Journal Home > Volume 17 , Issue 2

Conventional synthetic materials have fixed mechanical properties and suffer defects, damage, and degradation over time. This makes them unable to adapt to changing environments and leads to limited lifecycles. Recently, self-adaptive materials inspired by natural materials have emerged as a solution to address these problems. With the ability to change their mechanical properties based on changing mechanical environments, repairing defects, and maintaining their mechanical properties, these materials can lead to improved performance while decreasing waste. In this review, we explore self-adaptive phenomena found in nature that have inspired the development of synthetic self-adaptive materials, and the mechanisms that have been employed to create the next generation of materials. The potential applications of these materials, the challenges that existing approaches face, and future research opportunities are also discussed.


menu
Abstract
Full text
Outline
About this article

Bioinspired nanocomposites with self-adaptive mechanical properties

Show Author's information Grant Kitchen1,3Bohan Sun2,3Sung Hoon Kang2,3( )
3400 N Charles St, Department of Materials Science and Engineering, Johns Hopkins University, Baltimore 21218, USA
3400 N Charles St, Department of Mechanical Engineering, Johns Hopkins University, Baltimore 21218, USA
3400 N Charles St, Hopkins Extreme Materials Institute, Johns Hopkins University, Baltimore 21218, USA

Abstract

Conventional synthetic materials have fixed mechanical properties and suffer defects, damage, and degradation over time. This makes them unable to adapt to changing environments and leads to limited lifecycles. Recently, self-adaptive materials inspired by natural materials have emerged as a solution to address these problems. With the ability to change their mechanical properties based on changing mechanical environments, repairing defects, and maintaining their mechanical properties, these materials can lead to improved performance while decreasing waste. In this review, we explore self-adaptive phenomena found in nature that have inspired the development of synthetic self-adaptive materials, and the mechanisms that have been employed to create the next generation of materials. The potential applications of these materials, the challenges that existing approaches face, and future research opportunities are also discussed.

Keywords: nanocomposites, bioinspired materials, resilience, self-adaptive materials, force-activated

References(55)

[1]

Agrawal, A.; Chipara, A. C.; Shamoo, Y.; Patra, P. K.; Carey, B. J.; Ajayan, P. M.; Chapman, W. G.; Verduzco, R. Dynamic self-stiffening in liquid crystal elastomers. Nat. Commun. 2013, 4, 1739.

[2]

Wang, Z.; Wang, J.; Ayarza, J.; Steeves, T.; Hu, Z. Y.; Manna, S.; Esser-Kahn, A. P. Bio-inspired mechanically adaptive materials through vibration-induced crosslinking. Nat. Mater. 2021, 20, 869–874.

[3]

Hsu, L.; Weder, C.; Rowan, S. J. Stimuli-responsive, mechanically-adaptive polymer nanocomposites. J. Mater. Chem. 2011, 21, 2812–2822.

[4]

Sano, K.; Igarashi, N.; Ebina, Y.; Sasaki, T.; Hikima, T.; Aida, T.; Ishida, Y. A mechanically adaptive hydrogel with a reconfigurable network consisting entirely of inorganic nanosheets and water. Nat. Commun. 2020, 11, 6026.

[5]

Kouwer, P. H. J.; Koepf, M.; Le Sage, V. A. A.; Jaspers, M.; van Buul, A. M.; Eksteen-Akeroyd, Z. H.; Woltinge, T.; Schwartz, E.; Kitto, H. J.; Hoogenboom, R. et al. Responsive biomimetic networks from polyisocyanopeptide hydrogels. Nature 2013, 493, 651–655.

[6]

Cudjoe, E.; Khani, S.; Way, A. E., Hore, M. J. A.; Maia, J.; Rowan, S. J. Biomimetic reversible heat-stiffening polymer nanocomposites. ACS Cent. Sci. 2017, 3, 886–894.

[7]

Fernańdez-Castaño Romera, M.; Göstl, R.; Shaikh, H.; ter Huurne, G.; Schill, J.; Voets, I. K.; Storm, C.; Sijbesma, R. P. Mimicking active biopolymer networks with a synthetic hydrogel. J. Am. Chem. Soc. 2019, 141, 1989–1997.

