Journal Home > Volume 17 , Issue 4

Polar promotors have been proven effective in catalyzing the polysulfide (PS) reduction reaction (PSRR) process in lithium-sulfur (Li-S) batteries. However, the promotor surface tends to be poisoned due to the accumulation of insoluble discharging products of lithium disulfide (Li2S2) and lithium sulfide (Li2S) during Li-S battery operation. Herein, we investigate the detailed PSRR mechanism on the surface of manganese sulfides (MnS) as a representative promoter by performing in-situ Raman mapping measurements. The catalytic ability of MnS enables thorough electrochemical reduction of PSs to Li2S2 and Li2S on the MnS surface. The generated Li2S2 and Li2S then adsorb the dissolved PSs via chemical reactions among sulfur species during the subsequent PSRR process. This phenomenon mitigates promotor poisoning and continuously improves the reversible capacity. Consequently, the assembled Li-S cell demonstrates excellent electrochemical performance after introducing a conductive interlayer containing a thin piece of carbon nanotube film and MnS promotors.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Influences of chemical reactions on polysulfide reduction reaction process on promotor surface in Li-S batteries

Show Author's information Yufeng Luo1,§Zhenhan Fang1,§Zixin Hong1,2,§Shaorong Duan2Haitao Liu3Hengcai Wu1,2Qunqing Li1,2,4Yuegang Zhang1,2,4Shoushan Fan1,2Wenhui Duan2Jiaping Wang1,2,4( )
Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing 100084, China
Department of Physics, Tsinghua University, Beijing 100084, China
Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
Frontier Science Center for Quantum Information, Tsinghua University, Beijing 100084, China

§ Yufeng Luo, Zhenhan Fang, and Zixin Hong contributed equally to this work.

Abstract

Polar promotors have been proven effective in catalyzing the polysulfide (PS) reduction reaction (PSRR) process in lithium-sulfur (Li-S) batteries. However, the promotor surface tends to be poisoned due to the accumulation of insoluble discharging products of lithium disulfide (Li2S2) and lithium sulfide (Li2S) during Li-S battery operation. Herein, we investigate the detailed PSRR mechanism on the surface of manganese sulfides (MnS) as a representative promoter by performing in-situ Raman mapping measurements. The catalytic ability of MnS enables thorough electrochemical reduction of PSs to Li2S2 and Li2S on the MnS surface. The generated Li2S2 and Li2S then adsorb the dissolved PSs via chemical reactions among sulfur species during the subsequent PSRR process. This phenomenon mitigates promotor poisoning and continuously improves the reversible capacity. Consequently, the assembled Li-S cell demonstrates excellent electrochemical performance after introducing a conductive interlayer containing a thin piece of carbon nanotube film and MnS promotors.

Keywords: polysulfides, promotors, chemical reactions, catalytic ability, in-situ Raman measurements

References(40)

[1]

Dörfler, S.; Althues, H.; Härtel, P.; Abendroth, T.; Schumm, B.; Kaskel, S. Challenges and key parameters of lithium-sulfur batteries on pouch cell level. Joule 2020, 4, 539–554.

[2]

Bhargav, A.; He, J. R.; Gupta, A.; Manthiram, A. Lithium-sulfur batteries: Attaining the critical metrics. Joule 2020, 4, 285–291.

[3]

Zhang, Q.; Li, F.; Huang, J. Q.; Li, H. Lithium-sulfur batteries: Co-existence of challenges and opportunities. Adv. Funct. Mater. 2018, 28, 1804589.

[4]

Xu, N.; Qian, T.; Liu, X. J.; Liu, J.; Chen, Y.; Yan, C. L. Greatly suppressed shuttle effect for improved lithium sulfur battery performance through short chain intermediates. Nano Lett. 2017, 17, 538–543.

[5]

Li, G. R.; Wang, S.; Zhang, Y. N.; Li, M.; Chen, Z. W.; Lu, J. Revisiting the role of polysulfides in lithium-sulfur batteries. Adv. Mater. 2018, 30, 1705590.

[6]

He, Y. B.; Qiao, Y.; Chang, Z.; Cao, X.; Jia, M.; He, P.; Zhou, H. S. Developing a “polysulfide-phobic” strategy to restrain shuttle effect in lithium-sulfur batteries. Angew. Chem., Int. Ed. 2019, 58, 11774–11778.

[7]

Wang, Q.; Zheng, J. M.; Walter, E.; Pan, H. L.; Lv, D. P.; Zuo, P. J.; Chen, H. H.; Deng, Z. D.; Liaw, B. Y.; Yu, X. Q. et al. Direct observation of sulfur radicals as reaction media in lithium sulfur batteries. J. Electrochem. Soc. 2015, 162, A474–A478.

[8]

Xiang, Y. Y.; Li, J. S.; Lei, J. H.; Liu, D.; Xie, Z. H.; Qu, D. Y.; Li, K.; Deng, T. F.; Tang, H. L. Advanced separators for lithium-ion and lithium-sulfur batteries: A review of recent progress. ChemSusChem 2016, 9, 3023–3039.

