Journal Home > Volume 16 , Issue 11

Image sensors with an in-sensor computing architecture have shown great potential in meeting the energy-efficient requirements of emergent data-intensive applications, where images are processed within the photodiode arrays. It demands the composed photodiodes are reconfigurable, which are usually achieved by ambipolar two-dimensional (2D) semiconductors. To improve the ambipolar charges injection, here we report a top-gated field-effect transistor (FET) design that is of bottom van der Waals contact via transferring ambipolar 2D WSe2 onto Pd/Cr source/drain electrodes. The devices exhibit nearly negligible effective barrier heights for both holes and electrons based on thermionic emission mode, and show an almost balanced on/off ratio in the p-branch and n-branch. By replacing the top gate with two aligned semi-gates, the devices can effectively function as reconfigurable photodiodes. They can be switched between PIN and NIP configurations via controlling the two semi-gates, exhibiting good linearity in terms of short-circuit current (ISC) and incident light power density. The photodiode arrays are also demonstrated for in-sensor optoelectronic convolutional image processing, showing significant potential for in-sensor computing image processors.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Van der Waals contacted WSe2 ambipolar transistor for in-sensor computing

Show Author's information Yue Wang1Haoran Sun1Zhe Sheng1Jianguo Dong1Wennan Hu1Dongsheng Tang2Zengxing Zhang1,3( )
School of Microelectronics, Fudan University, Shanghai 200433, China
Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, School of Physics and Electronics, Hunan Normal University, Changsha 410081, China
National Integrated Circuit Innovation Center, No. 825 Zhangheng Road, Shanghai 201203, China

Abstract

Image sensors with an in-sensor computing architecture have shown great potential in meeting the energy-efficient requirements of emergent data-intensive applications, where images are processed within the photodiode arrays. It demands the composed photodiodes are reconfigurable, which are usually achieved by ambipolar two-dimensional (2D) semiconductors. To improve the ambipolar charges injection, here we report a top-gated field-effect transistor (FET) design that is of bottom van der Waals contact via transferring ambipolar 2D WSe2 onto Pd/Cr source/drain electrodes. The devices exhibit nearly negligible effective barrier heights for both holes and electrons based on thermionic emission mode, and show an almost balanced on/off ratio in the p-branch and n-branch. By replacing the top gate with two aligned semi-gates, the devices can effectively function as reconfigurable photodiodes. They can be switched between PIN and NIP configurations via controlling the two semi-gates, exhibiting good linearity in terms of short-circuit current (ISC) and incident light power density. The photodiode arrays are also demonstrated for in-sensor optoelectronic convolutional image processing, showing significant potential for in-sensor computing image processors.

Keywords: ambipolar transistor, van der Waals contact, reconfigurable photodiode, in-senor computing

References(50)

[1]

Zhou, F. C.; Chai, Y. Near-sensor and in-sensor computing. Nat. Electron. 2020, 3, 664–671.

[2]

Zhou, F. C.; Zhou, Z.; Chen, J. W.; Choy, T. H.; Wang, J. L.; Zhang, N.; Lin, Z. Y.; Yu, S. M.; Kang, J. F.; Wong, H. S. P. et al. Optoelectronic resistive random access memory for neuromorphic vision sensors. Nat. Nanotechnol. 2019, 14, 776–782.

[3]

Zhang, Z. H.; Wang, S. Y.; Liu, C. S.; Xie, R. Z.; Hu, W. D.; Zhou, P. All-in-one two-dimensional retinomorphic hardware device for motion detection and recognition. Nat. Nanotechnol. 2022, 17, 27–32.

[4]

Li, D.; Chen, M. Y.; Sun, Z. Z.; Yu, P.; Liu, Z.; Ajayan, P. M.; Zhang, Z. X. Two-dimensional non-volatile programmable p-n junctions. Nat. Nanotechnol. 2017, 12, 901–906.

[5]

Mennel, L.; Symonowicz, J.; Wachter, S.; Polyushkin, D. K.; Molina-Mendoza, A. J.; Mueller, T. Ultrafast machine vision with 2D material neural network image sensors. Nature 2020, 579, 62–66.

[6]

Jang, H.; Hinton, H.; Jung, W. B.; Lee, M. H.; Kim, C.; Park, M.; Lee, S. K.; Park, S.; Ham, D. In-sensor optoelectronic computing using electrostatically doped silicon. Nat. Electron. 2022, 5, 519–525.

[7]

Pan, C.; Wang, C. Y.; Liang, S. J.; Wang, Y.; Cao, T. J.; Wang, P. F.; Wang, C.; Wang, S.; Cheng, B.; Gao, A. Y. et al. Reconfigurable logic and neuromorphic circuits based on electrically tunable two-dimensional homojunctions. Nat. Electron. 2020, 3, 383–390.

