Journal Home > Volume 17 , Issue 3

Owing to the tunable compositions and versatile functionality, the development of eco-friendly metal–phenolic coordination crystals derivatives is highly anticipated for electromagnetic wave absorption. In this study, three kinds of magnetic hollow carbon spheres (HCSs) with macro-meso-microporous characteristics, including Fe/HCS, Co/HCS, and CoNi/HCS, are successfully fabricated via the co-operative hard template and self-assembling process, in which magnetic particles are encapsulated in carbon shell matrix after the pyrolysis of metal–polyphenol coordination crystals and further subsequent template removal. On the one hand, hierarchical macro-meso-micropores effectively balance the impedance gap between absorbers and air and introduce structural defects or distortion, leading to matched impedance and enhanced dipolar/defect polarization. On the other hand, wrapped magnetic particles provide uncountable hetero-interfaces and induce ferromagnetic resonance, resulting in strengthened interfacial polarization and additional magnetic loss. In particular, enhanced minimum reflection loss (RL,min) and broadband effective absorption bandwidth (EAB) are achieved with only 10 wt.% filler loading. Specifically, the RL,min and EAB values are −57.5 dB and 7.2 GHz for Fe/HCS, −50.0 dB and 5.8 GHz for Co/HCS, and −52.1 dB and 6.7 GHz for CoNi/HCS, respectively. Moreover, this work provides us a modular-assembly strategy to regulate the hollow cavity of absorbers and simultaneously manipulates the chemical components of absorbers to regulate electromagnetic wave absorption performance.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Metal–phenolic coordination crystals derived magnetic hollow carbon spheres for ultrahigh electromagnetic wave absorption

Show Author's information Hanxiao XuZizhuang HeYiruo WangXiangru RenPanbo Liu( )
School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, China

Abstract

Owing to the tunable compositions and versatile functionality, the development of eco-friendly metal–phenolic coordination crystals derivatives is highly anticipated for electromagnetic wave absorption. In this study, three kinds of magnetic hollow carbon spheres (HCSs) with macro-meso-microporous characteristics, including Fe/HCS, Co/HCS, and CoNi/HCS, are successfully fabricated via the co-operative hard template and self-assembling process, in which magnetic particles are encapsulated in carbon shell matrix after the pyrolysis of metal–polyphenol coordination crystals and further subsequent template removal. On the one hand, hierarchical macro-meso-micropores effectively balance the impedance gap between absorbers and air and introduce structural defects or distortion, leading to matched impedance and enhanced dipolar/defect polarization. On the other hand, wrapped magnetic particles provide uncountable hetero-interfaces and induce ferromagnetic resonance, resulting in strengthened interfacial polarization and additional magnetic loss. In particular, enhanced minimum reflection loss (RL,min) and broadband effective absorption bandwidth (EAB) are achieved with only 10 wt.% filler loading. Specifically, the RL,min and EAB values are −57.5 dB and 7.2 GHz for Fe/HCS, −50.0 dB and 5.8 GHz for Co/HCS, and −52.1 dB and 6.7 GHz for CoNi/HCS, respectively. Moreover, this work provides us a modular-assembly strategy to regulate the hollow cavity of absorbers and simultaneously manipulates the chemical components of absorbers to regulate electromagnetic wave absorption performance.

Keywords: hierarchical pores, synergetic effect, electromagnetic wave absorption, hollow engineering, hetero-interfaces

References(54)

[1]

Guo, Y. Q.; Ruan, K. P.; Wang, G. S.; Gu, J. W. Advances and mechanisms in polymer composites toward thermal conduction and electromagnetic wave absorption. Sci. Bull. 2023, 68, 1195–1212.

[2]

Guo, J. L.; Tardy, B. L.; Christofferson, A. J.; Dai, Y. L.; Richardson, J. J.; Zhu, W.; Hu, M.; Ju, Y.; Cui, J. W.; Dagastine, R. R. et al. Modular assembly of superstructures from polyphenol-functionalized building blocks. Nat. Nanotechnol. 2016, 11, 1105–1111.

[3]

Rahim, M. A.; Kristufek, S. L.; Pan, S. J.; Richardson, J. J.; Caruso, F. Phenolic building blocks for the assembly of functional materials. Angew. Chem., Int. Ed. 2019, 58, 1904–1927.

