Journal Home > Volume 17 , Issue 2

One-dimensional (1D) aramid nanofiber (ANF) based nanocomposite films have drawn increasing attentions in various applications due to their excellent mechanical properties and impressive chemical and thermal stabilities. However, the large-area fabrication of aramid nanocomposite films with ultrastrong mechanical properties under mild conditions remains a great challenge. Here we present a facile superspreading-assisted strategy to produce aramid nanofiber based oriented layered nanocomposites using phase inversion process that occurs at the fully swollen hydrogel surfaces. The nanocomposite films based on ANF, carboxylation carbon tube (CNT–COOH), poly(vinyl alcohol) (PVA), and MXene nanosheet exhibit a tensile strength of up to 870.8 ± 85 MPa, a Young’s modulus of 21.8 ± 2.2 GPa, and outstanding toughness (up to 43.2 ± 4.6 MJ/m3), which are much better than those conventional aramid nanofiber based materials. Electrical conductivity of our nanocomposite films reaches the maximum of about 1100 S/m. The fabulous mechanical properties combination and continuous production capability render our strategy representing a promising direction for the development of high-performance nanocomposites.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Large-area ultrastrong and stiff aramid nanofiber based layered nanocomposite films

Show Author's information Zhidong Nie1Yingzhi Sun1Tianxu Zhou1Shengwen Kong1Linxing Liu1Chuangqi Zhao2,3( )Mingjie Liu1,4( )
Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
University of Science and Technology of China, Hefei 230026, China
Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
International Research Institute for Multidisciplinary Science, Beihang University, Beijing 100191, China

Abstract

One-dimensional (1D) aramid nanofiber (ANF) based nanocomposite films have drawn increasing attentions in various applications due to their excellent mechanical properties and impressive chemical and thermal stabilities. However, the large-area fabrication of aramid nanocomposite films with ultrastrong mechanical properties under mild conditions remains a great challenge. Here we present a facile superspreading-assisted strategy to produce aramid nanofiber based oriented layered nanocomposites using phase inversion process that occurs at the fully swollen hydrogel surfaces. The nanocomposite films based on ANF, carboxylation carbon tube (CNT–COOH), poly(vinyl alcohol) (PVA), and MXene nanosheet exhibit a tensile strength of up to 870.8 ± 85 MPa, a Young’s modulus of 21.8 ± 2.2 GPa, and outstanding toughness (up to 43.2 ± 4.6 MJ/m3), which are much better than those conventional aramid nanofiber based materials. Electrical conductivity of our nanocomposite films reaches the maximum of about 1100 S/m. The fabulous mechanical properties combination and continuous production capability render our strategy representing a promising direction for the development of high-performance nanocomposites.

Keywords: nanocomposites, aramid nanofibers, ultrastrong and stiff, MXene nanosheets, superspreading, large-area production

References(41)

[1]

Yang, B.; Wang, L.; Zhang, M. Y.; Luo, J. J.; Ding, X. Y. Timesaving, high-efficiency approaches to fabricate aramid nanofibers. ACS Nano 2019, 13, 7886–7897.

[2]

Zhao, Y.; Li, X.; Shen, J. N.; Gao, C. J.; Van Der Bruggen, B. The potential of Kevlar aramid nanofiber composite membranes. J. Mater. Chem. A 2020, 8, 7548–7568.

[3]

Koo, J. M.; Kim, H.; Lee, M.; Park, S. A.; Jeon, H.; Shin, S. H.; Kim, S. M.; Cha, H. G.; Jegal, J.; Kim, B. S. et al. Nonstop monomer-to-aramid nanofiber synthesis with remarkable reinforcement ability. Macromolecules 2019, 52, 923–934.

[4]

Xie, C. J.; Liu, S. Y.; Zhang, Q. G.; Ma, H. X.; Yang, S. X.; Guo, Z. X.; Qiu, T.; Tuo, X. L. Macroscopic-scale preparation of aramid nanofiber aerogel by modified freezing-drying method. ACS Nano 2021, 15, 10000–10009.

