Journal Home > Volume 17 , Issue 3

The rational and effective combination of multicomponent materials and ingenious microstructure design for efficient electromagnetic wave (EMW) absorption are still challenging. In this paper, MXene was used as the aerogel matrix, modified with sea urchin-like magnetic Co/N-doped carbon@polyaniline (Co-NC@PANI), gelatin was introduced as the reinforcement phase of the aerogel backbone, and a microwave absorber with high efficiency and excellent performance was successfully prepared. The sea urchin-like Co-NC@PANI not only adjusted the impedance matching of the MXene but also introduced a magnetic loss mode into the composite. The multicomponent interfacial polarization, heterostructure, three-dimensional (3D) lightweight porous structure, and electromagnetic synergy strategy enabled the MXene-based aerogel modified by Co-NC@PANI (MCoP) to exhibit surprising EMW absorption properties. The maximum reflection loss (RLmax) of the aerogel composite reached −62.4 dB, and the effective absorption bandwidth (EAB) reached 6.56 GHz when the loading was only 12%. In addition, through electromagnetic simulation experiments, the change in the electromagnetic field before and after EMW passed through the materials and the distribution of the volume loss density of EMW by the coaxial ring were observed. The coordinated electromagnetic balance strategy in the 3D network provides inspiration for the construction of materials and expands the research direction of lightweight and outstanding microwave absorbers.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Synthetic strategy of biomimetic sea urchin-like Co-NC@PANI modified MXene-based magnetic aerogels with enhanced electromagnetic wave absorption properties

Show Author's information Meng Yu1Ying Huang1( )Xudong Liu1Kaihang She1Xiaoxiao Zhao1Wanqing Fan1Xiaofang Ma1Junhui Zou1Tiehu Li2
MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, China
NPU-NCP Joint International Research Center on Advanced Nanomaterials & Defects Engineering, State Key Laboratory of Solidification Processing, Shaanxi Engineering Laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China

Abstract

The rational and effective combination of multicomponent materials and ingenious microstructure design for efficient electromagnetic wave (EMW) absorption are still challenging. In this paper, MXene was used as the aerogel matrix, modified with sea urchin-like magnetic Co/N-doped carbon@polyaniline (Co-NC@PANI), gelatin was introduced as the reinforcement phase of the aerogel backbone, and a microwave absorber with high efficiency and excellent performance was successfully prepared. The sea urchin-like Co-NC@PANI not only adjusted the impedance matching of the MXene but also introduced a magnetic loss mode into the composite. The multicomponent interfacial polarization, heterostructure, three-dimensional (3D) lightweight porous structure, and electromagnetic synergy strategy enabled the MXene-based aerogel modified by Co-NC@PANI (MCoP) to exhibit surprising EMW absorption properties. The maximum reflection loss (RLmax) of the aerogel composite reached −62.4 dB, and the effective absorption bandwidth (EAB) reached 6.56 GHz when the loading was only 12%. In addition, through electromagnetic simulation experiments, the change in the electromagnetic field before and after EMW passed through the materials and the distribution of the volume loss density of EMW by the coaxial ring were observed. The coordinated electromagnetic balance strategy in the 3D network provides inspiration for the construction of materials and expands the research direction of lightweight and outstanding microwave absorbers.

Keywords: aerogel, MXene, electromagnetic wave absorption, electromagnetic synergy strategy, sea urchin-like Co/N-doped carbon@polyaniline (Co-NC@PANI)

References(86)

[1]

Zhang, F.; Jia, Z. R.; Zhou, J. X.; Liu, J. K.; Wu, G. L.; Yin, P. F. Metal-organic framework-derived carbon nanotubes for broadband electromagnetic wave absorption. Chem. Eng. J. 2022, 450, 138205.

[2]

Wu, Y.; Tan, S. J.; Zhao, Y.; Liang, L. L.; Zhou, M.; Ji, G. B. Broadband multispectral compatible absorbers for radar, infrared and visible stealth application. Prog. Mater. Sci. 2023, 135, 101088.

