Journal Home > Volume 17 , Issue 4

The vacancy-ordered quadruple perovskite Cs4CdBi2Cl12, as a newly-emerging lead-free perovskite system, has attracted great research interest due to its excellent stability and direct band gap. However, the poor luminescence performance limits its application in light-emitting diodes (LEDs) and other fields. Herein, for the first time, an Ag+ ion doping strategy was proposed to greatly improve the emission performance of Cs4CdBi2Cl12 synthesized by hydrothermal method. Density functional theory calculations combined with experimental results evidence that the weak orange emission from Cs4CdBi2Cl12 is attributed to the phonon scattering and energy level crossing due to the large lattice distortion under excited states. Fortunately, Ag+ ion doping breaks the intrinsic crystal field environment of Cs4CdBi2Cl12, suppresses the crossover between ground and excited states, and reduces the energy loss in the form of nonradiative recombination. At a critical doping amount of 0.8%, the emission intensity of Cs4CdBi2Cl12:Ag+ reaches the maximum, about eight times that of the pristine sample. Moreover, the doped Cs4CdBi2Cl12 still maintains excellent stability against heat, ultraviolet irradiation, and environmental oxygen/moisture. The above advantages make it possible for this material to be used as solid-state phosphors for white LEDs applications, and the Commission International de I’Eclairage color coordinates of (0.31, 0.34) and high color rendering index of 90.6 were achieved. More importantly, the white LED demonstrates remarkable operation stability in air ambient, showing almost no emission decay after a long working time for 48 h. We believe that this study puts forward an effective ion-doping strategy for emission enhancement of vacancy-ordered quadruple perovskite Cs4CdBi2Cl12, highlighting its great potential as efficient emitter compatible for practical applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Doping suppresses lattice distortion of vacant quadruple perovskites to activate self-trapped excitons emission

Show Author's information Zhipeng Chen1Fei Zhang1Dongwen Yang1Huifang Ji1( )Xu Chen1Di Wu1Xinjian Li1Yu Zhang2Zhifeng Shi1( )
Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China

Abstract

The vacancy-ordered quadruple perovskite Cs4CdBi2Cl12, as a newly-emerging lead-free perovskite system, has attracted great research interest due to its excellent stability and direct band gap. However, the poor luminescence performance limits its application in light-emitting diodes (LEDs) and other fields. Herein, for the first time, an Ag+ ion doping strategy was proposed to greatly improve the emission performance of Cs4CdBi2Cl12 synthesized by hydrothermal method. Density functional theory calculations combined with experimental results evidence that the weak orange emission from Cs4CdBi2Cl12 is attributed to the phonon scattering and energy level crossing due to the large lattice distortion under excited states. Fortunately, Ag+ ion doping breaks the intrinsic crystal field environment of Cs4CdBi2Cl12, suppresses the crossover between ground and excited states, and reduces the energy loss in the form of nonradiative recombination. At a critical doping amount of 0.8%, the emission intensity of Cs4CdBi2Cl12:Ag+ reaches the maximum, about eight times that of the pristine sample. Moreover, the doped Cs4CdBi2Cl12 still maintains excellent stability against heat, ultraviolet irradiation, and environmental oxygen/moisture. The above advantages make it possible for this material to be used as solid-state phosphors for white LEDs applications, and the Commission International de I’Eclairage color coordinates of (0.31, 0.34) and high color rendering index of 90.6 were achieved. More importantly, the white LED demonstrates remarkable operation stability in air ambient, showing almost no emission decay after a long working time for 48 h. We believe that this study puts forward an effective ion-doping strategy for emission enhancement of vacancy-ordered quadruple perovskite Cs4CdBi2Cl12, highlighting its great potential as efficient emitter compatible for practical applications.