[8]

Huang, W. M.; Yang, B.; Zhao, Y.; Ding, Z. Thermo-moisture responsive polyurethane shape-memory polymer and composites: A review. J. Mater. Chem. 2010, 20, 3367–3381.

[9]

de Espinosa, L. M.; Meesorn, W.; Moatsou, D.; Weder, C. Bioinspired polymer systems with stimuli-responsive mechanical properties. Chem. Rev. 2017, 117, 12851–12892.

[10]

Xing, H.; Li, Z. T.; Wu, Z. L.; Huang, F. H. Catenane crosslinked mechanically adaptive polymer gel. Macromol. Rapid Commun. 2018, 39, 1700361.

[11]

Gernhardt, M.; Frisch, H.; Welle, A.; Jones, R.; Wegener, M.; Blasco, E.; Barner-Kowollik, C. Multi-material 3D microstructures with photochemically adaptive mechanical properties. J. Mater. Chem. C. 2020, 8, 10993–11000.

[12]

Yang, J. J.; Zhang, X. F.; Zhang, X.; Wang, L.; Feng, W.; Li, Q. Beyond the visible: Bioinspired infrared adaptive materials. Adv. Mater. 2021, 33, 2004754.

[13]

Gernhardt, M.; Blasco, E.; Hippler, M.; Blinco, J.; Bastmeyer, M.; Wegener, M.; Frisch, H.; Barner-Kowollik, C. Tailoring the mechanical properties of 3D microstructures using visible light post-manufacturing. Adv. Mater. 2019, 31, 1901269.

[14]

Hughes, T.; Simon, G. P.; Saito, K. Light-healable epoxy polymer networks via anthracene dimer scission of diamine crosslinker. ACS Appl. Mater. Interfaces 2019, 11, 19429–19443.

[15]

Scott, T. F.; Schneider, A. D.; Cook, W. D.; Bowman, C. N. Photoinduced plasticity in cross-linked polymers. Science 2005, 308, 1615–1617.

[16]

Shanmuganathan, K.; Capadona, J. R.; Rowan, S. J.; Weder, C. Biomimetic mechanically adaptive nanocomposites. Prog. Polym. Sci. 2010, 35, 212–222.

[17]

Wang, C.; Duan, Y. P.; Zacharia, N. S.; Vogt, B. D. A family of mechanically adaptive supramolecular graphene oxide/poly(ethylenimine) hydrogels from aqueous assembly. Soft Matter 2017, 13, 161–1170.

[18]

Mohapatra, H.; Kleiman, M.; Esser-Kahn, A. P. Mechanically controlled radical polymerization initiated by ultrasound. Nat. Chem. 2017, 9, 135–139.

[19]

Orrego, S.; Chen, Z. Z.; Krekora, U.; Hou, D. C.; Jeon, S. Y.; Pittman, M.; Montoya, C.; Chen, Y.; Kang, S. H. Bioinspired materials with self-adaptable mechanical properties. Adv. Mater. 2020, 32, 1906970.

[20]

Matsuda, T.; Kawakami, R.; Namba, R.; Nakajima, T.; Gong, J. P. Mechanoresponsive self-growing hydrogels inspired by muscle training. Science 2019, 363, 504–508.

[21]

Ramirez, A. L.; Kean, Z. S.; Orlicki, J. A.; Champhekar, M.; Elsakr, S. M.; Krause, W. E.; Craig, S. L. Mechanochemical strengthening of a synthetic polymer in response to typically destructive shear forces. Nat. Chem. 2013, 5, 757–761.

[22]

Lin, S. T.; Liu, J.; Liu, X. Y.; Zhao, X. H. Muscle-like fatigue-resistant hydrogels by mechanical training. Proc. Natl. Acad. Sci. USA 2019, 116, 10244–10249.

[23]

Liu, Y.; Lin, S. H.; Chuang, W. T.; Dai, N. T.; Hsu, S. H. Biomimetic strain-stiffening in chitosan self-healing hydrogels. Appl. Mater. Interfaces 2022, 14, 16032–16046.

