Journal Home > Volume 16 , Issue 10

Trimethylphenol is an organic toxic byproduct of industrial process, which is difficult to be eliminated through conventional degradation without harsh conditions. In this work, a sulfite-based oxidation process activated by ZnO-embedded hydrogel was studied for the degradation of 2,4,6-trimethylphenols in the ambient conditions. The ZnO/Na2SO3 oxidative system can effectively degrade trimethylphenol via the generation of radicals such as SO4·−, OH·, and SO3·−. The presence of hydrogel matrix facilitates the distribution and recyclability of ZnO catalysts while maintaining high degradation kinetics and little leaching of metal ions. Results suggest the promising potential of ZnO-hydrogel in wastewater treatment with good performance in terms of pH sensitivity, anion interference, recyclability, etc. The combination of ZnO catalysts, hydrogel, and sulfite-based advanced oxidation process may provide essential support for the current treatment of alkylated phenols with strong potential in the commercial scale-ups.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Sulfite activation by ZnO-encapsulated hydrogels for degradation of trimethylphenol

Show Author's information Jiyuan Nai1Yaning Han1,2Shoudu Zhang3Youxun Li3( )Xiaowei Chen2Ren’an Wu4Li Wang4Lei Jiang1( )
Heavy Oil State Laboratory and Center for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
Departamento de Ciencia de los Materiales, Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, Campus Río San Pedro, Puerto Real (Cádiz), E-11510, Spain
Marine Science Research Institute of Shandong Province, Qingdao 266104, China
CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China

Abstract

Trimethylphenol is an organic toxic byproduct of industrial process, which is difficult to be eliminated through conventional degradation without harsh conditions. In this work, a sulfite-based oxidation process activated by ZnO-embedded hydrogel was studied for the degradation of 2,4,6-trimethylphenols in the ambient conditions. The ZnO/Na2SO3 oxidative system can effectively degrade trimethylphenol via the generation of radicals such as SO4·−, OH·, and SO3·−. The presence of hydrogel matrix facilitates the distribution and recyclability of ZnO catalysts while maintaining high degradation kinetics and little leaching of metal ions. Results suggest the promising potential of ZnO-hydrogel in wastewater treatment with good performance in terms of pH sensitivity, anion interference, recyclability, etc. The combination of ZnO catalysts, hydrogel, and sulfite-based advanced oxidation process may provide essential support for the current treatment of alkylated phenols with strong potential in the commercial scale-ups.

Keywords: hydrogel, degradation, nanocatalyst, ZnO nanoparticles, sulfite, 2,4,6-trimethylphenol

References(47)

[1]

Saka, E. T.; Çağlar, Y. New Co(II) and Cu(II) phthalocyanine catalysts reinforced by long alkyl chains for the degradation of organic pollutants. Catal. Lett. 2017, 147, 1471–1477.

[2]

Abellán, M. N.; Bayarri, B.; Giménez, J.; Costa, J. Photocatalytic degradation of sulfamethoxazole in aqueous suspension of TiO2. Appl. Catal. B: Environ. 2007, 74, 233–241.

[3]

Terzian, R.; Serpone, N.; Hidaka, H. Photocatalyzed mineralization of a trimethylated phenol in oxygenated aqueous titania. An alternative to microbial degradation. Catal. Lett. 1995, 32, 227–233.

[4]

Aguer, J. P.; Mailhot, G.; Bolte, M. Unexpected 2,4,6-trimethylphenol oxidation in the presence of Fe(III) aquacomplexes. New J. Chem. 2006, 30, 191–196.

[5]

Wu, S. H.; Shen, L. Y.; Lin, Y.; Yin, K.; Yang, C. P. Sulfite-based advanced oxidation and reduction processes for water treatment. Chem. Eng. J. 2021, 414, 128872.

[6]

Das, A.; Basak, D. Efficacy of ion implantation in zinc oxide for optoelectronic applications: A review. ACS Appl. Electron. Mater. 2021, 3, 3693–3714.

[7]

Kumar, R.; Al-Dossary, O.; Kumar, G.; Umar, A. Zinc oxide nanostructures for NO2 gas-sensor applications: A review. Nano-Micro Lett. 2015, 7, 97–120.