Keywords: stability, emission enhancement, ion doping, Cs4CdBi2Cl12, self-trapped excitons

References(66)

[1]

Otero-Martínez, C.; Ye, J. Z.; Sung, J.; Pastoriza-Santos, I.; Pérez-Juste, J.; Xia, Z. G.; Rao, A.; Hoye, R. L. Z.; Polavarapu, L. Colloidal metal-halide perovskite nanoplatelets: Thickness-controlled synthesis, properties, and application in light-emitting diodes. Adv. Mater. 2022, 34, 2107105.

[2]

Dong, H.; Ran, C. X.; Gao, W. Y.; Li, M. J.; Xia, Y. D.; Huang, W. Metal halide perovskite for next-generation optoelectronics: Progresses and prospects. eLight 2023, 3, 3.

[3]

Lu, X. Q.; Hu, R. J.; Zhu, Y. B.; Song, K. P.; Qin, W. Octahedron distortion-triggered dipole-spin interaction in multiferroic magnetoelectric perovskites. NPG Asia Mater. 2023, 15, 38.

[4]

Zhang, J.; Shen, J. L.; Xu, N. C. Synthesis and enhanced luminescence properties of double perovskite NaLa0.95−xYxEu0.05MgWO6 phosphors. Rare Metals 2020, 39, 895–901.

[5]

Gupta, S. K.; Ghosh, P. S.; Yadav, A. K.; Pathak, N.; Arya, A.; Jha, S. N.; Bhattacharyya, D.; Kadam, R. M. Luminescence properties of SrZrO3/Tb3+ perovskite: Host-dopant energy-transfer dynamics and local structure of Tb3+. Inorg. Chem. 2016, 55, 1728–1740.

[6]

Harada, T.; Nakano, Y.; Fujiki, M.; Naito, M.; Kawai, T.; Hasegawa, Y. Circularly polarized luminescence of Eu(III) complexes with point- and axis-chiral ligands dependent on coordination structures. Inorg. Chem. 2009, 48, 11242–11250.

[7]

Li, Y. Y.; Duan, L. R.; Zhang, Z.; Wang, H. H.; Chen, T. Y.; Luo, J. S. Healing the defects in CsPbI3 solar cells by CsPbBr3 quantum dots. Nano Res. 2023, 16, 4888–4894.

[8]

Khan, Q.; Subramanian, A.; Ahmed, I.; Khan, M.; Nathan, A.; Wang, G. P.; Wei, L.; Chen, J.; Zhang, Y. P.; Bao, Q. L. Overcoming the electroluminescence efficiency limitations in quantum-dot light-emitting diodes. Adv. Opt. Mater. 2019, 7, 1900695.

[9]

Xie, C.; You, P.; Liu, Z. K.; Li, L.; Yan, F. Ultrasensitive broadband phototransistors based on perovskite/organic-semiconductor vertical heterojunctions. Light Sci. Appl. 2017, 6, e17023.

[10]

Saidaminov, M. I.; Abdelhady, A. L.; Murali, B.; Alarousu, E.; Burlakov, V. M.; Peng, W.; Dursun, I.; Wang, L. F.; He, Y.; Maculan, G.; et al. High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization. Nat. Commun. 2015, 6, 7586.

[11]

Giustino, F.; Snaith, H. J. Toward lead-free perovskite solar cells. ACS Energy Lett. 2016, 1, 1233–1240.

[12]

Zhang, F.; Shi, Z. F.; Ma, Z. Z.; Li, Y.; Li, S.; Wu, D.; Xu, T. T.; Li, X. J.; Shan, C. X.; Du, G. T. Silica coating enhances the stability of inorganic perovskite nanocrystals for efficient and stable down-conversion in white light-emitting devices. Nanoscale 2018, 10, 20131–20139.

[13]

Pan, W. C.; Wu, H. D.; Luo, J. J.; Deng, Z. Z.; Ge, C.; Chen, C.; Jiang, X. W.; Yin, W. J.; Niu, G. D.; Zhu, L. J. et al. Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit. Nat. Photonics 2017, 11, 726–732.

