023
Accepted: 30 August 2023
Published: 03 October 2023
Issue date: November 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This study received support from the National Natural Science Foundation of China (Nos. 21820102002, 52301296, 51932001, 52372170, and 52261160573), the National Key R&D Program (Nos. 2018YFA0703503, 2021YFC2902503, and 2022YFA1504101), the Cooperation Fund of the Institute of Clean Energy Innovation, Chinese Academy of Sciences (No. DNL202020), the Zhongke-Yuneng Joint R&D Center Program (No. ZKYN2022008), and Institute of Process Engineering (IPE) Project for Frontier Basic Research (No. QYJC-2022-008).

Return