[5]

Yang, B.; Wang, L.; Zhang, M. Y.; Luo, J. J.; Lu, Z. Q.; Ding, X. Y. Fabrication, applications, and prospects of aramid nanofiber. Adv. Funct. Mater. 2020, 30, 2000186.

[6]

Chowdhury, S. C.; Gillespie, J. W. A molecular dynamics study of the effects of hydrogen bonds on mechanical properties of Kevlar® crystal. Comput. Mater. Sci. 2018, 148, 286–300.

[7]

Singh, T. J.; Samanta, S. Characterization of Kevlar fiber and its composites: A review. Mater. Today: Proc. 2015, 2, 1381–1387.

[8]

Yang, M.; Cao, K. Q.; Sui, L.; Qi, Y.; Zhu, J.; Waas, A.; Arruda, E. M.; Kieffer, J.; Thouless, M. D.; Kotov, N. A. Dispersions of aramid nanofibers: A new nanoscale building block. ACS Nano 2011, 5, 6945–6954.

[9]

Cheng, B. C.; Wu, P. Y. Scalable fabrication of Kevlar/Ti3C2Tx MXene intelligent wearable fabrics with multiple sensory capabilities. ACS Nano 2021, 15, 8676–8685.

[10]

Wang, F.; Wu, Y. D.; Huang, Y. D. High strength, thermostable and fast-drying hybrid transparent membranes with POSS nanoparticles aligned on aramid nanofibers. Compos. Part A: Appl. Sci. Manuf. 2018, 110, 154–161.

[11]

Li, Y.; Wong, E.; Volodine, A.; Van Haesendonck, C.; Zhang, K. S.; Van Der Bruggen, B. Nanofibrous hydrogel composite membranes with ultrafast transport performance for molecular separation in organic solvents. J. Mater. Chem. A 2019, 7, 19269–19279.

[12]

Lyu, J.; Wang, X. Z.; Liu, L. H.; Kim, Y.; Tanyi, E. K.; Chi, H.; Feng, W. C.; Xu, L. Z.; Li, T. H.; Noginov, M. A. et al. High strength conductive composites with plasmonic nanoparticles aligned on aramid nanofibers. Adv. Funct. Mater. 2016, 26, 8435–8445.

[13]

Xu, L. Z.; Zhao, X. L.; Xu, C. L.; Kotov, N. A. Water-rich biomimetic composites with abiotic self-organizing nanofiber network. Adv. Mater. 2018, 30, 1703343.

[14]

Lei, C. X.; Zhang, Y. Z.; Liu, D. Y.; Wu, K.; Fu, Q. Metal-level robust, folding endurance, and highly temperature-stable MXene-based film with engineered aramid nanofiber for extreme-condition electromagnetic interference shielding applications. ACS Appl. Mater. Interfaces 2020, 12, 26485–26495.

[15]

Guan, Y.; Li, W.; Zhang, Y. L.; Shi, Z. Q.; Tan, J.; Wang, F.; Wang, Y. H. Aramid nanofibers and poly(vinyl alcohol) nanocomposites for ideal combination of strength and toughness via hydrogen bonding interactions. Compos. Sci. Technol. 2017, 144, 193–201.

[16]

Xiao, G.; Di, J. T.; Li, H.; Wang, J. F. Highly thermally conductive, ductile biomimetic boron nitride/aramid nanofiber composite film. Compos. Sci. Technol. 2020, 189, 108021.

[17]

Wei, H. W.; Wang, M. Q.; Zheng, W. H.; Jiang, Z. X.; Huang, Y. D. 2D Ti3C2Tx MXene/aramid nanofibers composite films prepared via a simple filtration method with excellent mechanical and electromagnetic interference shielding properties. Ceram. Int. 2020, 46, 6199–6204.

[18]

Lyu, J.; Liu, L. H.; Zhao, X.; Shang, Y. D.; Zhao, T. K.; Li, T. H. Facile fabrication of multifunctional aramid nanofiber films by spin coating. J. Mater. Eng. Perform. 2016, 25, 4757–4763.