[14]

Liu, Y. J.; Gao, Y. X.; Zhi, J. Y.; Huang, R. Q.; Li, W. J.; Huang, X. Y.; Yan, G. H.; Ji, Z.; Mai, W. J. All-inorganic lead-free NiOx/Cs3Bi2Br9 perovskite heterojunction photodetectors for ultraviolet multispectral imaging. Nano Res. 2022, 15, 1094–1101.

[15]

Jellicoe, T. C.; Richter, J. M.; Glass, H. F. J.; Tabachnyk, M.; Brady, R.; Dutton, S. E.; Rao, A.; Friend, R. H.; Credgington, D.; Greenham, N. C. et al. Synthesis and optical properties of lead-free cesium tin halide perovskite nanocrystals. J. Am. Chem. Soc. 2016, 138, 2941–2944.

[16]

Idrissi, S.; Labrim, H.; Bahmad, L.; Benyoussef, A. Study of the solar perovskite CsMBr3 (M=Pb or Ge) photovoltaic materials: Band-gap engineering. Solid State Sci. 2021, 118, 106679.

[17]

Locardi, F.; Cirignano, M.; Baranov, D.; Dang, Z. Y.; Prato, M.; Drago, F.; Ferretti, M.; Pinchetti, V.; Fanciulli, M.; Brovelli, S. et al. Colloidal synthesis of double perovskite Cs2AgInCl6 and Mn-doped Cs2AgInCl6 nanocrystals. J. Am. Chem. Soc. 2018, 140, 12989–12995.

[18]

Han, P. G.; Mao, X.; Yang, S. Q.; Zhang, F.; Yang, B.; Wei, D. H.; Deng, W. Q.; Han, K. L. Lead-free sodium-indium double perovskite nanocrystals through doping silver cations for bright yellow emission. Angew. Chem., Int. Ed. 2019, 58, 17231–17235.

[19]

Cheng, S. S.; Chen, X.; Wang, M.; Li, G. Q.; Qi, X. F.; Tian, Y. T.; Jia, M. C.; Han, Y. B.; Wu, D.; Li, X. J. et al. In-situ growth of Cs2AgBiBr6 perovskite nanocrystals on Ti3C2Tx MXene nanosheets for enhanced photocatalytic activity. Appl. Surf. Sci. 2023, 621, 156877.

[20]

Vázquez-Fernández, I.; Mariotti, S.; Hutter, O. S.; Birkett, M.; Veal, T. D.; Hobson, T. D. C.; Phillips, L. J.; Danos, L.; Nayak, P. K.; Snaith, H. J. et al. Vacancy-ordered double perovskite Cs2TeI6 thin films for optoelectronics. Chem. Mater. 2020, 32, 6676–6684.

[21]

Baranwal, A. K.; Masutani, H.; Sugita, H.; Kanda, H.; Kanaya, S.; Shibayama, N.; Sanehira, Y.; Ikegami, M.; Numata, Y.; Yamada, K. et al. Lead-free perovskite solar cells using Sb and Bi-based A3B2X9 and A3BX6 crystals with normal and inverse cell structures. Nano Converg. 2017, 4, 26.

[22]

Ahmad, K.; Raza, W.; Kumar, P.; Khan, M. Q.; Alsalme, A.; Kim, H. Mechanochemical synthesis of lead-free perovskite-like MA3Bi2I9 for photo-catalytic hydrogen production. Chem. —Eur. J. 2023, 29, e202300250.

[23]

Zhang, F.; Chen, X.; Qi, X. F.; Liang, W. Q.; Wang, M.; Ma, Z. Z.; Ji, X. Z.; Yang, D. W.; Jia, M. C.; Wu, D. et al. Regulating the singlet and triplet emission of Sb3+ ions to achieve single-component white-light emitter with record high color-rendering index and stability. Nano Lett. 2022, 22, 5046–5054.

