Journal Home > Volume 16 , Issue 10

The green synthesis of nitrate (NO3) via electrocatalytic nitrogen oxidation reaction (NOR) is a promising strategy for artificial nitrogen fixation, which shows great advantages than traditional nitrate synthesis based on Haber–Bosch and Ostwald processes. But the poor N2 absorption, high bond energy of N≡N (941 kJ·mol−1), and competing multi-electron-transfer oxygen evolution reaction (OER) limit the activity and selectivity. Herein, we fabricated MXene-derived irregular TiO2−x nanoparticles anchored Cu nanowires (Cu-NWs) electrode for efficient electrocatalytic nitrogen oxidation, which exhibits a NO3 yield of 62.50 μg·h−1·mgcat−1 and a Faradaic efficiency (FE) of 22.04%, and a significantly enhanced NO3 yield of 92.63 μg·h−1·mgcat−1, and a FE of 40.58% under vacuum assistance. The TiO2−x/Cu-NWs electrode also shows excellent reproducibility and stability under optimal experimental conditions. Moreover, a Zn-N2 reaction device was assembled with TiO2−x/Cu-NWs as an anode and Zn plate as a cathode, obtaining an extremely high NO3 yield of 156.25 µg·h−1·mgcat−1. The Zn-nitrate battery shows an open circuit voltage (OCV) of 1.35 V. This work provides novel strategies for enhancing the performance of ambient N2 oxidation to obtain higher NO3 yield.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Copper nanowires decorated with TiO2−x from MXene for enhanced electrocatalytic nitrogen oxidation into nitrate under vacuum assistance

Show Author's information Quan Li1Zhengting Xiao1,2Weina Jia1Qin Li3( )Xianguo Li1( )Wentai Wang1( )
Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
Queensland Micro- and Nanotechnology Centre, School of Engineering and Built Environment, Griffith University Nathan Campus, Brisbane, QLD 4111, Australia

Abstract

The green synthesis of nitrate (NO3) via electrocatalytic nitrogen oxidation reaction (NOR) is a promising strategy for artificial nitrogen fixation, which shows great advantages than traditional nitrate synthesis based on Haber–Bosch and Ostwald processes. But the poor N2 absorption, high bond energy of N≡N (941 kJ·mol−1), and competing multi-electron-transfer oxygen evolution reaction (OER) limit the activity and selectivity. Herein, we fabricated MXene-derived irregular TiO2−x nanoparticles anchored Cu nanowires (Cu-NWs) electrode for efficient electrocatalytic nitrogen oxidation, which exhibits a NO3 yield of 62.50 μg·h−1·mgcat−1 and a Faradaic efficiency (FE) of 22.04%, and a significantly enhanced NO3 yield of 92.63 μg·h−1·mgcat−1, and a FE of 40.58% under vacuum assistance. The TiO2−x/Cu-NWs electrode also shows excellent reproducibility and stability under optimal experimental conditions. Moreover, a Zn-N2 reaction device was assembled with TiO2−x/Cu-NWs as an anode and Zn plate as a cathode, obtaining an extremely high NO3 yield of 156.25 µg·h−1·mgcat−1. The Zn-nitrate battery shows an open circuit voltage (OCV) of 1.35 V. This work provides novel strategies for enhancing the performance of ambient N2 oxidation to obtain higher NO3 yield.

Keywords: electrocatalysis, Zn-nitrate battery, nitrogen oxidation, nitrate production, Zn-N2 system, vacuum assistance

References(38)

[1]

Olabi, A. G.; Abdelkareem, M. A.; Al-Murisi, M.; Shehata, N.; Alami, A. H.; Radwan, A.; Wilberforce, T.; Chae, K. J.; Sayed, E. T. Recent progress in Green Ammonia: Production, applications, assessment; barriers, and its role in achieving the sustainable development goals. Energy Convers. Manage. 2023, 277, 116594.

[2]

Lim, J.; Fernández, C. A.; Lee, S. W.; Hatzell, M. C. Ammonia and nitric acid demands for fertilizer use in 2050. ACS Energy Lett. 2021, 6, 3676–3685.