[8]

Tang, H. C.; Tian, Y.; Wu, Z. S.; Zeng, Y. J.; Wang, Y.; Hou, Y.; Ye, Z. Z.; Lu, J. G. AC line filter electrochemical capacitors: Materials, morphology, and configuration. Energy Environ. Mater. 2022, 5, 1060–1083.

[9]

Guo, Y. C.; Wang, Z. Y.; Lu, X. S.; Lu, J. G.; Rabia, K.; Chen, H. W.; Hu, R.; Tang, H. C.; Zhang, Q. H.; Li, Z. P. Core–shell ZnO@C: N hybrids derived from MOFs as long-cycling anodes for lithium ion batteries. Chem. Commun. 2020, 56, 1980–1983.

[10]

Rasoulzadeh, H.; Alinejad, A.; Sheikhmohammadi, A. Improvement of floxin photocatalytic degradability in the presence of sulfite: Performance, kinetic, degradation pathway, energy consumption and total cost of system. Int. J. Environ. Health Res. 2022, 32, 2781–2797.

[11]

Pan, X. H.; Cheng, S. Y.; Zhang, C.; Jiao, Y. Z.; Lin, X. P.; Dong, W.; Qi, X. L. Mussel-inspired magnetic pullulan hydrogels for enhancing catalytic degradation of antibiotics from biomedical wastewater. Chem. Eng. J. 2021, 409, 128203.

[12]

Xie, M. M.; Liu, X. Y.; Wang, S. G. Degradation of methylene blue through Fenton-like reaction catalyzed by MoS2-doped sodium alginate/Fe hydrogel. Colloids Surf. B: Biointerfaces 2022, 214, 112443.

[13]

Zhang, M. G.; Gai, G. Q.; Bi, F.; Wang, L. Y. Synthesis of different morphologies of ZnO via hydrothermal method for enhanced photocatalytic degradation of wastewater. J. Mater. Sci. Mater. Electron. 2022, 33, 4523–4534.

[14]

Garg, S.; Yuan, Y. T.; Mortazavi, M.; Waite, T. D. Caveats in the use of tertiary butyl alcohol as a probe for hydroxyl radical involvement in conventional ozonation and catalytic ozonation processes. ACS EST Eng. 2022, 2, 1665–1676.

[15]

Shah, B. R.; Patel, U. D. Mechanistic aspects of photocatalytic degradation of Lindane by TiO2 in the presence of Oxalic acid and EDTA as hole-scavengers. J. Environ. Chem. Eng. 2021, 9, 105458.

[16]

Liu, J. F.; Zhao, P.; Xu, Y.; Jia, X. B. Mg-Al mixed oxide adsorbent synthesized using FCT template for fluoride removal from drinking water. Bioinorg. Chem. Appl. 2019, 2019, 5840205.

[17]

Zhang, B.; Xu, L. J.; Zhou, Y. D.; Zhang, W. J.; Wang, Y. H.; Zhu, Y. Synthesis and activity of a coumarin-based fluorescent probe for hydroxyl radical detection. Luminescence 2020, 35, 305–311.

[18]

Zhang, X. F.; Li, X. L. The photostability and fluorescence properties of diphenylisobenzofuran. J. Lumin. 2011, 131, 2263–2266.

[19]

Cui, J.; Zhang, L.; Wu, W. C.; Cheng, Z. M.; Sun, Y.; Jiang, H. B.; Li, C. Z. Zinc oxide with dominant (100) facets boosts vulcanization activity. Eur. Polym. J. 2019, 113, 148–154.

[20]

Rassu, G.; Salis, A.; Porcu, E. P.; Giunchedi, P.; Roldo, M.; Gavini, E. Composite chitosan/alginate hydrogel for controlled release of deferoxamine: A system to potentially treat iron dysregulation diseases. Carbohydr. Polym. 2016, 136, 1338–1347.

[21]

Tual, C.; Espuche, E.; Escoubes, M.; Domard, A. Transport properties of chitosan membranes: Influence of crosslinking. 3.0.CO;2-#">J. Polym. Sci. 2000, 38, 1521–1529.