[8]

Sun, X. X.; Zhu, C. G.; Yi, J. L.; Xiang, L.; Ma, C.; Liu, H. W.; Zheng, B. Y.; Liu, Y.; You, W. X.; Zhang, W. J. et al. Reconfigurable logic-in-memory architectures based on a two-dimensional van der Waals heterostructure device. Nat. Electron. 2022, 5, 752–760.

[9]

Resta, G. V.; Balaji, Y.; Lin, D.; Radu, I. P.; Catthoor, F.; Gaillardon, P. E.; De Micheli, G. Doping-free complementary logic gates enabled by two-dimensional polarity-controllable transistors. ACS Nano 2018, 12, 7039–7047.

[10]

Zhang, G. Q.; Lu, G. T.; Li, X. Z.; Mei, Z.; Liang, L.; Fan, S. S.; Li, Q. Q.; Wei, Y. Reconfigurable two-dimensional air-gap barristors. ACS Nano 2023, 17, 4564–4573.

[11]

Zhao, Z. J.; Rakheja, S.; Zhu, W. J. Nonvolatile reconfigurable 2D Schottky barrier transistors. Nano Lett. 2021, 21, 9318–9324.

[12]

Sheng, Z.; Wang, Y.; Hu, W. N.; Sun, H. R.; Dong, J. G.; Yu, R.; Zhang, D. W.; Zhou, P.; Zhang, Z. X. Two-dimensional complementary gate-programmable PN junctions for reconfigurable rectifier circuit. Nano Res. 2023, 16, 1252–1258.

[13]

Thakar, K.; Lodha, S. Multi-bit analog transmission enabled by electrostatically reconfigurable ambipolar and anti-ambipolar transport. ACS Nano 2021, 15, 19692–19701.

[14]

Huang, X. H.; Liu, C. S.; Tang, Z. W.; Zeng, S. F.; Wang, S. Y.; Zhou, P. An ultrafast bipolar flash memory for self-activated in-memory computing. Nat. Nanotechnol. 2023, 18, 486–492.

[15]

Wang, G. C.; Bao, L. H.; Ma, R. S.; Pei, T. F.; Zhang, Y. Y.; Wu, L. M.; Zhou, Z.; Yang, H. F.; Li, J. J.; Gu, C. Z. et al. From bidirectional rectifier to polarity-controllable transistor in black phosphorus by dual gate modulation. 2D Mater. 2017, 4, 025056.

[16]

Su, B. W.; Yao, B. W.; Zhang, X. L.; Huang, K. X.; Li, D. K.; Guo, H. W.; Li, X. K.; Chen, X. D.; Liu, Z. B.; Tian, J. G. A gate-tunable symmetric bipolar junction transistor fabricated via femtosecond laser processing. Nanoscale Adv. 2020, 2, 1733–1740.

[17]

Li, D.; Wang, B.; Chen, M. Y.; Zhou, J.; Zhang, Z. X. Gate-controlled BP-WSe2 heterojunction diode for logic rectifiers and logic optoelectronics. Small 2017, 13, 1603726.

[18]

Hu, W. N.; Liu, Y. L.; Huang, Z. C.; Dong, J. G.; Wang, Y.; Chen, W. A.; Sheng, Z.; Sun, H. R.; Hu, G. X.; Cong, C. X. et al. Full two-dimensional ambipolar CFET-like architecture for switchable logic circuits. J. Phys. D:Appl. Phys. 2023, 56, 355106.

[19]

Liu, C. S.; Chen, H. W.; Hou, X.; Zhang, H.; Han, J.; Jiang, Y. G.; Zeng, X. Y.; Zhang, D. W.; Zhou, P. Small footprint transistor architecture for photoswitching logic and in situ memory. Nat. Nanotechnol. 2019, 14, 662–667.

[20]

Wu, L. M.; Wang, A. W.; Shi, J. N.; Yan, J. H.; Zhou, Z.; Bian, C.; Ma, J. J.; Ma, R. S.; Liu, H. T.; Chen, J. C. et al. Atomically sharp interface enabled ultrahigh-speed non-volatile memory devices. Nat. Nanotechnol. 2021, 16, 882–887.

[21]

Yang, X. D.; Li, J.; Song, R.; Zhao, B.; Tang, J. M.; Kong, L. G.; Huang, H.; Zhang, Z. W.; Liao, L.; Liu, Y. et al. Highly reproducible van der Waals integration of two-dimensional electronics on the wafer scale. Nat. Nanotechnol. 2023, 18, 471–478.