[3]

Chen, J. G.; Crooks, R. M.; Seefeldt, L. C.; Bren, K. L.; Bullock, R. M.; Darensbourg, M. Y.; Holland, P. L.; Hoffman, B.; Janik, M. J.; Jones, A. K. et al. Beyond fossil fuel-driven nitrogen transformations. Science 2018, 360, eaar6611.

[4]

Cheng, H.; Ding, L. X.; Chen, G. F.; Zhang, L. L.; Xue, J.; Wang, H. H. Molybdenum carbide nanodots enable efficient electrocatalytic nitrogen fixation under ambient conditions. Adv. Mater. 2018, 30, 1803694.

[5]

Cheng, M.; Xiao, C.; Xie, Y. Photocatalytic nitrogen fixation: The role of defects in photocatalysts. J. Mater. Chem. A 2019, 7, 19616–19633.

[6]

Liu, Y. W.; Cheng, M.; He, Z. H.; Gu, B. C.; Xiao, C.; Zhou, T. F.; Guo, Z. P.; Liu, J. D.; He, H. Y.; Ye, B. J. et al. Pothole-rich ultrathin WO3 nanosheets that trigger N≡N bond activation of nitrogen for direct nitrate photosynthesis. Angew. Chem., Int. Ed. 2019, 58, 731–735.

[7]

Yan, D. W.; Tajima, H.; Cline, L. C.; Fong, R. Y.; Ottaviani, J. I.; Shapiro, H. Y.; Blumwald, E. Genetic modification of flavone biosynthesis in rice enhances biofilm formation of soil diazotrophic bacteria and biological nitrogen fixation. Plant Biotechnol. J. 2022, 20, 2135–2148.

[8]

Dai, C. C.; Sun, Y. M.; Chen, G.; Fisher, A. C.; Xu, Z. J. Electrochemical oxidation of nitrogen towards direct nitrate production on spinel oxides. Angew. Chem., Int. Ed. 2020, 59, 9418–9422.

[9]

Chen, L.; Sun, W. T.; Xu, Z. Y.; Hao, M. H.; Li, B. J.; Liu, X.; Ma, J. J.; Wang, L.; Li, C. H.; Wang, W. T. Ultrafine Cu nanoparticles decorated porous TiO2 for high-efficient electrocatalytic reduction of NO to synthesize NH3. Ceram. Int. 2022, 48, 21151–21161.

[10]

Anand, M.; Abraham, C. S.; Nørskov, J. K. Electrochemical oxidation of molecular nitrogen to nitric acid-towards a molecular level understanding of the challenges. Chem. Sci. 2021, 12, 6442–6448.

[11]

Wang, Y. T.; Yu, Y. F.; Jia, R. R.; Zhang, C.; Zhang, B. Electrochemical synthesis of nitric acid from air and ammonia through waste utilization. Natl. Sci. Rev. 2019, 6, 730–738.

[12]

Kuang, M.; Wang, Y.; Fang, W.; Tan, H. T.; Chen, M. X.; Yao, J. D.; Liu, C. T.; Xu, J. W.; Zhou, K.; Yan, Q. Y. Efficient nitrate synthesis via ambient nitrogen oxidation with Ru-doped TiO2/RuO2 electrocatalysts. Adv. Mater. 2020, 32, 2002189.

[13]

Wu, X. Z.; Xiao, S. T.; Long, Y. P.; Ma, T.; Shao, W. J.; Cao, S.; Xiang, X.; Ma, L.; Qiu, L.; Cheng, C. et al. Emerging 2D materials for electrocatalytic applications: Synthesis, multifaceted nanostructures, and catalytic center design. Small 2022, 18, 2105831.

[14]

Xia, Y. J.; Xu, Y. Y.; Yu, X. Y.; Chang, K.; Gong, H.; Fan, X. L.; Meng, X. G.; Huang, X. L.; Wang, T.; He, J. P. Structural design and control of photocatalytic nitrogen-fixing catalysts. J. Mater. Chem. A 2022, 10, 17377–17394.

