Journal Home > Volume 17 , Issue 3

The accelerated arriving of 5G era has brought a new round of intelligent transformation which will completely emancipate smart terminal devices. While the subsequent deleterious effect of electromagnetic wave on electronic devices is increasingly serious, driving the growth of next-generation electromagnetic wave absorbents. As a tactful combination of components and structures, three-dimensional (3D) macroscopic absorbents with fascinating synergy afford exceptional electromagnetic wave absorption, and tremendous efforts have been devoted to this investigation. However, in terms of macroscopic absorbents and their synergistic effect, few reviews are proposed to comb the latest achievements and detailed synergy. This review article focuses on the synergistic effect of macro-architectured absorbents mainly including structure-induced synergy, structure-components synergy, and multiple-components induced synergy. And then the potential construction principles and strategies of macroscopic absorbents are combed. Significantly, the key information for structures and components manipulation including nano-micro design and components regulation is further dissected by critically selected cutting-edge 3D macroscopic absorbents. Moreover, a brief summary of multifunctional electromagnetic wave absorbents (EWAs)-based macroscopic structures is presented. Finally, the development prospects and challenges of these materials are discussed.


menu
Abstract
Full text
Outline
About this article

Three-dimensional macroscopic absorbents: From synergistic effects to advanced multifunctionalities

Show Author's information Shijie Zhang1Di Lan2Xingliang Chen3Yueyuan Gu4Junwen Ren5( )Suxuan Du1Shichang Cai1Xiaomiao Zhao1Zhiwei Zhao1( )Guanglei Wu6,7( )
School of Material Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
School of Materials Science and Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing University, Shaoxing 312000, China
School of Resources Environment and Safety Engineering, University of South China, Hengyang 421001, China
College of Electrical Engineering, Sichuan University, Chengdu 610065, China
Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, School of Electrical & Electronic Engineering, Harbin University of Science and Technology, Harbin 150080, China

Abstract

The accelerated arriving of 5G era has brought a new round of intelligent transformation which will completely emancipate smart terminal devices. While the subsequent deleterious effect of electromagnetic wave on electronic devices is increasingly serious, driving the growth of next-generation electromagnetic wave absorbents. As a tactful combination of components and structures, three-dimensional (3D) macroscopic absorbents with fascinating synergy afford exceptional electromagnetic wave absorption, and tremendous efforts have been devoted to this investigation. However, in terms of macroscopic absorbents and their synergistic effect, few reviews are proposed to comb the latest achievements and detailed synergy. This review article focuses on the synergistic effect of macro-architectured absorbents mainly including structure-induced synergy, structure-components synergy, and multiple-components induced synergy. And then the potential construction principles and strategies of macroscopic absorbents are combed. Significantly, the key information for structures and components manipulation including nano-micro design and components regulation is further dissected by critically selected cutting-edge 3D macroscopic absorbents. Moreover, a brief summary of multifunctional electromagnetic wave absorbents (EWAs)-based macroscopic structures is presented. Finally, the development prospects and challenges of these materials are discussed.

Keywords: multifunction, synergistic effect, electromagnetic wave absorption, absorption mechanism, three-dimensional (3D) structures

References(364)

[1]

Ma, Z. L.; Xiang, X. L.; Shao, L.; Zhang, Y. L.; Gu, J. W. Multifunctional wearable silver nanowire decorated leather nanocomposites for joule heating, electromagnetic interference shielding and piezoresistive sensing. Angew Chem., Int. Ed. 2022, 61, e202200705.

[2]
Hou, T. Q.; Wang, J. W.; Zheng, T. T.; Liu, Y.; Wu, G. L.; Yin, P. F. Anion exchange of metal particles on carbon-based skeletons for promoting dielectric equilibrium and high-efficiency electromagnetic wave absorption. Small, in press, https://doi.org/10.1002/smll.202303463.
DOI
[3]

Lv, H. L.; Yao, Y. X.; Li, S. C.; Wu, G. L.; Zhao, B.; Zhou, X. D.; Dupont, R. L.; Kara, U. I.; Zhou, Y. M.; Xi, S. B. et al. Staggered circular nanoporous graphene converts electromagnetic waves into electricity. Nat. Commun. 2023, 14, 1982.

[4]

Lv, H. L.; Yang, Z. H.; Pan, H. G.; Wu, R. B. Electromagnetic absorption materials: Current progress and new frontiers. Prog. Mater. Sci. 2022, 127, 100946.

[5]

Cao, M. S.; Wang, X. X.; Zhang, M.; Cao, W. Q.; Fang, X. Y.; Yuan, J. Variable-temperature electron transport and dipole polarization turning flexible multifunctional microsensor beyond electrical and optical energy. Adv. Mater. 2020, 32, 1907156.