[24]

Jing, Y. Y.; Liu, Y.; Zhao, J.; Xia, Z. G. Sb3+ doping-induced triplet self-trapped excitons emission in lead-free Cs2SnCl6 nanocrystals. J. Phys. Chem. Lett. 2019, 10, 7439–7444.

[25]

Zhang, F.; Zhou, Y. C.; Chen, Z. P.; Niu, X. W.; Wang, H. Y.; Jia, M. C.; Xiao, J. W.; Chen, X.; Wu, D.; Li, X. J. et al. Large-area X-ray scintillator screen based on cesium hafnium chloride microcrystals films with high sensitivity and stability. Laser Photonics Rev. 2023, 17, 2200848.

[26]

Das Adhikari, S.; Echeverría-Arrondo, C.; Sánchez, R. S.; Chirvony, V. S.; Martínez-Pastor, J. P.; Agouram, S.; Muñoz-Sanjosé, V.; Mora-Seró, I. White light emission from lead-free mixed-cation doped Cs2SnCl6 nanocrystals. Nanoscale 2022, 14, 1468–1479.

[27]

Zi, L.; Xu, W.; Song, Z. J.; Sun, R.; Liu, S.; Xie, T. Y.; Zhu, J. Y.; Lu, S. Y.; Song, H. W. Highly efficient and stable Cs2TeCl6: Cr3+ perovskite microcrystals for white light emitting diodes. J. Mater. Chem. C 2023, 11, 2695–2702.

[28]

Vargas, B.; Torres-Cadena, R.; Reyes-Castillo, D. T.; Rodríguez-Hernández, J.; Gembicky, M.; Menéndez-Proupin, E.; Solis-Ibarra, D. Chemical diversity in lead-free, layered double perovskites: A combined experimental and computational approach. Chem. Mater. 2020, 32, 424–429.

[29]

Qi, X. F.; Zhang, F.; Chen, Z. P.; Chen, X.; Jia, M. C.; Ji, H. F.; Shi, Z. F. Hydrothermal synthesis of stable lead-free Cs4MnBi2Cl12 perovskite single crystals for efficient photocatalytic degradation of organic pollutants. J. Mater. Chem. C 2023, 11, 3715–3725.

[30]

Dang, P. P.; Zhang, G. D.; Yang, W.; Lian, H. Z.; Li, G. G.; Lin, J. Red-NIR luminescence in rare-earth and manganese ions codoped Cs4CdBi2Cl12 vacancy-ordered quadruple perovskites. Chem. Mater. 2023, 35, 1640–1650.

[31]

Liu, M. N.; Matta, S. K.; Ali-Löytty, H.; Matuhina, A.; Grandhi, G. K.; Lahtonen, K.; Russo, S. P.; Vivo, P. Moisture-assisted near-UV emission enhancement of lead-free Cs4CuIn2Cl12 double perovskite nanocrystals. Nano Lett. 2022, 22, 311–318.

[32]

Zhang, Y.; Sui, N.; Kang, Z. H.; Meng, X. D.; Yuan, L.; Li, X. F.; Zhang, H. Z.; Zhang, J. Q.; Wang, Y. H. Scanning the optoelectronic properties of Cs4CuxAg2−2xSb2Cl12 double perovskite nanocrystals: The role of Cu2+ content. J. Mater. Chem. C 2022, 10, 5526–5533.

[33]

Lin, Y. P.; Hu, S. L.; Xia, B.; Fan, K. Q.; Gong, L. K.; Kong, J. T.; Huang, X. Y.; Xiao, Z. W.; Du, K. Z. Material design and optoelectronic properties of three-dimensional quadruple perovskite halides. J. Phys. Chem. Lett. 2019, 10, 5219–5225.