[15]
Wang, C. F.; Lu, Y. L.; Zhang, Y.; Fu, H.; Sun, S. Z.; Li, F.; Duan, Z. Y.; Liu, Z.; Wu, C. F.; Wang, Y. H. et al. Ru-based catalysts for efficient CO2 methanation: Synergistic catalysis between oxygen vacancies and basic sites. Nano Res., in press, DOI: 10.1007/s12274-023-5592-3.
DOI
[16]

Zhang, Y. T.; Du, F.; Wang, R. Y.; Ling, X. T.; Wang, X. Y.; Shen, Q.; Xiong, Y. J.; Li, T.; Zhou, Y.; Zou, Z. G. Electrocatalytic fixation of N2 into NO3: Electron transfer between oxygen vacancies and loaded Au in Nb2O5−x nanobelts to promote ambient nitrogen oxidation. J. Mater. Chem. A 2021, 9, 17442–17450.

[17]

Fang, W.; Du, C. F.; Kuang, M.; Chen, M. X.; Huang, W. J.; Ren, H.; Xu, J. W.; Feldhoff, A.; Yan, Q. Y. Boosting efficient ambient nitrogen oxidation by a well-dispersed Pd on MXene electrocatalyst. Chem. Commun. 2020, 56, 5779–5782.

[18]

Li, T. L.; Han, S. H.; Wang, C. H.; Huang, Y. M.; Wang, Y. T.; Yu, Y. F.; Zhang, B. Ru-doped pd nanoparticles for nitrogen electrooxidation to nitrate. ACS Catal. 2021, 11, 14032–14037.

[19]

Li, T. L.; Han, S. H.; Cheng, C. Q.; Wang, Y. T.; Du, X. W.; Yu, Y. F.; Zhang, B. Sulfate-enabled nitrate synthesis from nitrogen electrooxidation on a rhodium electrocatalyst. Angew. Chem., Int. Ed. 2022, 61, e202204541.

[20]

Han, S. H.; Wang, C. H.; Wang, Y. T.; Yu, Y. F.; Zhang, B. Electrosynthesis of nitrate via the oxidation of nitrogen on tensile-strained palladium porous nanosheets. Angew. Chem., Int. Ed. 2021, 60, 4474–4478.

[21]

Guo, M. X.; Fang, L.; Zhang, L. L.; Li, M. Z.; Cong, M. Y.; Guan, X. P.; Shi, C. W.; Gu, C. L.; Liu, X.; Wang, Y. et al. Pulsed electrocatalysis enabling high overall nitrogen fixation performance for atomically dispersed Fe on TiO2. Angew. Chem., Int. Ed. 2023, 62, e202217635.

[22]

Abbasi, M.; Noor, T.; Iqbal, N.; Zaman, N. Electrocatalytic study of cu/Ni MOF and its g-C3N4 composites for methanol oxidation reaction. Int. J. Energy Res. 2022, 46, 13915–13930.

[23]

Yuan, G. Q.; Yu, S. K.; Jie, J.; Wang, C.; Li, Q.; Pang, H. Cu/Cu2O nanostructures derived from copper oxalate as high performance electrocatalyst for glucose oxidation. Chin. Chem. Lett. 2020, 31, 1941–1945.

[24]

Prabowo Rahardjo, S. S.; Shih, Y. J. Electrocatalytic ammonia oxidation mediated by nickel and copper crystallites decorated with platinum nanoparticle (PtM/G, M = Cu, Ni). ACS Sustainable Chem. Eng. 2022, 10, 5043–5054.

[25]

Ye, J. Y.; Liu, C. J. Cu3(BTC)2: CO oxidation over MOF based catalysts. Chem. Commun. 2011, 47, 2167–2169.

[26]

Yu, M.; Fan, G. L.; Liu, J. D.; Xu, W. C.; Li, J. H.; Cheng, F. Y. Self-supported Mo-doped TiO2 electrode for ambient electrocatalytic nitrogen oxidation. Electrochim. Acta 2022, 435, 141333.

[27]

Luo, Y. J.; Shen, P.; Li, X. C.; Guo, Y. L.; Chu, K. Sulfur-deficient Bi2S3−x synergistically coupling Ti3C2Tx-MXene for boosting electrocatalytic N2 reduction. Nano Res. 2022, 15, 3991–3999.

[28]

Kim, H.; Wang, Z. W.; Alshareef, H. N. MXetronics: Electronic and photonic applications of MXenes. Nano Energy 2019, 60, 179–197.