[19]

Hu, P. Y.; Lyu, J.; Fu, C.; Gong, W. B.; Liao, J. H.; Lu, W. B.; Chen, Y. P.; Zhang, X. T. Multifunctional aramid nanofiber/carbon nanotube hybrid aerogel films. ACS Nano 2020, 14, 688–697.

[20]

Zhao, M. Q.; Xie, X. Q.; Ren, C. E.; Makaryan, T.; Anasori, B.; Wang, G. X.; Gogotsi, Y. Hollow MXene spheres and 3D macroporous MXene frameworks for Na-Ion storage. Adv. Mater. 2017, 29, 1702410.

[21]

Ling, Z.; Ren, C. E.; Zhao, M. Q.; Yang, J.; Giammarco, J. M.; Qiu, J. S.; Barsoum, M. W.; Gogotsi, Y. Flexible and conductive MXene films and nanocomposites with high capacitance. Proc. Natl. Acad. Sci. USA 2014, 111, 16676–16681.

[22]

Mirkhani, S. A.; Zeraati, A. S.; Aliabadian, E.; Naguib, M.; Sundararaj, U. High dielectric constant and low dielectric loss via poly(vinyl alcohol)/Ti3C2Tx MXene nanocomposites. ACS Appl. Mater. Interfaces 2019, 11, 18599–18608.

[23]

Shahzad, F.; Alhabeb, M.; Hatter, C. B.; Anasori, B.; Hong, S. M.; Koo, C. M.; Gogotsi, Y. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 2016, 353, 1137–1140.

[24]

Iqbal, A.; Shahzad, F.; Hantanasirisakul, K.; Kim, M. K.; Kwon, J.; Hong, J.; Kim, H.; Kim, D.; Gogotsi, Y.; Koo, C. M. Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene). Science 2020, 369, 446–450.

[25]

Wan, Y. Z.; Xiong, P. X.; Liu, J. Z.; Feng, F. F.; Xun, X. W.; Gama, F. M.; Zhang, Q. C.; Yao, F. L.; Yang, Z. W.; Luo, H. L. et al. Ultrathin, strong, and highly flexible Ti3C2Tx MXene/bacterial cellulose composite films for high-performance electromagnetic interference shielding. ACS Nano 2021, 15, 8439–8449.

[26]

Anasori, B.; Lukatskaya, M. R.; Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2017, 2, 16098.

[27]

Cai, Y. C.; Shen, J.; Ge, G.; Zhang, Y. Z.; Jin, W. Q.; Huang, W.; Shao, J. J.; Yang, J.; Dong, X. C. Stretchable Ti3C2Tx MXene/carbon nanotube composite based strain sensor with ultrahigh sensitivity and tunable sensing range. ACS Nano 2018, 12, 56–62.

[28]

Li, R. Y.; Zhang, L. B.; Shi, L.; Wang, P. Mxene Ti3C2: An effective 2D light-to-heat conversion material. ACS Nano 2017, 11, 3752–3759.

[29]

Han, M. K.; Shuck, C. E.; Rakhmanov, R.; Parchment, D.; Anasori, B.; Koo, C. M.; Friedman, G.; Gogotsi, Y. Beyond Ti3C2Tx: MXenes for electromagnetic interference shielding. ACS Nano 2020, 14, 5008–5016.

[30]

Han, M. K.; Liu, Y. Q.; Rakhmanov, R.; Israel, C.; Tajin, M. A. S.; Friedman, G.; Volman, V.; Hoorfar, A.; Dandekar, K. R.; Gogotsi, Y. Solution-processed Ti3C2Tx MXene antennas for radio-frequency communication. Adv. Mater. 2021, 33, 2003225.

[31]

Yi, P.; Zou, H. H.; Yu, Y. H.; Li, X. F.; Li, Z. Y.; Deng, G.; Chen, C. Y.; Fang, M.; He, J. Z.; Sun, X. et al. MXene-reinforced liquid metal/polymer fibers via interface engineering for wearable multifunctional textiles. ACS Nano 2022, 16, 14490–14502.