[22]

Liu, C. S.; Chen, H. W.; Wang, S. Y.; Liu, Q.; Jiang, Y. G.; Zhang, D. W.; Liu, M.; Zhou, P. Two-dimensional materials for next-generation computing technologies. Nat. Nanotechnol. 2020, 15, 545–557.

[23]

Das, S.; Appenzeller, J. WSe2 field effect transistors with enhanced ambipolar characteristics. Appl. Phys. Lett. 2013, 103, 103501.

[24]

Hu, W. N.; Sheng, Z.; Hou, X.; Chen, H. W.; Zhang, Z. X.; Zhang, D. W.; Zhou, P. Ambipolar 2D semiconductors and emerging device applications. Small Methods 2021, 5, 2000837.

[25]

Liu, Y.; Guo, J.; Zhu, E. B.; Liao, L.; Lee, S. J.; Ding, M. N.; Shakir, I.; Gambin, V.; Huang, Y.; Duan, X. F. Approaching the Schottky–Mott limit in van der Waals metal-semiconductor junctions. Nature 2018, 557, 696–700.

[26]

Zhang, X. K.; Kang, Z.; Gao, L.; Liu, B. S.; Yu, H. H.; Liao, Q. L.; Zhang, Z.; Zhang, Y. Molecule-upgraded van der Waals contacts for Schottky-barrier-free electronics. Adv. Mater. 2021, 33, 2104935.

[27]

Kong, L. G.; Zhang, X. D.; Tao, Q. Y.; Zhang, M. L.; Dang, W. Q.; Li, Z. W.; Feng, L. P.; Liao, L.; Duan, X. F.; Liu, Y. Doping-free complementary WSe2 circuit via van der Waals metal integration. Nat. Commun. 2020, 11, 1866.

[28]

Pospischil, A.; Furchi, M. M.; Mueller, T. Solar-energy conversion and light emission in an atomic monolayer p-n diode. Nat. Nanotechnol. 2014, 9, 257–261.

[29]

Fang, H.; Chuang, S.; Chang, T. C.; Takei, K.; Takahashi, T.; Javey, A. High-performance single layered WSe2 p-FETs with chemically doped contacts. Nano Lett. 2012, 12, 3788–3792.

[30]

Liu, W.; Kang, J. H.; Sarkar, D.; Khatami, Y.; Jena, D.; Banerjee, K. Role of metal contacts in designing high-performance monolayer n-type WSe2 field effect transistors. Nano Lett. 2013, 13, 1983–1990.

[31]

Wu, L. M.; Shi, J. N.; Zhou, Z.; Yan, J. H.; Wang, A. W.; Bian, C.; Ma, J. J.; Ma, R. S.; Liu, H. T.; Chen, J. C. et al. InSe/hBN/graphite heterostructure for high-performance 2D electronics and flexible electronics. Nano Res. 2020, 13, 1127–1132.

[32]

Dong, X. M.; Zhang, H. S.; Li, Y. X.; Liu, B.; Pan, K. Y.; Nie, Y. J.; Yu, M. N.; Eginligil, M.; Liu, J. Q.; Huang, W. Two-dimensional molecular crystalline semiconductors towards advanced organic optoelectronics. Nano Res. 2022, 15, 9554–9572.

[33]

Dong, J. G.; Sheng, Z.; Yu, R.; Hu, W. N.; Wang, Y.; Sun, H. R.; Zhang, D. W.; Zhou, P.; Zhang, Z. X. WSe2 N-type negative capacitance field-effect transistor with indium low Schottky barrier contact. Adv. Electron. Mater. 2022, 8, 2100829.

[34]

del Corro, E.; Terrones, H.; Elias, A.; Fantini, C.; Feng, S.; Nguyen, M. A.; Mallouk, T. E.; Terrones, M.; Pimenta, M. A. Excited excitonic states in 1L, 2L, 3L, and bulk WSe2 observed by resonant Raman spectroscopy. ACS Nano 2014, 8, 9629–9635.

[35]

Gorbachev, R. V.; Riaz, I.; Nair, R. R.; Jalil, R.; Britnell, L.; Belle, B. D.; Hill, E. W.; Novoselov, K. S.; Watanabe, K.; Taniguchi, T. et al. Hunting for monolayer boron nitride: Optical and Raman signatures. Small 2011, 7, 465–468.

[36]

Fan, J. H.; Gao, P.; Zhang, A. M.; Zhu, B. R.; Zeng, H. L.; Cui, X. D.; He, R.; Zhang, Q. M. Resonance Raman scattering in bulk 2H-MX2 (M = Mo, W; X = S, Se) and monolayer MoS2. J. Appl. Phys. 2014, 115, 053527.