[29]

Li, Q.; Fu, S. F.; Wang, X.; Wang, L.; Liu, X.; Gao, Y. S.; Li, Q.; Wang, W. T. Electrochemical and photoelectrochemical detection of hydrogen peroxide using Cu2O/Cu nanowires decorated with TiO2−x deriving from MXenes. ACS Appl. Mater. Interfaces 2022, 14, 57471–57480.

[30]

Zhou, G.; Meng, H. Y.; Cao, Y.; Kou, X. J.; Duan, S. X.; Fan, L. L.; Xiao, M.; Zhou, F. Z.; Li, Z. Z.; Xing, Z. P. Surface plasmon resonance-enhanced solar-driven photocatalytic performance from Ag nanoparticles-decorated Ti3+ self-doped porous black TiO2 pillars. J. Ind. Eng. Chem. 2018, 64, 188–193.

[31]

Jin, Z.; Liu, C.; Qi, K.; Cui, X. Q. Photo-reduced Cu/CuO nanoclusters on TiO2 nanotube arrays as highly efficient and reusable catalyst. Sci. Rep. 2017, 7, 39695.

[32]

Zhu, Y. L.; Tahini, H. A.; Hu, Z. W.; Chen, Z. G.; Zhou, W.; Komarek, A. C.; Lin, Q.; Lin, H. J.; Chen, C. T.; Zhong, Y. J. et al. Boosting oxygen evolution reaction by creating both metal ion and lattice-oxygen active sites in a complex oxide. Adv. Mater. 2020, 32, 1905025.

[33]

Hao, M. H.; Xu, Z. Y.; Liu, X.; Ma, J. J.; Wang, L.; Li, C. H.; Wang, W. T. The in situ growth of FeCo nanoalloys in NiFeCoP nanosheets arrays with superhydrophilicity and surperaerophobicity for efficient overall water splitting. Int. J. Hydrogen Energy 2023, 48, 147–159.

[34]

Su, B.; Tian, Y.; Jiang, L. Bioinspired interfaces with superwettability: From materials to chemistry. J. Am. Chem. Soc. 2016, 138, 1727–1748.

[35]

Yu, N. F.; Chen, H.; Kuang, J. B.; Bao, K. L.; Yan, W.; Ye, J. L.; Yang, Z. T.; Huang, Q. H.; Wu, Y. P.; Sun, S. G. Efficient oxygen electrocatalysts with highly-exposed Co-N4 active sites on N-doped graphene-like hierarchically porous carbon nanosheets enhancing the performance of rechargeable Zn-air batteries. Nano Res. 2022, 15, 7209–7219.

[36]

Zhang, L. C.; Zhou, Q.; Liang, J.; Yue, L. C.; Li, T. S.; Luo, Y. S.; Liu, Q.; Li, N.; Tang, B.; Gong, F. et al. Enhancing electrocatalytic NO reduction to NH3 by the CoS nanosheet with sulfur vacancies. Inorg. Chem. 2022, 61, 8096–8102.

[37]

Li, Z. R.; Deng, Z. Q.; Ouyang, L.; Fan, X. Y.; Zhang, L. C.; Sun, S. J.; Liu, Q.; Alshehri, A. A.; Luo, Y. L.; Kong, Q. Q. et al. CeO2 nanoparticles with oxygen vacancies decorated N-doped carbon nanorods: A highly efficient catalyst for nitrate electroreduction to ammonia. Nano Res. 2022, 15, 8914–8921.

[38]

Guo, Y.; Zhang, R.; Zhang, S. C.; Zhao, Y. W.; Yang, Q.; Huang, Z. D.; Dong, B. B.; Zhi, C. Y. Pd doping-weakened intermediate adsorption to promote electrocatalytic nitrate reduction on TiO2 nanoarrays for ammonia production and energy supply with zinc-nitrate batteries. Energy Environ. Sci. 2021, 14, 3938–3944.

File
12274_2023_6126_MOESM1_ESM.pdf (2.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 28 June 2023
Revised: 13 August 2023
Accepted: 24 August 2023
Published: 14 September 2023
Issue date: October 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

We acknowledge the financial support by the Natural Science Foundation of Shandong Province (No. ZR2021MB075) and the National Natural Science Foundation of China (No. 51602297).

Return