[34]

Holzapfel, N. P.; Majher, J. D.; Strom, T. A.; Moore, C. E.; Woodward, P. M. Cs4Cd1−xMn xBi2Cl12-a vacancy-ordered halide perovskite phosphor with high-efficiency orange-red emission. Chem. Mater. 2020, 32, 3510–3516.

[35]

Jin, M. Y.; Zheng, W.; Gong, Z. L.; Huang, P.; Li, R. F.; Xu, J.; Cheng, X. W.; Zhang, W.; Chen, X. Y. Unraveling the triplet excited-state dynamics of Bi3+ in vacancy-ordered double perovskite Cs2SnCl6 nanocrystals. Nano Res. 2022, 15, 6422–6429.

[36]

Du, M. H. Emission trend of multiple self-trapped excitons in luminescent 1D copper halides. ACS Energy Lett. 2020, 5, 464–469.

[37]

Xu, J.; Chen, X. Y. Lanthanide nanoparticles ignite dark molecular triplets. Sci. China Chem. 2021, 64, 511–512.

[38]

Zhang, F.; Chen, Z. P.; Liu, Z. B.; Jia, M. C.; Chen, X.; Wu, D.; Li, X. J.; Shi, Z. F. Highly stable vacancy-ordered double perovskite Rb2ZrCl6 with broadband emission for down-conversion white light-emitting diodes. J. Lumin. 2022, 251, 119150.

[39]

Zhang, F.; Zhou, Y. C.; Chen, Z. P.; Wang, M.; Ma, Z. Z.; Chen, X.; Jia, M. C.; Wu, D.; Xiao, J. W.; Li, X. J. et al. Thermally activated delayed fluorescence zirconium-based perovskites for large-area and ultraflexible X-ray scintillator screens. Adv. Mater. 2022, 34, 2204801.

[40]

Zhang, L.; Li, S. X.; Sun, H. Y.; Jiang, Q. W.; Wang, Y.; Fang, Y. Y.; Shi, Y.; Duan, D. F.; Wang, K.; Jiang, H. et al. Revealing the mechanism of pressure-induced emission in layered silver-bismuth double perovskites. Angew. Chem., Int. Ed. 2023, 62, e202301573.

[41]

Cheng, X. W.; Xie, Z.; Zheng, W.; Li, R. F.; Deng, Z. H.; Tu, D. T.; Shang, X. Y.; Xu, J.; Gong, Z. L.; Li, X. J. et al. Boosting the Self-trapped exciton emission in alloyed Cs2(Ag/Na)InCl6 double perovskite via Cu+ doping. Adv. Sci. 2022, 9, 2103724.

[42]

Zeng, Z. C.; Huang, B. L.; Wang, X.; Lu, L.; Lu, Q. Y.; Sun, M. Z.; Wu, T.; Ma, T. F.; Xu, J.; Xu, Y. S. et al. Multimodal luminescent Yb3+/Er3+/Bi3+-doped perovskite single crystals for X-ray detection and anti-counterfeiting. Adv. Mater. 2020, 32, 2004506.

[43]

Greczynski, G.; Hultman, L. Compromising science by ignorant instrument calibration-need to revisit half a century of published XPS data. Angew. Chem., Int. Ed. 2020, 59, 5002–5006.

[44]

Yang, H. J.; Cai, T.; Liu, E. X.; Hills-Kimball, K.; Gao, J. B.; Chen, O. Synthesis and transformation of zero-dimensional Cs3BiX6 (X = Cl, Br) perovskite-analogue nanocrystals. Nano Res. 2020, 13, 282–291.

[45]

Yang, R. T.; Yang, D. W.; Wang, M.; Zhang, F.; Ji, X. Z.; Zhang, M. Y.; Jia, M. C.; Chen, X.; Wu, D.; Li, X. J. et al. High-efficiency and stable long-persistent luminescence from undoped cesium cadmium chlorine crystals induced by intrinsic point defects. Adv. Sci. 2023, 10, 2207331.