[37]

Zhang, K. L.; Feng, Y. L.; Wang, F.; Yang, Z. C.; Wang, J. Two dimensional hexagonal boron nitride (2D-hBN): Synthesis, properties and applications. J. Mater. Chem. C 2017, 5, 11992–12022.

[38]

Phan, N. A. N.; Noh, H.; Kim, J.; Kim, Y.; Kim, H.; Whang, D.; Aoki, N.; Watanabe, K.; Taniguchi, T.; Kim, G. H. Enhanced performance of WS2 field-effect transistor through mono and bilayer h-BN tunneling contacts. Small 2022, 18, 2105753.

[39]

Allain, A.; Kang, J. H.; Banerjee, K.; Kis, A. Electrical contacts to two-dimensional semiconductors. Nat. Mater. 2015, 14, 1195–1205.

[40]

Chen, J. R.; Odenthal, P. M.; Swartz, A. G.; Floyd, G. C.; Wen, H.; Luo, K. Y.; Kawakami, R. K. Control of Schottky barriers in single layer MoS2 transistors with ferromagnetic contacts. Nano Lett. 2013, 13, 3106–3110.

[41]

Lee, S.; Tang, A.; Aloni, S.; Wong, H. S. P. Statistical study on the Schottky barrier reduction of tunneling contacts to CVD synthesized MoS2. Nano Lett. 2016, 16, 276–281.

[42]

Mleczko, M. J.; Yu, A. C.; Smyth, C. M.; Chen, V.; Shin, Y. C.; Chatterjee, S.; Tsai, Y. C.; Nishi, Y.; Wallace, R. M.; Pop, E. Contact engineering high-performance n-type MoTe2 transistors. Nano Lett. 2019, 19, 6352–6362.

[43]

Penumatcha, A. V.; Salazar, R. B.; Appenzeller, J. Analysing black phosphorus transistors using an analytic Schottky barrier MOSFET model. Nat. Commun. 2015, 6, 8948.

[44]

Hu, W. N.; Wang, H.; Dong, J. G.; Sun, H. R.; Wang, Y.; Sheng, Z.; Zhang, Z. X. Chemical dopant-free controlled MoTe2/MoSe2 heterostructure toward a self-driven photodetector and complementary logic circuits. ACS Appl. Mater. Interfaces 2023, 15, 18182–18190.

[45]

Wu, G. J.; Wang, X. D.; Chen, Y.; Wu, S. Q.; Wu, B. M.; Jiang, Y. Y.; Shen, H.; Lin, T.; Liu, Q.; Wang, X. R. et al. MoTe2 p-n homojunctions defined by ferroelectric polarization. Adv. Mater. 2020, 32, 1907937.

[46]

Zhu, C. G.; Sun, X. X.; Liu, H. W.; Zheng, B. Y.; Wang, X. W.; Liu, Y.; Zubair, M.; Wang, X.; Zhu, X. L.; Li, D. et al. Nonvolatile MoTe2 p-n diodes for optoelectronic logics. ACS Nano 2019, 13, 7216–7222.

[47]

Pi, L. J.; Wang, P. F.; Liang, S. J.; Luo, P.; Wang, H. Y.; Li, D. Y.; Li, Z. X.; Chen, P.; Zhou, X.; Miao, F. et al. Broadband convolutional processing using band-alignment-tunable heterostructures. Nat. Electron. 2022, 5, 248–254.

[48]

Liu, Y.; Zhang, G.; Zhou, H. L.; Li, Z.; Cheng, R.; Xu, Y.; Gambin, V.; Huang, Y.; Duan, X. F. Ambipolar barristors for reconfigurable logic circuits. Nano Lett. 2017, 17, 1448–1454.

[49]

Wu, P.; Reis, D.; Hu, X. S.; Appenzeller, J. Two-dimensional transistors with reconfigurable polarities for secure circuits. Nat. Electron. 2021, 4, 45–53.

[50]

Sheng, Z.; Dong, J. G.; Hu, W. N.; Wang, Y.; Sun, H. R.; Zhang, D. W.; Zhou, P.; Zhang, Z. X. Reconfigurable logic-in-memory computing based on a polarity-controllable two-dimensional transistor. Nano Lett. 2023, 23, 5242–5249.

File
12274_2023_6128_MOESM1_ESM.pdf (1.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 30 June 2023
Revised: 15 August 2023
Accepted: 25 August 2023
Published: 12 October 2023
Issue date: November 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

Z. X. Z. and D. S. T. express the highest respect in memory of their mentor Prof. Sishen Xie. The work was supported by the National Natural Science Foundation of China (No. 62274037), the National Key Research and Development Program of China (No. 2018YFA0703703), the Ministry of Science and Technology of China (No. 2018YFE0118300), and State Key Laboratory of ASIC & System (No. 2021MS003).

Return