[22]

Benamara, M.; Massoudi, J.; Dahman, H.; Dhahri, E.; El Mir, L.; Ly, A.; Debliquy, M.; Lahem, D. High response to sub-ppm level of NO2 with 50% RH of ZnO sensor obtained by an auto-combustion method. J. Mater. Sci. Mater. Electron. 2020, 31, 14249–14260.

[23]

Wang, X. H.; Du, Y. M.; Liu, H. Preparation, characterization and antimicrobial activity of chitosan-Zn complex. Carbohydr. Polym. 2004, 56, 21–26.

[24]

Tang, L. G.; Hon, D. N. S. Chelation of chitosan derivatives with zinc ions. II. Association complexes of Zn2+ onto O, N-carboxymethyl chitosan. 3.0.CO;2-A">J. Appl. Polym. Sci. 2001, 79, 1476–1485.

[25]

Guan, Z. J.; Wang, P.; Li, Q. Y.; Li, Y. W.; Fu, X. L.; Yang, J. J. Remarkable enhancement in solar hydrogen generation from MoS2-RGO/ZnO composite photocatalyst by constructing a robust electron transport pathway. Chem. Eng. J. 2017, 327, 397–405.

[26]

Gun’ko, V. M.; Savina, I. N.; Mikhalovsky, S. V. Properties of water bound in hydrogels. Gels 2017, 3, 37.

[27]

Ganji, F.; Vasheghani-Farahani, S.; Vasheghani-Farahani, E. Theoretical description of hydrogel swelling: A review. Iran. Polym. J. 2010, 19, 375–398.

[28]

Bacha, A. U. R.; Cheng, H. Y.; Han, J.; Nabi, I.; Li, K. J.; Wang, T.; Yang, Y.; Ajmal, S.; Liu, Y. Y.; Zhang, L. W. Significantly accelerated PEC degradation of organic pollutant with addition of sulfite and mechanism study. Appl. Catal. B Environ. 2019, 248, 441–449.

[29]

Sun, S. F.; Pang, S. Y.; Jiang, J.; Ma, J.; Huang, Z. S.; Zhang, J. M.; Liu, Y. L.; Xu, C. B.; Liu, Q. L.; Yuan, Y. X. The combination of ferrate(VI) and sulfite as a novel advanced oxidation process for enhanced degradation of organic contaminants. Chem. Eng. J. 2018, 333, 11–19.

[30]

Luo, T.; Yuan, Y. N.; Zhou, D. N.; Luo, L. T.; Li, J. J.; Wu, F. The catalytic role of nascent Cu(OH)2 particles in the sulfite-induced oxidation of organic contaminants. Chem. Eng. J. 2019, 363, 329–336.

[31]

Zhang, C. X.; Tang, M.; Wang, J. W.; Liao, X. P.; Wang, Y. X.; Huang, C. S. Mechanisms of bisulfite/MnO2-accelerated transformation of methyl parathion. J. Hazard. Mater. 2019, 379, 120756.

[32]

Zhu, S. R.; Yang, J. N.; Liu, Y.; Gao, W.; Yi, X. L.; Zhou, H.; Wu, M. H. Synergetic interaction of lithium cobalt oxide with sulfite to accelerate the degradation of organic aqueous pollutants. Mater. Chem. Phys. 2020, 249, 123123.

[33]

Liu, B.; Li, C. M.; Zhang, G. Q.; Yao, X. S.; Chuang, S. S. C.; Li, Z. Oxygen vacancy promoting dimethyl carbonate synthesis from CO2 and methanol over Zr-doped CeO2 nanorods. ACS Catal. 2018, 8, 10446–10456.

[34]

Ning, C. P.; Gao, Y.; Zhang, H. J.; Yu, H. R.; Wang, L.; Geng, N. B.; Cao, R.; Chen, J. P. Molecular characterization of dissolved organic matters in winter atmospheric fine particulate matters (PM2.5) from a coastal city of northeast China. Sci. Total Environ. 2019, 689, 312–321.