[3]

Bi, Y. X.; Ma, M. L.; Liao, Z. J.; Tong, Z. Y.; Chen, Y.; Wang, R. Z.; Ma, Y.; Wu, G. L. One-dimensional Ni@Co/C@PPy composites for superior electromagnetic wave absorption. J. Colloid Interface Sci. 2022, 605, 483–492.

[4]

Liu, P. B.; Gao, S.; Wang, Y.; Huang, Y.; He, W. J.; Huang, W. H.; Luo, J. H. Carbon nanocages with N-doped carbon inner shell and Co/N-doped carbon outer shell as electromagnetic wave absorption materials. Chem. Eng. J. 2020, 381, 122653.

[5]

Yang, B. T.; Fang, J. F.; Xu, C. Y.; Cao, H.; Zhang, R. X.; Zhao, B.; Huang, M. Q.; Wang, X. Y.; Lv, H. L.; Che, R. C. One-dimensional magnetic FeCoNi alloy toward low-frequency electromagnetic wave absorption. Nano-Micro Lett. 2022, 14, 170.

[6]

Guo, Y. Y.; Zhang, M.; Cheng, T. T.; Xie, Y. X.; Zhao, L. B.; Jiang, L.; Zhao, W. X.; Yuan, L. Y.; Meng, A. L.; Zhang, J. et al. Enhancing electromagnetic wave absorption in carbon fiber using FeS2 nanoparticles. Nano Res. 2023, 16, 9591–9601.

[7]

Zhang, M.; Zhao, L. B.; Zhao, W. X.; Wang, T.; Yuan, L. Y.; Guo, Y. Y.; Xie, Y. X.; Cheng, T. T.; Meng, A. L.; Li, Z. J. Boosted electromagnetic wave absorption performance from synergistic induced polarization of SiCNWs@MnO2@PPy heterostructures. Nano Res. 2023, 16, 3558–3569.

[8]

Zeng, X. J.; Cheng, X. Y.; Yu, R. H.; Stucky, G. D. Electromagnetic microwave absorption theory and recent achievements in microwave absorbers. Carbon 2020, 168, 606–623.

[9]

Xu, H. X.; Zhang, G. Z.; Wang, Y.; Ning, M. Q.; Ouyang, B.; Zhao, Y.; Huang, Y.; Liu, P. B. Size-dependent oxidation-induced phase engineering for MOFs derivatives via spatial confinement strategy toward enhanced microwave absorption. Nano-Micro Lett. 2022, 14, 102.

[10]

Guan, X. M.; Yang, Z. H.; Zhou, M.; Yang, L.; Peymanfar, R.; Aslibeiki, B.; Ji, G. B. 2D MXene nanomaterials: Synthesis, mechanism, and multifunctional applications in microwave absorption. Small Struct. 2022, 3, 2200102.

[11]

Gao, X. R.; Jia, Z. R.; Wang, B. B.; Wu, X. M.; Sun, T.; Liu, X. H.; Chi, Q. G.; Wu, G. L. Synthesis of NiCo-LDH/MXene hybrids with abundant heterojunction surfaces as a lightweight electromagnetic wave absorber. Chem. Eng. J. 2021, 419, 130019.

[12]

Chen, X. M.; Wang, X.; Wen, K. Q.; Zhang, J. B.; Zhao, F. W.; Zhang, J.; Wang, Y. J.; Song, Q. H.; Yi, C. L.; Shao, J. Y. Electrically aligned Ti3C2Tx MXene composite with multilayered gradient structure for broadband microwave absorption. Carbon 2023, 203, 706–716.

[13]

Jiang, H. J.; Cai, L.; Pan, F.; Shi, Y. Y.; Cheng, J.; Yang, Y.; Shi, Z.; Chai, X. L.; Wu, H. J.; Lu, W. Ordered heterostructured aerogel with broadband electromagnetic wave absorption based on mesoscopic magnetic superposition enhancement. Adv. Sci. 2023, 10, 2301599.

[14]

Dai, B.; Ma, Y.; Dong, F.; Yu, J.; Ma, M. L.; Thabet, H. K.; El-Bahy, S. M.; Ibrahim, M. M.; Huang, M. N.; Seok, I. et al. Overview of MXene and conducting polymer matrix composites for electromagnetic wave absorption. Adv. Compos. Hybrid Mater. 2022, 5, 704–754.