[9]

Qin, X. Y.; Wu, J. X.; Xu, Z. L.; Chong, W. G.; Huang, J. Q.; Liang, G. M.; Li, B. H.; Kang, F. Y.; Kim, J. K. Electrosprayed multiscale porous carbon microspheres as sulfur hosts for long-life lithium-sulfur batteries. Carbon 2019, 141, 16–24.

[10]

Fang, R. P.; Chen, K.; Yin, L. C.; Sun, Z. H.; Li, F.; Cheng, H. M. The regulating role of carbon nanotubes and graphene in lithium-ion and lithium-sulfur batteries. Adv. Mater. 2019, 31, 1800863.

[11]

Zheng, B. N.; Lin, X. D.; Zhang, X. C.; Wu, D. C.; Matyjaszewski, K. Emerging functional porous polymeric and carbonaceous materials for environmental treatment and energy storage. Adv. Funct. Mater. 2020, 30, 1907006.

[12]

Mi, K.; Chen, S. W.; Xi, B. J.; Kai, S. S.; Jiang, Y.; Feng, J. K.; Qian, Y. T.; Xiong, S. L. Sole chemical confinement of polysulfides on nonporous nitrogen/oxygen dual-doped carbon at the kilogram scale for lithium-sulfur batteries. Adv. Funct. Mater. 2017, 27, 1604265.

[13]

Li, H.; Liu, D.; Zhu, X. X.; Qu, D. Y.; Xie, Z. Z.; Li, J. S.; Tang, H. L.; Zheng, D.; Qu, D. Y. Integrated 3D electrodes based on metal-nitrogen-doped graphitic ordered mesoporous carbon and carbon paper for high-loading lithium-sulfur batteries. Nano Energy 2020, 73, 104763.

[14]

Tao, X. Y.; Wang, J. G.; Liu, C.; Wang, H. T.; Yao, H. B.; Zheng, G. Y.; Seh, Z. W.; Cai, Q. X.; Li, W. Y.; Zhou, G. M. et al. Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium-sulfur battery design. Nat. Commun. 2016, 7, 11203.

[15]

Park, J.; Yu, B. C.; Park, J. S.; Choi, J. W.; Kim, C.; Sung, Y. E.; Goodenough, J. B. Tungsten disulfide catalysts supported on a carbon cloth interlayer for high performance Li-S battery. Adv. Energy Mater. 2017, 7, 1602567.

[16]

Zhong, Y.; Chao, D. L.; Deng, S. J.; Zhan, J. Y.; Fang, R. Y.; Xia, Y.; Wang, Y. D.; Wang, X. L.; Xia, X. H.; Tu, J. P. Confining sulfur in integrated composite scaffold with highly porous carbon fibers/vanadium nitride arrays for high-performance lithium-sulfur batteries. Adv. Funct. Mater. 2018, 28, 1706391.

[17]

He, M. X.; Li, X.; Li, W. H.; Zheng, M.; Wang, J. J.; Ma, S. B.; Ma, Y. L.; Yin, G. P.; Zuo, P. J.; Sun, X. L. Immobilization and kinetic promotion of polysulfides by molybdenum carbide in lithium-sulfur batteries. Chem. Eng. J. 2021, 411, 128563.

[18]

Li, H.; Song, J. P.; Wu, F. L.; Wang, R.; Liu, D.; Tang, H. L. Metal-nitrogen-doped hybrid ionic/electronic conduction triple-phase interfaces for high-performance all-solid-state lithium-sulfur batteries. Nano Res. 2023, 16, 10956–10965.

[19]

Zhang, M.; Chen, W.; Xue, L. X.; Jiao, Y.; Lei, T. Y.; Chu, J. W.; Huang, J. W.; Gong, C. H.; Yan, C. Y.; Yan, Y. C. et al. Adsorption-catalysis design in the lithium-sulfur battery. Adv. Energy Mater. 2020, 10, 1903008.

[20]

Hua, W. X.; Li, H.; Pei, C.; Xia, J. Y.; Sun, Y. F.; Zhang, C.; Lv, W.; Tao, Y.; Jiao, Y.; Zhang, B. S. et al. Selective catalysis remedies polysulfide shuttling in lithium-sulfur batteries. Adv. Mater. 2021, 33, 2101006.

[21]

Lin, Y. H.; Tang, W. Q.; Wu, S. Y.; Zhang, Y. Z.; Kong, Z. K.; Shen, C. Y.; Wang, Y. L.; Zhan, L.; Ling, L. C. Alleviating the self-discharge and enhancing the polysulphides conversion kinetics with LaCO3OH nanocrystals decorated hierarchical porous carbon. Chem. Eng. J. 2023, 452, 139091.

[22]

Li, X.; Guan, Q. H.; Zhuang, Z. C.; Zhang, Y. Z.; Lin, Y. H.; Wang, J.; Shen, C. Y.; Lin, H. Z.; Wang, Y. L.; Zhan, L. et al. Ordered mesoporous carbon grafted MXene catalytic heterostructure as Li-ion kinetic pump toward high-efficient sulfur/sulfide conversions for Li-S battery. ACS Nano 2023, 17, 1653–1662.