[4]

Xu, H. X.; Zhang, G. Z.; Wang, Y.; Wang, Y. R.; Wang, H. L.; Huang, Y.; Liu, P. B. Heteroatoms-doped carbon nanocages with enhanced dipolar and defective polarization toward light-weight microwave absorbers. Nano Res. 2022, 15, 8705–8713.

[5]

Liu, P. B.; Zhang, G. Z.; Xu, H. X.; Cheng, S. C.; Huang, Y.; Ouyang, B.; Qian, Y. T.; Zhang, R. X.; Che, R. C. Synergistic dielectric-magnetic enhancement via phase-evolution engineering and dynamic magnetic resonance. Adv. Funct. Mater. 2023, 33, 2211298.

[6]

Zhu, S.; Zhao, N. Q.; Li, J. J.; Deng, X. Y.; Sha, J. W.; He, C. N. Hard-template synthesis of three-dimensional interconnected carbon networks: Rational design, hybridization, and energy-related applications. Nano Today 2019, 29, 100796.

[7]

Cheng, J.; Jiang, H. J.; Cai, L.; Pan, F.; Shi, Y. Y.; Wang, X.; Zhang, X.; Lu, S. D.; Yang, Y.; Li, L. X. et al. Porous N-doped C/VB-group VS2 composites derived from perishable garbage to synergistically solve the environmental and electromagnetic pollution. Chem. Eng. J. 2023, 457, 141208.

[8]

Sun, L. F.; Zhu, Q. Q.; Jia, Z. R.; Guo, Z. Q.; Zhao, W. R.; Wu, G. L. CrN attached multi-component carbon nanotube composites with superior electromagnetic wave absorption performance. Carbon 2023, 208, 1–9.

[9]

Shishir, M. R. I.; Chen, W. Trends of spray drying: A critical review on drying of fruit and vegetable juices. Trends Food Sci. Technol. 2017, 65, 49–67.

[10]

Zeng, Z. H.; Wang, G.; Wolan, B. F.; Wu, N.; Wang, C. X.; Zhao, S. Y.; Yue, S. Y.; Li, B.; He, W. D.; Liu, J. R. et al. Printable aligned single-walled carbon nanotube film with outstanding thermal conductivity and electromagnetic interference shielding performance. Nano-Micro Lett. 2022, 14, 179.

[11]

Wu, Z. C.; Cheng, H. W.; Jin, C.; Yang, B. T.; Xu, C. Y.; Pei, K.; Zhang, H. B.; Yang, Z. Q.; Che, R. C. Dimensional design and core–shell engineering of nanomaterials for electromagnetic wave absorption. Adv. Mater. 2022, 34, 2107538.

[12]

Zhang, Y. L.; Ruan, K. P.; Zhou, K.; Gu, J. W. Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 2023, 35, 2211642.

[13]

Sun, H.; Che, R. C.; You, X.; Jiang, Y. S.; Yang, Z. B.; Deng, J.; Qiu, L. B.; Peng, H. S. Cross-stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensities. Adv. Mater. 2014, 26, 8120–8125.

[14]

Wei, C. H.; He, M. K.; Li, M. Q.; Ma, X.; Dang, W. L.; Liu, P. B.; Gu, J. W. Hollow Co/NC@MnO2 polyhedrons with enhanced synergistic effect for high-efficiency microwave absorption. Mater. Today Phys. 2023, 36, 101142.

[15]

Huang, X. B.; Wang, Y. T.; Lou, Z. C.; Chen, Y. X.; Li, Y. J.; Lv, H. L. Porous, magnetic carbon derived from bamboo for microwave absorption. Carbon 2023, 209, 118005.

[16]

Han, Y. X.; He, M. K.; Hu, J. W.; Liu, P. B.; Liu, Z. W.; Ma, Z. L.; Ju, W. B.; Gu, J. W. Hierarchical design of FeCo-based microchains for enhanced microwave absorption in C band. Nano Res. 2023, 16, 1773–1778.

[17]

Zhang, X.; Qiao, J.; Jiang, Y. Y.; Wang, F. L.; Tian, X. L.; Wang, Z.; Wu, L. L.; Liu, W.; Liu, J. R. Carbon-based MOF derivatives: Emerging efficient electromagnetic wave absorption agents. Nano-Micro Lett. 2021, 13, 135.