[24]

Carey, B.; Patra, P. K.; Ci, L. J.; Silva, G. G.; Ayajan, P. M. Observation of dynamic strain hardening in polymer nanocomposites. ACS Nano. 2011, 5, 2715–2722.

[25]

Ashby, M. F.; Shercliff, H.; Cebon, D. Materials: Engineering. Science, Processing and Design; 4th ed. Butterworth-Heinemann: Oxford 2018.

[26]

Zhang, J.; Chen, B. Y.; Chen, X. Y.; Hou, X. Liquid-based adaptive structural materials. Adv. Mater. 2021, 33, 2005664.

[27]

Hamilton, A. R.; Sottos, N. R.; White, S. R. Mitigation of fatigue damage in self-healing vascular materials. Polymer 2012, 53, 5575–5581.

[28]

Brown, E. N.; White, S. R.; Sottos, N. R. Fatigue crack propagation in microcapsule-toughened epoxy. J. Mater. Sci. 2006, 41, 6266–6273.

[29]

Yun, G. L.; Cole, T.; Zhang, Y. X.; Zheng, J. H.; Sun, S. S.; Ou-Yang, Y. M.; Shu, J.; Lu, H. D.; Zhang, Q. T.; Wang, Y. J. et al. Electro-mechano responsive elastomers with self-tunable conductivity and stiffness. Sci. Adv. 2023, 9, eadf1141.

[30]

Duncan, R. L.; Turner, C. H. Mechanotransduction and the functional response of bone to mechanical strain. Calcif. Tissue Int. 1995, 57, 344–358.

[31]

Paluch, E. K.; Nelson, C. M.; Biais, N.; Fabry, B.; Moeller, J.; Pruitt, B. L.; Wollnik, C.; Kudryasheva, G.; Rehfeldt, F.; Federle, W. Mechanotransduction: Use the force(s). BMC Biol. 2015, 13, 47.

[32]

Huang, H.; Kamm, R. D.; Lee, R. T. Cell mechanics and mechanotransduction: Pathways, probes, and physiology. Am. J. Physiol. Cell Physiol. 2004, 287, C1–C11.

[33]

Keckes, J.; Burgert, I.; Frühmann, K.; Müller, M.; Kölln, K.; Hamilton, M.; Burghammer, M.; Roth, S. V.; Stanzl-Tschegg, S.; Fratzl, P. Cell-wall recovery after irreversible deformation of wood. Nat. Mater. 2003, 2, 810–813.

[34]

Madin, J. S.; Dell, A. I.; Madin, E. M. P.; Nash, M. C. Spatial variation in mechanical properties of coral reef substrate and implications for coral colony integrity. Coral Reefs 2013, 32, 173–179.

[35]

Patrick, J. F.; Robb, M. J.; Sottos, N. R.; Moore, J. S.; White, S. R. Polymers with autonomous lifecycle control. Nature 2016, 540, 363–370.

[36]

Wang, Z.; Ayarza, J.; Esser-Kahn, A. P. Mechanically initiated bulk-scale free-radical polymerization. Angew. Chem., Int. Ed. 2019, 58, 12023–12026.

[37]

Kokubo, T.; Takadama, H. How useful is SBF in predicting in vivo bone bioactivity. Biomaterials 2006, 27, 2907–2915.

[38]

Vinogradov, A.; Holloway, F. Electro-mechanical properties of the piezoelectric polymer PVDF. Ferroelectrics 1999, 226, 169–181.

[39]

Tarasevich, B. J.; Howard, C. J.; Larson, J. L.; Snead, M. L.; Simmer, J. P.; Paine, M.; Shaw, W. J. The nucleation and growth of calcium phosphate by amelogenin. J. Cryst. Growth 2007, 304, 407–415.

[40]

Inskeep, W. P.; Silvertooth, J. C. Kinetics of hydroxyapatite precipitation at pH 7.4 to 8.4. Geochim. Cosmochim. Acta 1988, 52, 1883–1893.

[41]

Jacob, J.; More, N.; Kalia, K.; Kapusetti, G. Piezoelectric smart biomaterials for bone and cartilage tissue engineering. Inflamm. Regener. 2018, 38, 2.