[15]

Zhang, Z. W.; Cai, Z. H.; Zhang, Y.; Peng, Y. L.; Wang, Z. Y.; Xia, L.; Ma, S. P.; Yin, Z. Z.; Wang, R. F.; Cao, Y. S. et al. The recent progress of MXene-based microwave absorption materials. Carbon 2021, 174, 484–499.

[16]

Guo, J.; Chen, Z. R.; Xu, X. J.; Li, X.; Liu, H.; Xi, S. H.; Abdul, W.; Wu, Q.; Zhang, P.; Xu, B. B. et al. Enhanced electromagnetic wave absorption of engineered epoxy nanocomposites with the assistance of polyaniline fillers. Adv. Compos. Hybrid Mater. 2022, 5, 1769–1777.

[17]

Zhang, X. Y.; Jia, Z. R.; Zhang, F.; Xia, Z. H.; Zou, J. X.; Gu, Z.; Wu, G. L. MOF-derived NiFe2S4/porous carbon composites as electromagnetic wave absorber. J. Colloid Interface Sci. 2022, 610, 610–620.

[18]

Wang, L.; Zhu, S. H.; Zhu, J. F. Constructing ordered macropores in hollow Co/C polyhedral nanocages shell toward superior microwave absorbing performance. J. Colloid Interface Sci. 2022, 624, 423–432.

[19]

Shan, Z.; Cheng, S. Y.; Wu, F.; Pan, X. H.; Li, W. J.; Dong, W.; Xie, A. M.; Zhang, G. Electrically conductive two-dimensional metal-organic frameworks for superior electromagnetic wave absorption. Chem. Eng. J. 2022, 446, 137409.

[20]

Gao, Z. G.; Iqbal, A.; Hassan, T.; Zhang, L. M.; Wu, H. J.; Koo, C. M. Texture regulation of metal-organic frameworks, microwave absorption mechanism-oriented structural optimization and design perspectives. Adv. Sci. 2022, 9, 2204151.

[21]

Feng, S. X.; Zhai, F. T.; Su, H. H.; Sridhar, D.; Algadi, H.; Xu, B. B.; Pashameah, R. A.; Alzahrani, E.; Abo-Dief, H. M.; Ma, Y. et al. Progress of metal organic frameworks-based composites in electromagnetic wave absorption. Mater. Today Phys. 2023, 30, 100950.

[22]

Zhang, X.; Qiao, J.; Jiang, Y. Y.; Wang, F. L.; Tian, X. L.; Wang, Z.; Wu, L. L.; Liu, W.; Liu, J. R. Carbon-based MOF derivatives: Emerging efficient electromagnetic wave absorption agents. Nano-Micro Lett. 2021, 13, 1–31.

[23]

Miao, P.; Cao, J. W.; Kong, J.; Li, J.; Wang, T.; Chen, K. J. Bimetallic MOF-derived hollow ZnNiC nano-boxes for efficient microwave absorption. Nanoscale 2020, 12, 13311–13315.

[24]

Qiu, Y.; Lin, Y.; Yang, H. B.; Wang, L.; Wang, M. Q.; Wen, B. Hollow Ni/C microspheres derived from Ni-metal organic framework for electromagnetic wave absorption. Chem. Eng. J. 2020, 383, 123207.

[25]

Lu, X. K.; Zhu, D. M.; Li, X.; Li, M. H.; Chen, Q.; Qing, Y. Gelatin-derived N-doped hybrid carbon nanospheres with an adjustable porous structure for enhanced electromagnetic wave absorption. Adv. Compos. Hybrid Mater. 2021, 4, 946–956.

[26]

Wen, B.; Yang, H. B.; Lin, Y.; Ma, L.; Qiu, Y.; Hu, F. F.; Zheng, Y. N. Synthesis of core–shell Co@S-doped carbon@ mesoporous N-doped carbon nanosheets with a hierarchically porous structure for strong electromagnetic wave absorption. J. Mater. Chem. A 2021, 9, 3567–3575.