[18]

Jiao, Y. Z.; Dai, Z. Y.; Feng, M. N.; Luo, J. H.; Xu, Y. Electromagnetic absorption behavior regulation in bimetallic polyphthalocyanine derived CoFe-alloy/C 0D/2D nanocomposites. Mat. Today Phys. 2023, 33, 101058.

[19]

Liu, J.; Wickramaratne, N. P.; Qiao, S. Z.; Jaroniec, M. Molecular-based design and emerging applications of nanoporous carbon spheres. Nat. Mater. 2015, 14, 763–774.

[20]

Li, B.; Wu, N.; Yang, Y. F.; Pan, F.; Wang, C. X.; Wang, G.; Xiao, L.; Liu, W.; Liu, J. R.; Zeng, Z. H. Graphene oxide-assisted multiple cross-linking of MXene for large-area, high-strength, oxidation-resistant, and multifunctional films. Adv. Funct. Mater. 2023, 33, 2213357.

[21]

Adil, K.; Belmabkhout, Y.; Pillai, R. S.; Cadiau, A.; Bhatt, P. M.; Assen, A. H.; Maurin, G.; Eddaoudi, M. Gas/vapour separation using ultra-microporous metal-organic frameworks: Insights into the structure/separation relationship. Chem. Soc. Rev. 2017, 46, 3402–3430.

[22]

Yao, Z. H.; Song, Z.; Hao, H.; Yu, Z. Y.; Cao, M. H.; Zhang, S. J.; Lanagan, M. T.; Liu, H. X. Homogeneous/inhomogeneous-structured dielectrics and their energy-storage performances. Adv. Mater. 2017, 29, 1601727.

[23]

Cheng, J. Y.; Zhang, H. B.; Wang, H. H.; Huang, Z. H.; Raza, H.; Hou, C. X.; Zheng, G. P.; Zhang, D. Q.; Zheng, Q. B.; Che, R. C. Tailoring self-polarization of bimetallic organic frameworks with multiple polar units toward high-performance consecutive multi-band electromagnetic wave absorption at gigahertz. Adv. Funct. Mater. 2022, 32, 2201129.

[24]

Zhang, H. Y.; Cao, F.; Xu, H.; Tian, W.; Pan, Y.; Mahmood, N.; Jian, X. Plasma-enhanced interfacial engineering of FeSiAl@PUA@SiO2 hybrid for efficient microwave absorption and anti-corrosion. Nano Res. 2023, 16, 645–653.

[25]

Wu, N.; Yang, Y. F.; Wang, C. X.; Wu, Q. L.; Pan, F.; Zhang, R. N.; Liu, J. R.; Zeng, Z. H. Ultrathin cellulose nanofiber assisted ambient-pressure-dried, ultralight, mechanically robust, multifunctional MXene aerogels. Adv. Mater. 2023, 35, 2207969.

[26]

Zhang, X.; Chen, Z. J.; Liu, X. Y.; Hanna, S. L.; Wang, X. J.; Taheri-Ledari, R.; Maleki, A.; Li, P.; Farha, O. K. A historical overview of the activation and porosity of metal-organic frameworks. Chem. Soc. Rev. 2020, 49, 7406–7427.

[27]

Wunderlich, C. H.; Weber, R.; Bergerhoff, G. Über Eisengallustinte. Z. Anorg. Allg. Chem. 1991, 598, 371–376.

[28]

Liu, Y. L.; Tian, C. H.; Wang, F. Y.; Hu, B.; Xu, P.; Han, X. J.; Du, Y. C. Dual-pathway optimization on microwave absorption characteristics of core–shell Fe3O4@C microcapsules: Composition regulation on magnetic core and MoS2 nanosheets growth on carbon shell. Chem. Eng. J. 2023, 461, 141867.

[29]

Wu, Y.; Chen, L.; Han, Y. X.; Liu, P. B.; Xu, H. H.; Yu, G. Z.; Wang, Y. Y.; Wen, T.; Ju, W. B.; Gu, J. W. Hierarchical construction of CNT networks in aramid papers for high-efficiency microwave absorption. Nano Res. 2023, 16, 7801–7809.