[46]

Manna, D.; Kangsabanik, J.; Das, T. K.; Das, D.; Alam, A.; Yella, A. Lattice dynamics and electron-phonon coupling in lead-free Cs2AgIn1−xBixCl6 double perovskite nanocrystals. J. Phys. Chem. Lett. 2020, 11, 2113–2120.

[47]

Chen, N.; Cai, T.; Li, W. H.; Hills-Kimball, K.; Yang, H. J.; Que, M. D.; Nagaoka, Y.; Liu, Z. Y.; Yang, D.; Dong, A. G. et al. Yb- and Mn-doped lead-free double perovskite Cs2AgBiX6 (X = Cl, Br) nanocrystals. ACS Appl. Mater. Interfaces 2019, 11, 16855–16863.

[48]

Wang, M.; Lyu, J.; Qin, X.; Yang, S. W.; Liu, X. G.; Xu, G. Q. Direct electron transfer enables highly efficient dual emission modes of Mn2+-doped Cs2Na1−xAgxBiCl6 double perovskites. J. Phys. Chem. Lett. 2022, 13, 9429–9434.

[49]

Xiong, G. T.; Yuan, L. F.; Jin, Y. H.; Wu, H. Y.; Li, Z. Z.; Qu, B. Y.; Ju, G. F.; Chen, L.; Yang, S. H.; Hu, Y. H. Aliovalent doping and surface grafting enable efficient and stable lead-free blue-emitting perovskite derivative. Adv. Opt. Mater. 2020, 8, 2000779.

[50]

Su, Y.; Chen, X. J.; Ji, W. Y.; Zeng, Q. H.; Ren, Z. Y.; Su, Z. S.; Liu, L. Highly controllable and efficient synthesis of mixed-halide CsPbX3 (X = Cl, Br, I) perovskite QDs toward the tunability of entire visible light. ACS Appl. Mater. Interfaces 2017, 9, 33020–33028.

[51]

Liu, X. X.; Zhang, W. B.; Xu, R.; Tu, J. Y.; Fang, G. Y.; Pan, Y. X. Bright tunable luminescence of Sb3+ doping in zero-dimensional lead-free halide Cs3ZnCl5 perovskite crystals. Dalton Trans. 2022, 51, 10029–10035.

[52]

Liu, Y.; Zaffalon, M. L.; Zito, J.; Cova, F.; Moro, F.; Fanciulli, M.; Zhu, D. X.; Toso, S.; Xia, Z. G.; Infante, I. et al. Cu+→Mn2+ energy transfer in Cu, Mn coalloyed Cs3ZnCl5 colloidal nanocrystals. Chem. Mater. 2022, 34, 8603–8612.

[53]

Su, B. B.; Li, M. Z.; Song, E. H.; Xia, Z. G. Sb3+-doping in cesium zinc halides single crystals enabling high-efficiency near-infrared emission. Adv. Funct. Mater. 2021, 31, 2105316.

[54]

Zhang, R. L.; Xu, X.; Mao, X.; Wang, Z. Y.; Wang, P. Y.; Yang, Y.; Chen, J. S.; Lu, R. F.; Deng, W. Q.; Han, K. L. Excitation-dependent emission in all-inorganic lead-free Cs2ScCl5·H2O perovskite crystals. Laser Photonics Rev. 2022, 16, 2100689.

[55]

Liu, Y. L.; Wang, C.; Guo, Y. R.; Ma, L. L.; Zhou, C. Y.; Liu, Y.; Zhu, L. N.; Li, X. Z.; Zhang, M. X.; Zhao, G. J. New lead bromide chiral perovskites with ultra-broadband white-light emission. J. Mater. Chem. C 2020, 8, 5673–5680.

[56]

Pan, F.; Li, J. R.; Ma, X. M.; Nie, Y.; Liu, B. C.; Ye, H. G. Free and self-trapped exciton emission in perovskite CsPbBr3 microcrystals. RSC Adv. 2022, 12, 1035–1042.