[32]

Zhao, C. Q.; Zhang, P. C.; Zhou, J. J.; Qi, S. H.; Yamauchi, Y.; Shi, R. R.; Fang, R. C.; Ishida, Y.; Wang, S. T.; Tomsia, A. P. et al. Layered nanocomposites by shear-flow-induced alignment of nanosheets. Nature 2020, 580, 210–215.

[33]

Zhu, J. Q.; Cao, W. X.; Yue, M. L.; Hou, Y.; Han, J. C.; Yang, M. Strong and stiff aramid nanofiber/carbon nanotube nanocomposites. ACS Nano 2015, 9, 2489–2501.

[34]

Pan, X. F.; Yu, G. H.; Gao, H. L.; Wang, Z. Z.; Bao, Z. W.; Li, X. G.; Yu, S. H. Large-scale production of rectorite nanosheets and their Co-assembly with aramid nanofibers for high-performance electrical insulating nanopapers. Adv. Mater. 2022, 34, 2206855.

[35]

Ma, Z. L.; Kang, S. L.; Ma, J. Z.; Shao, L.; Zhang, Y. L.; Liu, C.; Wei, A. J.; Xiang, X. L.; Wei, L. F.; Gu, J. W. Ultraflexible and mechanically strong double-layered aramid nanofiber-Ti3C2Tx MXene/silver nanowire nanocomposite papers for high-performance electromagnetic interference shielding. ACS Nano 2020, 14, 8368–8382.

[36]

Zhang, Z.; Yang, S.; Zhang, P. P.; Zhang, J.; Chen, G. B.; Feng, X. L. Mechanically strong MXene/Kevlar nanofiber composite membranes as high-performance nanofluidic osmotic power generators. Nat. Commun. 2019, 10, 2920.

[37]

Si, L. M.; Lu, Z. Q.; Yao, C.; Ma, Q.; Zhao, Y. S.; Wang, Y. F.; Wang, D. N.; Jin, Z. F. Nacre-like nanocomposite film with excellent dielectric insulation properties and mechanical strength based on montmorillonite nanosheet and aramid nanofiber. J. Mater. Sci. 2020, 55, 5948–5960.

[38]

Wu, K.; Wang, J. M.; Liu, D. Y.; Lei, C. X.; Liu, D.; Lei, W. W.; Fu, Q. Highly thermoconductive, thermostable, and super-flexible film by engineering 1D rigid rod-like aramid nanofiber/2D boron nitride nanosheets. Adv. Mater. 2020, 32, 1906939.

[39]

Kwon, S. R.; Harris, J.; Zhou, T. Y.; Loufakis, D.; Boyd, J. G.; Lutkenhaus, J. L. Mechanically strong graphene/aramid nanofiber composite electrodes for structural energy and power. ACS Nano 2017, 11, 6682–6690.

[40]

Feng, S.; Xiong, X. Q.; Zhang, G. L.; Xia, N.; Chen, Y. M.; Wang, W. Hierarchical structure in oriented fibers of a dendronized polymer. Macromolecules 2009, 42, 281–287.

[41]

Nie, Y. J.; Huang, G. S.; Qu, L. L.; Wang, X. A.; Weng, G. S.; Wu, J. R. New insights into thermodynamic description of strain-induced crystallization of peroxide cross-linked natural rubber filled with clay by tube model. Polymer 2011, 52, 3234–3242.

Video
12274_2023_6123_MOESM2_ESM.mp4
12274_2023_6123_MOESM3_ESM.mp4
12274_2023_6123_MOESM4_ESM.mp4
12274_2023_6123_MOESM5_ESM.mp4
12274_2023_6123_MOESM6_ESM.mp4
File
12274_2023_6123_MOESM1_ESM.pdf (1.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 14 June 2023
Revised: 25 July 2023
Accepted: 22 August 2023
Published: 13 October 2023
Issue date: February 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2022YFA1503000) and the National Natural Science Foundation of China (Nos. 22161142021 and 22175010).

Return