[30]

Mazaheri, O.; Alivand, M. S.; Zavabeti, L.; Spoljaric, S.; Pan, S. J.; Chen, D. L.; Caruso, F.; Suter, H. C.; Mumford, K. A. Assembly of metal–phenolic networks on water-soluble substrates in nonaqueous media. Adv. Funct. Mater. 2022, 32, 2111942.

[31]

Darboe, A. K.; Qi, X. S.; Gong, X.; Peng, Q.; Chen, Y. L.; Xie, R.; Zhong, W.; Wu, G. L. Constructing MoSe2/MoS2 and MoS2/MoSe2 inner and outer-interchangeable flower-like heterojunctions: A combined strategy of interface polarization and morphology configuration to optimize microwave absorption performance. J. Colloid Interface Sci. 2022, 624, 204–218.

[32]

Shi, Y. F.; Zhai, N. X.; Li, X. P.; Shu, P. C.; Yan, W. X.; Mei, J.; Luo, J. H.; Liu, Y. Constructing FeNi alloy/polydopamine-derived carbon composite for efficient microwave absorption. Synth. Met. 2022, 291, 117202.

[33]

Liu, Y.; Zhou, X. F.; Jia, Z. R.; Wu, H. J.; Wu, G. L. Oxygen vacancy-induced dielectric polarization prevails in the electromagnetic wave-absorbing mechanism for Mn-based MOFs-derived composites. Adv. Funct. Mater. 2022, 32, 2204499.

[34]

Chakraborty, G.; Park, I. H.; Medishetty, R.; Vittal, J. J. Two-dimensional metal-organic framework materials: Synthesis, structures, properties, and applications. Chem. Rev. 2021, 121, 3751–3891.

[35]

Li, X.; Yin, S. F.; Cai, L.; Wang, Z. L.; Zeng, C. Y.; Jiang, H. J.; Cheng, J.; Lu, W. Sea-urchin-like NiCo2S4 modified MXene hybrids with enhanced microwave absorption performance. Chem. Eng. J. 2023, 454, 140127.

[36]

Liu, P. B.; Wang, Y.; Zhang, G. Z.; Huang, Y.; Zhang, R. X.; Liu, X. H.; Zhang, X. F.; Che, R. C. Hierarchical engineering of double-shelled nanotubes toward hetero-interfaces induced polarization and microscale magnetic interaction. Adv. Funct. Mater. 2022, 32, 2202588.

[37]

Wang, F. Y.; Liu, Y. L.; Zhao, H. H.; Cui, L. R.; Gai, L. X.; Han, X. J.; Du, Y. C. Controllable seeding of nitrogen-doped carbon nanotubes on three-dimensional Co/C foam for enhanced dielectric loss and microwave absorption characteristics. Chem. Eng. J. 2022, 450, 138160.

[38]

Liang, H. S.; Chen, G.; Liu, D.; Li, Z. J.; Hui, S. C.; Yun, J. J.; Zhang, L. M.; Wu, H. J. Exploring the Ni 3d orbital unpaired electrons induced polarization loss based on Ni single-atoms model absorber. Adv. Funct. Mater. 2023, 33, 2212604.

[39]

Liu, P. B.; Gao, S.; Zhang, G. Z.; Huang, Y.; You, W. B.; Che, R. C. Hollow engineering to Co@N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption. Adv. Funct. Mater. 2021, 31, 2102812.

[40]

Wang, L.; Ma, Z. L.; Qiu, H.; Zhang, Y. L.; Yu, Z.; Gu, J. W. Significantly enhanced electromagnetic interference shielding performances of epoxy nanocomposites with long-range aligned lamellar structures. Nano-Micro Lett. 2022, 14, 224.

[41]

Liu, D. W.; Du, Y. C.; Xu, P.; Wang, F. Y.; Wang, Y. H.; Cui, L. R.; Zhao, H. H.; Han, X. J. Rationally designed hierarchical N-doped carbon nanotubes wrapping waxberry-like Ni@C microspheres for efficient microwave absorption. J. Mater. Chem. A 2021, 9, 5086–5096.

[42]
Zhao, J.; Gu, Z.; Zhang, Q. G. Stacking MoS2 flower-like microspheres on pomelo peels-derived porous carbon nanosheets for high-efficient X-band electromagnetic wave absorption. Nano Res., in press, https://doi.org10.1007/s12274-023-6090-3.
[43]

Pan, F.; Cai, L.; Shi, Y. Y.; Dong, Y. Y.; Zhu, X. J.; Cheng, J.; Jiang, H. J.; Wang, X.; Jiang, Y. F.; Lu, W. Heterointerface engineering of β-chitin/carbon nano-onions/Ni-P composites with boosted Maxwell–Wagner-sillars effect for highly effect electromagnetic wave response and thermal management. Nano-Micro Lett. 2022, 14, 85.