[27]

Niu, H. H.; Tu, X. Y.; Zhang, S.; Li, Y. Y.; Wang, H. L.; Shao, G.; Zhang, R.; Li, H. X.; Zhao, B.; Fan, B. B. Engineered core–shell SiO2@Ti3C2Tx composites: Towards ultra-thin electromagnetic wave absorption materials. Chem. Eng. J. 2022, 446, 137260.

[28]

Zhao, Z. H.; Zhang, L. M.; Wu, H. J. Hydro/organo/ionogels: “Controllable” electromagnetic wave absorbers. Adv. Mater. 2022, 34, 2205376.

[29]

Li, C. X.; Ni, X. X.; Lei, Y.; Li, S. Y.; Jin, L.; You, B. Plasmolysis-inspired yolk–shell hydrogel-core@void@MXene-shell microspheres with strong electromagnetic interference shielding performance. J. Mater. Chem. A 2021, 9, 26839–26851.

[30]

Xu, J.; Zhang, X.; Yuan, H. R.; Zhang, S.; Zhu, C. L.; Zhang, X. T.; Chen, Y. J. N-doped reduced graphene oxide aerogels containing pod-like N-doped carbon nanotubes and FeNi nanoparticles for electromagnetic wave absorption. Carbon 2020, 159, 357–365.

[31]

Xu, J.; Liu, M. J.; Zhang, X. C.; Li, B.; Zhang, X.; Zhang, X. L.; Zhu, C. L.; Chen, Y. J. Atomically dispersed cobalt anchored on N-doped graphene aerogels for efficient electromagnetic wave absorption with an ultralow filler ratio. Appl. Phys. Rev. 2022, 9, 011402.

[32]

Liu, P. B.; Gao, S.; Zhang, G. Z.; Huang, Y.; You, W. B.; Che, R. C. Hollow engineering to Co@N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption. Adv. Funct. Mater. 2021, 31, 2102812.

[33]

Huang, Q. Q.; Zhao, Y.; Wu, Y.; Zhou, M.; Tan, S. J.; Tang, S. L.; Ji, G. B. A dual-band transceiver with excellent heat insulation property for microwave absorption and low infrared emissivity compatibility. Chem. Eng. J. 2022, 446, 137279.

[34]

Wu, Z. C.; Cheng, H. W.; Jin, C.; Yang, B. T.; Xu, C. Y.; Pei, K.; Zhang, H. B.; Yang, Z. Q.; Che, R. C. Dimensional design and core–shell engineering of nanomaterials for electromagnetic wave absorption. Adv. Mater. 2022, 34, 2107538.

[35]

Han, X. P.; Huang, Y.; Ding, L.; Song, Y.; Li, T. H.; Liu, P. B. Ti3C2Tx MXene nanosheet/metal-organic framework composites for microwave absorption. ACS Appl. Nano Mater. 2021, 4, 691–701.

[36]

Pan, F.; Rao, Y. P.; Batalu, D.; Cai, L.; Dong, Y. Y.; Zhu, X. J.; Shi, Y. Y.; Shi, Z.; Liu, Y. W.; Lu, W. Macroscopic electromagnetic cooperative network-enhanced MXene/Ni chains aerogel-based microwave absorber with ultra-low matching thickness. Nano-Micro Lett. 2022, 14, 140.

[37]

Xu, H. Y.; Zheng, R. X.; Du, D. Y.; Ren, L. F.; Wen, X. J.; Wang, X. X.; Tian, G. L.; Shu, C. Z. Adjusting the 3d orbital occupation of Ti in Ti3C2 MXene via nitrogen doping to boost oxygen electrode reactions in Li-O2 battery. Small 2023, 19, 2206611.

[38]

Qin, M.; Zhang, L. M.; Zhao, X. R.; Wu, H. J. Lightweight Ni foam-based ultra-broadband electromagnetic wave absorber. Adv. Funct. Mater. 2021, 31, 2103436.

[39]

Shi, X. D.; Xu, Z. M.; Han, C.; Shi, R. Z.; Wu, X. W.; Lu, B. A.; Zhou, J.; Liang, S. Q. Highly dispersed cobalt nanoparticles embedded in nitrogen-doped graphitized carbon for fast and durable potassium storage. Nano-Micro Lett. 2021, 13, 21.