[6]

Shu, J. C.; Cao, M. S.; Zhang, M.; Wang, X. X.; Cao, W. Q.; Fang, X. Y.; Cao, M. Q. Molecular patching engineering to drive energy conversion as efficient and environment-friendly cell toward wireless power transmission. Adv. Funct. Mater. 2020, 30, 1908299.

[7]

Qiao, Y. Q.; Liu, X. M.; Li, B.; Han, Y.; Zheng, Y. F.; Yeung, K. W. K.; Li, C. Y.; Cui, Z. D.; Liang, Y. Q.; Li, Z. Y. et al. Treatment of MRSA-infected osteomyelitis using bacterial capturing, magnetically targeted composites with microwave-assisted bacterial killing. Nat. Commun. 2020, 11, 4446.

[8]

Zhang, H. B.; Cheng, J. Y.; Wang, H. H.; Huang, Z. H.; Zheng, Q. B.; Zheng, G. P.; Zhang, D. Q.; Che, R. C.; Cao, M. S. Initiating VB-group laminated NbS2 electromagnetic wave absorber toward superior absorption bandwidth as large as 6.48 GHz through phase engineering modulation. Adv. Funct. Mater. 2022, 32, 2108194.

[9]

Liu, P. B.; Gao, S.; Zhang, G. Z.; Huang, Y.; You, W. B.; Che, R. C. Hollow Engineering to Co@N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption. Adv. Funct. Mater. 2021, 31, 2102812.

[10]

Li, C. P.; Li, D.; Zhang, L.; Zhang, Y. H.; Zhang, L.; Gong, C. H.; Zhang, J. W. Boosted microwave absorption performance of transition metal doped TiN fibers at elevated temperature. Nano Res. 2023, 16, 3570–3579.

[11]

Guo, Y. Q.; Ruan, K. P.; Wang, G. S.; Gu, J. W. Advances and mechanisms in polymer composites toward thermal conduction and electromagnetic wave absorption. Sci. Bull. 2023, 68, 1195–1212.

[12]

Zhang, Y. L.; Ruan, K. P.; Zhou, K.; Gu, J. W. Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 2023, 35, 2211642.

[13]

Ly, L.; Liu, J. R.; Liu, H.; Liu, C. T.; Lu, Y.; Sun, K.; Fan, R. H.; Wang, N.; Lu, N.; Guo, Z. H. et al. An overview of electrically conductive polymer nanocomposites toward electromagnetic interference shielding. Eng. Sci. 2018, 2, 26–42.

[14]
Zhou, J. X.; Lan, D.; Zhang, F.; Cheng, Y.; Jia, Z.; Wu, G.; Yin, P. Self-assembled MoS2 cladding for corrosion resistant and frequency-modulated electromagnetic wave absorption materials from X-band to Ku-band. Small, in press, https://doi.org/10.1002/smll.202304932.
DOI
[15]

Wu, Z. C.; Cheng, H. W.; Jin, C.; Yang, B. T.; Xu, C. Y.; Pei, K.; Zhang, H. B.; Yang, Z. Q.; Che, R. C. Dimensional design and core–shell engineering of nanomaterials for electromagnetic wave absorption. Adv. Mater. 2022, 34, 2107538.

[16]

Lv, H. L.; Yang, Z. H.; Xu, H. B.; Wang, L. Y.; Wu, R. B. An electrical switch-driven flexible electromagnetic absorber. Adv. Funct. Mater. 2020, 30, 1907251.

[17]

Lv, H. L.; Yang, Z. H.; Liu, B.; Wu, G. L.; Lou, Z. C.; Fei, B.; Wu, R. B. A flexible electromagnetic wave-electricity harvester. Nat. Commun. 2021, 12, 834.

[18]

Iqbal, A.; Shahzad, F.; Hantanasirisakul, K.; Kim, M. K.; Kwon, J.; Hong, J.; Kim, H.; Kim, D.; Gogotsi, Y.; Koo, C. M. Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene). Science 2020, 369, 446–450.

[19]

Liu, Y.; Zhou, X. F.; Jia, Z. R.; Wu, H. J.; Wu, G. L. Oxygen vacancy-induced dielectric polarization prevails in the electromagnetic wave-absorbing mechanism for mn-based MOFs-derived composites. Adv. Funct. Mater. 2022, 32, 2204499.

[20]

Zhang, Y. C.; Gao, S. T.; Xia, B. L.; He, J.; Wei, F.; Zhang, X. Z. Coal gasification fine slag doped with Fe3O4: High-performance electromagnetic-wave absorbers. J. Magn. Magn. Mater. 2023, 580, 170916.

[21]

Li, M. K.; Sun, Y. Y.; Feng, D. Y.; Ruan, K. P.; Liu, X.; Gu, J. W. Thermally conductive polyvinyl alcohol composite films via introducing hetero-structured MXene@silver fillers. Nano Res. 2023, 16, 7820–7828.