[44]

Palneedi, H.; Peddigari, M.; Hwang, G. T.; Jeong, D. Y.; Ryu, J. High-performance dielectric ceramic films for energy storage capacitors: Progress and outlook. Adv. Funct. Mater. 2018, 28, 1803665.

[45]

Zhao, H. H.; Xu, X. Z.; Wang, Y. H.; Fan, D. G.; Liu, D. W.; Lin, K. F.; Xu, P.; Han, X. J.; Du, Y. C. Heterogeneous interface induced the formation of hierarchically hollow carbon microcubes against electromagnetic pollution. Small 2020, 16, 2003407.

[46]

Zhao, Z. H.; Zhang, L. M.; Wu, H. J. Hydro/organo/ionogels: “Controllable” electromagnetic wave absorbers. Adv. Mater. 2022, 34, 2205376.

[47]

Zeng, Y. X.; Sun, P. X.; Pei, Z. H.; Jin, Q.; Zhang, X. T.; Yu, L.; Lou, X. W. Nitrogen-doped carbon fibers embedded with zincophilic Cu nanoboxes for stable Zn-metal anodes. Adv. Mater. 2022, 34, 2200342.

[48]

Liu, D. W.; Du, Y. C.; Xu, P.; Liu, N.; Wang, Y. H.; Zhao, H. H.; Cui, L. R.; Han, X. J. Waxberry-like hierarchical Ni@C microspheres with high-performance microwave absorption. J. Mater. Chem. C 2019, 7, 5037–5046.

[49]

Tang, L.; Tang, Y. S.; Zhang, J. L.; Lin, Y. H.; Kong, J.; Zhou, K.; Gu, J. W. High-strength super-hydrophobic double-layered PBO nanofiber-polytetrafluoroethylene nanocomposite paper for high-performance wave-transparent applications. Sci. Bull. 2022, 67, 2196–2207.

[50]

Sun, C. H.; Li, Q. Y.; Jia, Z. R.; Wu, G. L.; Yin, P. F. Hierarchically flower-like structure assembled with porous nanosheet-supported MXene for ultrathin electromagnetic wave absorption. Chem. Eng. J. 2023, 454, 140277.

[51]

Zheng, T. T.; Zhang, Y.; Jia, Z. R.; Zhu, J. H.; Wu, G. L.; Yin, P. F. Customized dielectric-magnetic balance enhanced electromagnetic wave absorption performance in CuxS/CoFe2O4 composites. Chem. Eng. J. 2023, 457, 140876.

[52]

Liu, Q. H.; Cao, Q.; Bi, H.; Liang, C. Y.; Yuan, K. P.; She, W.; Yang, Y. J.; Che, R. C. CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 2016, 28, 486–490.

[53]

Xu, H. X.; He, Z. Z.; Li, Y. R.; Wang, Y. R.; Zhang, Z. W.; Dai, X. Q.; Xiong, Z. M.; Geng, W. C.; Liu, P. B. Porous magnetic carbon spheres with adjustable magnetic-composition and synergistic effect for lightweight microwave absorption. Carbon 2023, 213, 118290.

[54]

Pan, F.; Ning, M. Q.; Li, Z. H.; Batalu, D.; Guo, H. T.; Wang, X.; Wu, H. J.; Lu, W. Sequential architecture induced strange dielectric-magnetic behaviors in ferromagnetic microwave absorber. Adv. Funct. Mater. 2023, 33, 2300374.

File
12274_2023_6132_MOESM1_ESM.pdf (1.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 21 July 2023
Revised: 20 August 2023
Accepted: 25 August 2023
Published: 30 September 2023
Issue date: March 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

The authors are grateful for the supports from the Natural Science Foundation of Shaanxi Province (No. 2022JM-260) and the Fundamental Research Funds for the Central Universities (No. G2022KY05109). We would like to thank Zhang San from Shiyanjia Lab (www.shiyanjia.com) for the VSM analysis.

Return