[40]

Wang, J. M.; Huang, Y.; Du, X. P.; Zhang, S.; Zong, M. Hollow 1D carbon tube core anchored in Co3O4@SnS2 multiple shells for constructing binder-free electrodes of flexible supercapacitors. Chem. Eng. J. 2023, 464, 142741.

[41]

Li, X. Y.; Jiang, Q. Q.; Dou, S.; Deng, L. B.; Huo, J.; Wang, S. Y. ZIF-67-derived Co-NC@CoP-NC nanopolyhedra as an efficient bifunctional oxygen electrocatalys. J. Mater. Chem. A 2016, 4, 15836–15840.

[42]

Zhang, X. Y.; Wu, J. N.; Meng, G. H.; Guo, X. H.; Liu, C.; Liu, Z. Y. One-step synthesis of novel PANI-Fe3O4@ZnO core–shell microspheres: An efficient photocatalyst under visible light irradiation. Appl. Surf. Sci. 2016, 366, 486–493.

[43]

Yu, M.; Huang, Y.; Liu, X. D.; Zhao, X. X.; Fan, W. Q.; She, K. H. In situ modification of MXene nanosheets with polyaniline nanorods for lightweight and broadband electromagnetic wave absorption. Carbon 2023, 208, 311–321.

[44]

Guo, M.; Liu, C. B.; Zhang, Z. H.; Zhou, J.; Tang, Y. H.; Luo, S. L. Flexible Ti3C2Tx@Al electrodes with ultrahigh areal capacitance: In situ regulation of interlayer conductivity and spacing. Adv. Funct. Mater. 2018, 28, 1803196.

[45]

Wang, J. M.; Huang, Y.; Zhang, S.; Du, X. P.; Duan, Z. L.; Sun, X. Hollow Co9S8 cores encapsulated in hierarchical MXene@Bi2O3 multiple shells for constructing binder-free electrodes of foldable supercapacitors. J. Mater. Sci. Technol. 2023, 147, 112–123.

[46]

Xu, H. Z.; Zheng, D. H.; Liu, F. Q.; Li, W.; Lin, J. J. Synthesis of an MXene/polyaniline composite with excellent electrochemical properties. J. Mater. Chem. A 2020, 8, 5853–5858.

[47]

Liu, S. Q.; Zhang, Z. C.; Huang, F.; Liu, Y. Z.; Feng, L.; Jiang, J.; Zhang, L. Q.; Qi, F.; Liu, C. Carbonized polyaniline activated peroxymonosulfate (PMS) for phenol degradation: Role of PMS adsorption and singlet oxygen generation. Appl. Catal. B Environ. 2021, 286, 119921.

[48]

Yang, W. T.; Sun, J. W.; Liu, D. Y.; Fu, W. W.; Dong, Y. B.; Fu, Y. Q.; Zhu, Y. F. Rational design of hierarchical structure of carbon@polyaniline composite with enhanced microwave absorption properties. Carbon 2022, 194, 114–126.

[49]

Guo, J.; Chen, Z. R.; Abdul, W.; Kong, J.; Khan, M. A.; Young, D. P.; Zhu, J. F.; Guo, Z. H. Tunable positive magnetoresistance of magnetic polyaniline nanocomposites. Adv. Compos. Hybrid Mater. 2021, 4, 534–542.

[50]

Sun, T. P.; Liu, Z. W.; Li, S.; Liu, H. S.; Chen, F.; Wang, K.; Zhao, Y. Effective improvement on microwave absorbing performance of epoxy resin-based composites with 3D MXene foam prepared by one-step impregnation method. Compos. Part A: Appl. Sci. Manuf. 2021, 150, 106594.

[51]

Sarycheva, A.; Gogotsi, Y. Raman spectroscopy analysis of the structure and surface chemistry of Ti3C2Tx MXene. Chem. Mater. 2020, 32, 3480–3488.