[23]

Wu, S. Y.; Li, X., Zhang, Y. Z.; Guan, Q. H.; Wang, J.; Shen, C. Y.; Lin, H. Z.; Wang, J. T.; Wang, Y. L.; Zhan, L.; Ling, L. C. Interface engineering of MXene-based heterostructures for lithium-sulfur batteries. Nano Res. 2023, 16, 9158–9178.

[24]
Zhang, X.; Li, X. Y.; Zhang, Y. Z.; Li, X.; Guan, Q. H.; Wang, J.; Zhuang, Z. C.; Zhuang, Q.; Cheng, X. M.; Liu, H. T. et al. Accelerated Li+ desolvation for diffusion booster enabling low-temperature sulfur redox kinetics via electrocatalytic carbon-grazfted-CoP porous nanosheets. Adv. Funct. Mater., in press, DOI: 10.1002/adfm.202302624.
[25]
Webb, P. A. Introduction to chemical adsorption analytical techniques and their applications to catalysis [Online]. Micromerit. Inst. Corp. Techn. Publ. 2003; pp 1–12. http://www.micromeritics.com.cn/downloads/Technical-Articles/intro_to_chemical_adsorption.pdf (accessed Sep 20, 2023).
[26]

Xiao, R.; Yu, T.; Yang, S.; Chen, K.; Li, Z. N.; Liu, Z. B.; Hu, T. Z.; Hu, G. J.; Li, J.; Cheng, H. M. et al. Electronic structure adjustment of lithium sulfide by a single-atom copper catalyst toward high-rate lithium-sulfur batteries. Energy Storage Mater. 2022, 51, 890–899.

[27]

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

[28]

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

[29]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[30]

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 2010, 132, 154104.

[31]

Dhandayuthapani, T.; Girish, M.; Sivakumar, R.; Sanjeeviraja, C.; Gopalakrishnan, R. Metastable MnS films prepared by the addition of EDTA using chemical bath deposition technique. Int. J. ChemTech Res. 2015, 7, 974–978.

[32]

Babu, G.; Masurkar, N.; Al Salem, H.; Arava, L. M. R. Transition metal dichalcogenide atomic layers for lithium polysulfides electrocatalysis. J. Am. Chem. Soc. 2017, 139, 171–178.

[33]

Shen, C.; Xie, J. X.; Zhang, M.; Andrei, P.; Zheng, J. P.; Hendrickson, M.; Plichta, E. J. A Li-Li2S4 battery with improved discharge capacity and cycle life at low electrolyte/sulfur ratios. J. Power Sources 2019, 414, 412–419.

[34]

Pang, Q.; Kwok, C. Y.; Kundu, D.; Liang, X.; Nazar, L. F. Lightweight metallic MgB2 mediates polysulfide redox and promises high-energy-density lithium-sulfur batteries. Joule 2019, 3, 136–148.

[35]

Chen, J. J., Yuan, R. M.; Feng, J. M.; Zhang, Q.; Huang, J. X.; Fu, G.; Zheng, M. S.; Ren, B.; Dong, Q. F. Conductive lewis base matrix to recover the missing link of Li2S8 during the sulfur redox cycle in Li-S battery. Chem. Mater. 2015, 27, 2048–2055.

[36]

Wild, M.; O'Neill, L.; Zhang, T.; Purkayastha, R.; Minton, G.; Marinescu, M.; Offer, G. J. Lithium sulfur batteries, a mechanistic review. Energy Environ. Sci. 2015, 8, 3477–3494.

[37]

Liu, Z. X.; Mistry, A.; Mukherjee, P. P. Mesoscale physicochemical interactions in lithium-sulfur batteries: Progress and perspective. J. Electrochem. En. Conv. Stor. 2018, 15, 010802.

[38]

Zhong, Y. R.; Wang, Q.; Bak, S. M.; Hwang, S.; Du, Y. H.; Wang, H. L. Identification and catalysis of the potential-limiting step in lithium-sulfur batteries. J. Am. Chem. Soc. 2023, 145, 7390–7396.

[39]

Deng, Z. F.; Zhang, Z. A.; Lai, Y. Q.; Liu, J.; Li, J.; Liu, Y. X. Electrochemical impedance spectroscopy study of a lithium/sulfur battery: Modeling and analysis of capacity fading. J. Electrochem. Soc. 2013, 160, A553–A558.

[40]

Cañas, N. A.; Hirose, K.; Pascucci, B.; Wagner, N.; Friedrich, K. A.; Hiesgen, R. Investigations of lithium-sulfur batteries using electrochemical impedance spectroscopy. Electrochim. Acta 2013, 97, 42–51.

File
12274_2023_6129_MOESM1_ESM.pdf (770 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 10 July 2023
Revised: 15 August 2023
Accepted: 25 August 2023
Published: 26 September 2023
Issue date: April 2024

Copyright

© Tsinghua University Press, corrected publication 2023

Acknowledgements

Acknowledgements

This work was supported by the National Basic Research Program of China (2019YFA0705702) and the National Natural Science Foundation of China (51872158). H. T. Liu acknowledges funding from the National Natural Science Foundation of China (No.11734013, 11874089).

Return