[42]

Wu, C. M.; Chou, M. H.; Zeng, W. Y. Piezoelectric response of aligned electrospun polyvinylidene fluoride/carbon nanotube nanofibrous membranes. Nanomaterials 2018, 8, 420.

[43]

Fallon, J. J.; Kolb, B. Q.; Herwig, C. J.; Foster, E. J.; Bortner, M. J. Mechanically adaptive thermoplastic polyurethane/cellulose nanocrystal composites: Process-driven structure-property relationships. J. Appl. Polym. Sci. 2019, 136, 46992.

[44]

Wool, R. P. Self-healing materials: A review. Soft Matter 2008, 4, 400–418.

[45]

Coget, Y.; Demarty, Y.; Rusinek, A. Characterization of the mechanical behavior of a lead alloy, from quasi-static to dynamic loading for a wide range of temperatures. Materials 2020, 13, 2357.

[46]

Raffa, M. L.; Nguyen, V. H.; Hernigou, P.; Flouzat-Lachaniette, C. H.; Haiat, G. Stress shielding at the bone-implant interface: Influence of surface roughness and of the bone-implant contact ratio. J. Orthop. Res. 2021, 39, 1174–1183.

[47]

Prager, J.; Adams, C. F.; Delaney, A. M.; Chanoit, G.; Tarlton, J. F.; Wong, L. F.; Chari, D. M.; Granger, N. Stiffness-matched biomaterial implants for cell delivery: Clinical, intraoperative ultrasound elastography provides a ‘target’ stiffness for hydrogel synthesis in spinal cord injury. J. Tissue Eng. 2020, 11, 2041731420934806.

[48]

Trzepiecinski, T.; Gromada, M. Characterization of mechanical properties of barium titanate ceramics with different grain sizes. Mater. Sci. Pol. 2018, 36, 151–156.

[49]

Kanda, T.; Kobayashi, Y.; Kurosawa, M. K.; Yasui, H.; Higuchi, T. Estimation of hydrothermally deposited lead zirconate titanate (PZT) thin-film. Jpn. J. Appl. Phys. 2001, 40, 5543–5546.

[50]

Wu, Y. F.; Kim, G. Y.; Russell, A. M. Mechanical alloying of carbon nanotube and Al6061 powder for metal matrix composites. Mater. Sci. Eng. A. 2012, 532, 558–566.

[51]

Dadashi-Silab, S.; Matyjaszewski, K. Iron catalysts in atom transfer radical polymerization. Molecules 2020, 25, 1648.

[52]

Chang, B. S.; Tutika, R.; Cutinho, J.; Oyola-Reynoso, S.; Chen, J. H.; Bartlett, M. D.; Thuo, M. M. Mechanically triggered composite stiffness tuning through thermodynamic relaxation (ST3R). Mater. Horiz. 2018, 5, 416–422.

[53]

Zhang, H. L.; Li, J. J.; Chen, Y.; Wu, J. Y.; Wang, K.; Chen, L. J.; Wang, Y.; Jiang, X. W.; Liu, Y. Y.; Wu, Y. L. et al. Magneto-electrically enhanced intracellular catalysis of FePt-FeC heterostructures for chemodynamic therapy. Adv. Mater. 2021, 33, 2100472.

[54]

Wu, T.; Yu, S. H.; Chen, D. K.; Wang, Y. E. Bionic design, materials and performance of bone tissue scaffolds. Materials 2017, 10, 1187.

[55]

Zhou, Y.; Gu, C.; Liang, J. Z.; Zhang, B. H.; Yang, H. R.; Zhou, Z. T.; Li, M.; Sun, L. Y.; Tao, T. H.; Wei, X. L. A silk-based self-adaptive flexible opto-electro neural probe. Microsyst. Nanoeng. 2022, 8, 118.

Publication history
Copyright
Acknowledgements

Publication history

Received: 31 May 2023
Revised: 07 August 2023
Accepted: 30 August 2023
Published: 10 October 2023
Issue date: February 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the Air Force Office of Scientific Research (No. FA9550-21-1-0368, Program manager: Dr. Byung-Lip (Les) Lee), Hanwha Non-Tenured Faculty Award, and Johns Hopkins University Whiting School of Engineering Start-Up Fund. Any opinions, finding, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the United States Air Force.

Return