[52]

Yin, T. T.; Cheng, Y. F.; Hou, Y. X.; Sun, L.; Ma, Y. A.; Su, J.; Zhang, Z.; Liu, N. S.; Li, L. Y.; Gao, Y. H. 3D porous structure in MXene/PANI foam for a high-performance flexible pressure sensor. Small 2022, 18, 2204806.

[53]

VahidMohammadi, A.; Moncada, J.; Chen, H. Z.; Kayali, E.; Orangi, J.; Carrero, C. A.; Beidaghi, M. Thick and freestanding MXene/PANI pseudocapacitive electrodes with ultrahigh specific capacitance. J. Mater. Chem. A 2018, 6, 22123–22133.

[54]

Jia, X. C.; Shen, B.; Zhang, L. H.; Zheng, W. G. Construction of compressible Polymer/MXene composite foams for high-performance absorption-dominated electromagnetic shielding with ultra-low reflectivity. Carbon 2021, 173, 932–940.

[55]

Liu, S. J.; Amiinu, I. S.; Liu, X. B.; Zhang, J.; Bao, M. J.; Meng, T.; Mu, S. C. Carbon nanotubes intercalated Co/N-doped porous carbon nanosheets as efficient electrocatalyst for oxygen reduction reaction and zinc-air batteries. Chem. Eng. J. 2018, 342, 163–170.

[56]

Liu, H.; Chen, X. Y.; Zheng, Y. J.; Zhang, D. B.; Zhao, Y.; Wang, C. F.; Pan, C. F.; Liu, C. T.; Shen, C. Y. Lightweight, superelastic, and hydrophobic polyimide nanofiber/MXene composite aerogel for wearable piezoresistive sensor and oil/water separation applications. Adv. Funct. Mater. 2021, 31, 2008006.

[57]

Wu, W. L.; Wang, C. W.; Zhao, C. H.; Wei, D.; Zhu, J. F.; Xu, Y. L. Facile strategy of hollow polyaniline nanotubes supported on Ti3C2-MXene nanosheets for high-performance symmetric supercapacitors. J. Colloid Interface Sci. 2020, 580, 601–613.

[58]

Zhai, N. X.; Luo, J. H.; Shu, P. C.; Mei, J.; Li, X. P.; Yan, W. X. 1D/2D CoTe2@MoS2 composites constructed by CoTe2 nanorods and MoS2 nanosheets for efficient electromagnetic wave absorption. Nano Res. 2023, 16, 10698–10706.

[59]

Wang, X. Y.; Liao, J.; Du, R. X.; Wang, G. H.; Tsidaeva, N.; Wang, W. Achieving super-broad effective absorption bandwidth with low filler loading for graphene aerogels/raspberry-like CoFe2O4 clusters by N doping. J. Colloid Interface Sci. 2021, 590, 186–198.

[60]

Cheng, J. B.; Zhao, H. B.; Cao, M.; Li, M. E.; Zhang, A. N.; Li, S. L.; Wang, Y. Z. Banana leaflike C-doped MoS2 aerogels toward excellent microwave absorption performance. ACS Appl. Mater. Interfaces 2020, 12, 26301–26312.

[61]

Sambyal, P.; Iqbal, A.; Hong, J.; Kim, H.; Kim, M. K.; Hong, S. M.; Han, M. K.; Gogotsi, Y.; Koo, C. M. Ultralight and mechanically robust Ti3C2Tx hybrid aerogel reinforced by carbon nanotubes for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2019, 11, 38046–38054.

[62]

Xu, J. S.; Lu, N.; Yuan, M. W.; Sun, G. B. Rational design of hollow rice-grained α-Fe2O3/carbon nanofibers with optimized impedance matching for electromagnetic wave absorption enhanced. Nano Res. 2022, 16, 5676–5684.

[63]

Liao, Q.; He, M.; Zhou, Y. M.; Nie, S. X.; Wang, Y. J.; Wang, B. B.; Yang, X. M.; Bu, X. H.; Wang, R. L. Rational construction of Ti3C2Tx/Co-MOF-derived laminated Co/TiO2-C hybrids for enhanced electromagnetic wave absorption. Langmuir 2018, 34, 15854–15863.