[35]

Oyaizu, K.; Saito, K.; Tsuchida, E. Copper-catalyzed oxidative coupling of 2, 4, 6-trimethylphenol with oxygen. Chem. lett. 2000, 29, 1318–1319.

[36]

Li, K. T.; Liu, P. Y. Oxidation of 2,4,6-trimethylphenol using iron-based catalysts. Appl. Catal. A: Gen. 2004, 272, 167–174.

[37]

Chen, Y.; Zhang, X.; Feng, S. X. Contribution of the excited triplet state of humic acid and superoxide radical anion to generation and elimination of phenoxyl radical. Environ. Sci. Technol. 2018, 52, 8283–8291.

[38]

Feng, C.; Chen, Z. Y.; Jing, J. P.; Hou, J. The photocatalytic phenol degradation mechanism of Ag-modified ZnO nanorods. J. Mater. Chem. C 2020, 8, 3000–3009.

[39]

Kusiak-Nejman, E.; Wojnarowicz, J.; Morawski, A. W.; Narkiewicz, U.; Sobczak, K.; Gierlotka, S.; Lojkowski, W. Size-dependent effects of ZnO nanoparticles on the photocatalytic degradation of phenol in a water solution. Appl. Surf. Sci. 2021, 541, 148416.

[40]

Furman, O. S.; Teel, A. L.; Watts, R. J. Mechanism of base activation of persulfate. Environ. Sci. Technol. 2010, 44, 6423–6428.

[41]

Wang, Z. H.; Yuan, R. X.; Guo, Y. G.; Xu, L.; Liu, J. S. Effects of chloride ions on bleaching of azo dyes by Co2+/oxone regent: Kinetic analysis. J. Hazard. Mater. 2011, 190, 1083–1087.

[42]

Bennedsen, L. R.; Muff, J.; Søgaard, E. G. Influence of chloride and carbonates on the reactivity of activated persulfate. Chemosphere 2012, 86, 1092–1097.

[43]

Hu, J.; Dong, H. Y.; Qu, J. H.; Qiang, Z. M. Enhanced degradation of iopamidol by peroxymonosulfate catalyzed by two pipe corrosion products (CuO and δ-MnO2). Water Res. 2017, 112, 1–8.

[44]

Wu, W. J.; Zhao, X. D.; Jing, G. H.; Zhou, Z. M. Efficient activation of sulfite autoxidation process with copper oxides for iohexol degradation under mild conditions. Sci. Total Environ. 2019, 695, 133836.

[45]

Nestle, N. F. E. I.; Kimmich, R. Concentration-dependent diffusion coefficients and sorption isotherms. Application to ion exchange processes as an example. J. Phys. Chem. 1996, 100, 12569–12573.

[46]

Shen, J. L.; Zhou, Y. M.; Li, S. S.; Gu, P. K.; Xue, G. X. Hydrogel-coated Fe3O4 nanoparticles as an efficient heterogeneous Fenton catalyst for degradation of phenol. J. Mater. Sci. 2019, 54, 10684–10694.

[47]

Souza, J. F.; Costa, G. P.; Luque, R.; Alves, D.; Fajardo, A. R. Polysaccharide-based superporous hydrogel embedded with copper nanoparticles: A green and versatile catalyst for the synthesis of 1, 2, 3-triazoles. Catal. Sci. Technol. 2019, 9, 136–145.

File
12274_2023_6122_MOESM1_ESM.pdf (2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 14 February 2023
Revised: 16 May 2023
Accepted: 22 August 2023
Published: 12 September 2023
Issue date: October 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the Natural Science Foundation of Shandong Province (No. ZR2017LB028), the Key Research and Development Program of Shandong Province (Nos. 2018GSF118032 and 2022CXGC020415), and the Fundamental Research Funds for the Central Universities in China (No. 18CX02125A). Y. X. L. is grateful for the Research Subsidy Funds of Marine Science Research Institute of Shandong Province. X. W. C. is grateful for Ministry of Science, Innovation and Universities of Spain with project reference number of PID2020-113809RB-C33 and by Junta de Andalucía (Spain) with reference number of PY18-2727.

Return