[57]

Lian, L. Y.; Zheng, M. Y.; Zhang, W. Z.; Yin, L. X.; Du, X. Y.; Zhang, P.; Zhang, X. W.; Gao, J. B.; Zhang, D. L.; Gao, L. et al. Efficient and reabsorption-free radioluminescence in Cs3Cu2I5 nanocrystals with self-trapped excitons. Adv. Sci. 2020, 7, 2000195.

[58]

Zhang, F.; Shi, Z. F.; Li, S.; Ma, Z. Z.; Li, Y.; Wang, L. T.; Wu, D.; Tian, Y. T.; Du, G. T.; Li, X. J. et al. Synergetic effect of the surfactant and silica coating on the enhanced emission and stability of perovskite quantum dots for anticounterfeiting. ACS Appl. Mater. Interfaces 2019, 11, 28013–28022.

[59]

Li, S. R.; Luo, J. J.; Liu, J.; Tang, J. Self-trapped excitons in all-inorganic halide perovskites: Fundamentals, status, and potential applications. J. Phys. Chem. Lett. 2019, 10, 1999–2007.

[60]

Smith, M. D.; Karunadasa, H. I. White-light emission from layered halide perovskites. Acc. Chem. Res. 2018, 51, 619–627.

[61]

Zhou, L.; Liao, J.; Qin, Y.; Wang, X. D.; Wei, J.; Li, M.; Kuang, D.; He, R. Activation of self-trapped emission in stable bismuth-halide perovskite by suppressing strong exciton-phonon coupling. Adv. Funct. Mater. 2021, 31, 2102654.

[62]

van Swieten, T. P.; Yu, D. C.; Yu, T.; Vonk, S. J. W.; Suta, M.; Zhang, Q. Y.; Meijerink, A.; Rabouw, F. T. A Ho3+-based luminescent thermometer for sensitive sensing over a wide temperature range. Adv. Opt. Mater. 2021, 9, 2001518.

[63]

Luo, X.; Liang, G. J.; Han, Y. Y.; Li, Y. L.; Ding, T.; He, S.; Liu, X.; Wu, K. F. Triplet energy transfer from perovskite nanocrystals mediated by electron transfer. J. Am. Chem. Soc. 2020, 142, 11270–11278.

[64]

Das, T.; Di Liberto, G.; Pacchioni, G. Density functional theory estimate of halide perovskite band gap: When spin orbit coupling helps. J. Phys. Chem. C 2022, 126, 2184–2198.

[65]

Fang, Z.; Shang, M. H.; Hou, X. M.; Zheng, Y. P.; Du, Z. T.; Yang, Z. B.; Chou, K. C.; Yang, W. Y.; Wang, Z. L.; Yang, Y. Bandgap alignment of α-CsPbI3 perovskites with synergistically enhanced stability and optical performance via B-site minor doping. Nano Energy 2019, 61, 389–396.

[66]

Zhang, J.; Yang, X. K.; Deng, H.; Qiao, K. K.; Farooq, U.; Ishaq, M.; Yi, F.; Liu, H.; Tang, J.; Song, H. S. Low-dimensional halide perovskites and their advanced optoelectronic applications. Nano-Micro Lett. 2017, 9, 36.

File
12274_2023_6131_MOESM1_ESM.pdf (1.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 20 July 2023
Revised: 13 August 2023
Accepted: 26 August 2023
Published: 27 September 2023
Issue date: April 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

The authors acknowledge the financial support from the National Key R&D Program of China (No. 2022YFB2803900), the National Natural Science Foundation of China (Nos. 12074347, 12004346, 12204426, and 61935009), Science Foundation for Distinguished Young Scholars of Henan Province (No. 212300410019), and the Support Program for Scientific and Technological Innovation Teams of Higher Education in Henan Province (No. 231RTSTHN012).

Return