[64]

Li, Y.; Liu, X. F.; Nie, X. Y.; Yang, W. W.; Wang, Y. D.; Yu, R. H.; Shui, J. L. Multifunctional organic–inorganic hybrid aerogel for self-cleaning, heat-insulating, and highly efficient microwave absorbing material. Adv. Funct. Mater. 2019, 29, 1807624.

[65]

Yan, X.; Huang, X. X.; Zhong, B.; Wu, T.; Wang, H. T.; Zhang, T.; Bai, N.; Zhou, G. P.; Pan, H.; Wen, G. W. et al. Balancing interface polarization strategy for enhancing electromagnetic wave absorption of carbon materials. Chem. Eng. J. 2020, 391, 123538.

[66]

Wu, Y.; Tan, S. J.; Zhang, T. C.; Zhou, M.; Fang, G.; Ji, G. B. Alkali and ion exchange co-modulation strategies to design magnetic–dielectric synergistic nano-absorbers for tailoring microwave absorption. Nano Res. 2023, 16, 8522–8532.

[67]

Liang, L. Y.; Yang, R. S.; Han, G. J.; Feng, Y. Z.; Zhao, B.; Zhang, R.; Wang, Y. M.; Liu, C. T. Enhanced electromagnetic wave-absorbing performance of magnetic nanoparticles-anchored 2D Ti3C2Tx MXene. ACS Appl. Mater. Interfaces 2020, 12, 2644–2654.

[68]

Liu, T. T.; Zhu, Y. H.; Shu, J. C.; Zhang, M.; Cao, M. S. Patterned MXene-enabled switchable health monitoring and electromagnetic protection for architecture. Mater. Today Phys. 2023, 31, 100988.

[69]

Liang, L. Y.; Li, Q. M.; Yan, X.; Feng, Y. Z.; Wang, Y. M.; Zhang, H. B.; Zhou, X. P.; Liu, C. T.; Shen, C. Y.; Xie, X. L. Multifunctional magnetic Ti3C2Tx MXene/graphene aerogel with superior electromagnetic wave absorption performance. Acs Nano 2021, 15, 6622–6632.

[70]

Gu, W. H.; Tan, J. W.; Chen, J. B.; Zhang, Z.; Zhao, Y.; Yu, J. W.; Ji, G. B. Multifunctional bulk hybrid foam for infrared stealth, thermal insulation, and microwave absorption. ACS Appl. Mater. Interfaces 2020, 12, 28727–28737.

[71]

Liu, P. B.; Zhang, G. Z.; Xu, H. X.; Cheng, S. C.; Huang, Y.; Ouyang, B.; Qian, Y. T.; Zhang, R. X.; Che, R. C. Synergistic dielectric-magnetic enhancement via phase-evolution engineering and dynamic magnetic resonance. Adv. Funct. Mater. 2023, 33, 2211298.

[72]

Pan, F.; Ning, M. Q.; Li, Z. H.; Batalu, D.; Guo, H. T.; Wang, X.; Wu, H. J.; Lu, W. Sequential architecture induced strange dielectric–magnetic behaviors in ferromagnetic microwave absorber. Adv. Funct. Mater. 2023, 33, 2300374.

[73]

Xiang, Z.; Zhu, X. J.; Dong, Y. Y.; Zhang, X.; Shi, Y. Y.; Lu, W. Enhanced electromagnetic wave absorption of magnetic Co nanoparticles/CNTs/EG porous composites with waterproof, flame-retardant and thermal management functions. J. Mater. Chem. A 2021, 9, 17538–17552.

[74]

Xiang, Z.; Shi, Y. Y.; Zhu, X. J.; Cai, L.; Lu, W. Flexible and waterproof 2D/1D/0D construction of MXene-based nanocomposites for electromagnetic wave absorption, EMI shielding, and photothermal conversion. Nano-Micro Lett. 2021, 13, 150.

[75]

Wu, Q. L.; Wang, J.; Jin, H. H.; Dong, Y. W.; Huo, S. Q.; Yang, S.; Su, X. G.; Zhang, B. Facile synthesis of Co-embedded porous spherical carbon composites derived from Co3O4/ZIF-8 compounds for broadband microwave absorption. Compos. Sci. Technol. 2020, 195, 108206.

[76]

Wang, J. Q.; Liu, L.; Jiao, S. L.; Ma, K. J.; Lv, J.; Yang, J. J. Hierarchical carbon fiber@MXene@MoS2 core–sheath synergistic microstructure for tunable and efficient microwave absorption. Adv. Funct. Mater. 2020, 30, 2002595.

[77]

Wang, B. J.; Huang, F. Z.; Wu, H.; Xu, Z. J.; Wang, S. P.; Han, Q. H.; Liu, F. H.; Li, S. K.; Zhang, H. Enhanced interfacial polarization of defective porous carbon confined CoP nanoparticles forming Mott–Schottky heterojunction for efficient electromagnetic wave absorption. Nano Res. 2023, 16, 4160–4169.

[78]

Zhao, H. Q.; Cheng, Y.; Liu, W.; Yang, L. J.; Zhang, B. S.; Wang, L. P.; Ji, G. B.; Xu, Z. J. Biomass-derived porous carbon-based nanostructures for microwave absorption. Nano-Micro Lett. 2019, 11, 24.

[79]

Wang, H. G.; Meng, F. B.; Huang, F.; Jing, C. F.; Li, Y.; Wei, W.; Zhou, Z. W. Interface modulating CNTs@PANi hybrids by controlled unzipping of the walls of CNTs to achieve tunable high-performance microwave absorption. ACS Appl. Mater. Interfaces 2019, 11, 12142–12153.

[80]

Zhou, M.; Wang, J. W.; Tan, S. J.; Ji, G. B. Top-down construction strategy toward sustainable cellulose composite paper with tunable electromagnetic interference shielding. Mater. Today Phys. 2023, 31, 100962.

[81]

Ding, J. J.; Wang, L.; Zhao, Y. H.; Xing, L. S.; Yu, X. F.; Chen, G. Y.; Zhang, J.; Che, R. C. Boosted interfacial polarization from multishell TiO2@Fe3O4@PPy heterojunction for enhanced microwave absorption. Small 2019, 15, 1902885.

[82]

Cao, M. S.; Shu, J. C.; Wen, B.; Wang, X. X.; Cao, W. Q. Genetic dielectric genes inside 2D carbon-based materials with tunable electromagnetic function at elevated temperature. Small Struct. 2021, 2, 2100104.

[83]

Rao, L. J.; Wang, L.; Yang, C. D.; Zhang, R. X.; Zhang, J. C.; Liang, C. Y.; Che, R. C. Confined diffusion strategy for customizing magnetic coupling spaces to enhance low-frequency electromagnetic wave absorption. Adv. Funct. Mater. 2023, 33, 2213258.

[84]

Cao, M. S.; Wang, X. X.; Zhang, M.; Shu, J. C.; Cao, W. Q.; Yang, H. J.; Fang, X. Y.; Yuan, J. Electromagnetic response and energy conversion for functions and devices in low-dimensional materials. Adv. Funct. Mater. 2019, 29, 1807398.

[85]

Zhang, Y.; Tan, S. J.; Zhou, Z. T.; Guan, X. M.; Liao, Y.; Li, C.; Ji, G. B. Construction of Co2NiO4@MnCo2O4.5 nanoparticles with multiple hetero-interfaces for enhanced electromagnetic wave absorption. Particuology 2023, 81, 86–97.

[86]

Shi, X. F.; You, W. B.; Li, X.; Wang, L.; Shao, Z. Z.; Che, R. C. In-situ regrowth constructed magnetic coupling 1D/2D Fe assembly as broadband and high-efficient microwave absorber. Chem. Eng. J. 2021, 415, 128951.

Video
12274_2023_6130_MOESM2_ESM.mp4
File
12274_2023_6130_MOESM1_ESM.pdf (3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 17 July 2023
Revised: 24 August 2023
Accepted: 27 August 2023
Published: 03 October 2023
Issue date: March 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

We appreciate the Analytical & Testing Center of Northwestern Polytechnical University for support of characterization and measurement.

Return