[22]

She, L. N.; Zhao, B.; Yuan, M. Y.; Chen, J.; Fan, B. B.; Pan, H. G.; Che, R. C. Joule-heated flexible carbon composite towards the boosted electromagnetic wave shielding properties. Adv. Compos. Hybrid Mater. 2022, 5, 3012–3022.

[23]

Gao, S. T.; Zhang, Y. C.; Zhang, X. Z.; Jiao, F. C.; Liu, T.; Li, H. X.; Bai, Y. H.; Wu, C. L. Synthesis of hollow ZnFe2O4/residual carbon from coal gasification fine slag composites for multiband electromagnetic wave absorption. J. Alloys Compd. 2023, 952, 170016.

[24]

Wu, Y.; Chen, L.; Han, Y. X.; Liu, P. B.; Xu, H. H.; Yu, G. Z.; Wang, Y. Y.; Wen, T.; Ju, W. B.; Gu, J. W. Hierarchical construction of CNT networks in aramid papers for high-efficiency microwave absorption. Nano Res. 2023, 16, 7801–7809.

[25]

Gao, S. T.; Zhang, Y. C.; He, J.; Zhang, X. Z.; Jiao, F. C.; Liu, T.; Li, H. X.; Wu, C. L.; Ma, M. L. Coal gasification fine slag residual carbon decorated with hollow-spherical Fe3O4 nanoparticles for microwave absorption. Ceram. Int. 2023, 49, 17554–17565.

[26]

Wu, X. L.; Liu, K.; Ding, J. W.; Zheng, B. J.; Gao, F.; Qian, K.; Ma, Y. Y.; Feng, Y. M.; Chen, L.; Zhang, P. et al. Construction of Ni-based alloys decorated sucrose-derived carbon hybrid towards: Effective microwave absorption application. Adv. Compos. Hybrid Mater. 2022, 5, 2260–2270.

[27]

Song, Q.; Ye, F.; Kong, L.; Shen, Q. L.; Han, L. Y.; Feng, L.; Yu, G. J.; Pan, Y. A.; Li, H. J. Graphene and MXene nanomaterials: Toward high-performance electromagnetic wave absorption in gigahertz band range. Adv. Funct. Mater. 2020, 30, 2000475.

[28]

Zhang, S. J.; Cheng, B.; Gao, Z. G.; Lan, D.; Zhao, Z. W.; Wei, F. C.; Zhu, Q. S.; Lu, X. P.; Wu, G. L. Two-dimensional nanomaterials for high-efficiency electromagnetic wave absorption: An overview of recent advances and prospects. J. Alloys Compd. 2022, 893, 162343.

[29]

Huang, Q. Q.; Wang, G. H.; Zhou, M.; Zheng, J.; Tang, S. L.; Ji, G. B. Metamaterial electromagnetic wave absorbers and devices: Design and 3D microarchitecture. J. Mater. Sci. Technol. 2022, 108, 90–101.

[30]

He, P.; Cao, M. S.; Cao, W. Q.; Yuan, J. Developing MXenes from wireless communication to electromagnetic attenuation. Nano-Micro Lett. 2021, 13, 115.

[31]

Wang, X. X.; Zhang, M.; Shu, J. C.; Wen, B.; Cao, W. Q.; Cao, M. S. Thermally-tailoring dielectric “genes” in graphene-based heterostructure to manipulate electromagnetic response. Carbon 2021, 184, 136–145.

[32]

Cao, M. S.; Han, C.; Wang, X. X.; Zhang, M.; Zhang, Y. L.; Shu, J. C.; Yang, H. J.; Fang, X. Y.; Yuan, J. Graphene nanohybrids: Excellent electromagnetic properties for the absorbing and shielding of electromagnetic waves. J. Mater. Chem. C. 2018, 6, 4586–4602.

[33]

Fu, X. Y.; Zheng, Q.; Li, L.; Cao, M. S. Vertically implanting MoSe2 nanosheets on the RGO sheets towards excellent multi-band microwave absorption. Carbon 2022, 197, 324–333.

[34]

Ning, M. Q.; Lu, M. M.; Li, J. B.; Chen, Z.; Dou, Y. K.; Wang, C. Z.; Rehman, F.; Cao, M. S.; Jin, H. B. Two-dimensional nanosheets of MoS2: A promising material with high dielectric properties and microwave absorption performance. Nanoscale 2015, 7, 15734–15740.

[35]

Zhang, S. J.; Pei, Y. X.; Zhao, Z. W.; Guan, C. L.; Wu, G. L. Simultaneous manipulation of polarization relaxation and conductivity toward self-repairing reduced graphene oxide based ternary hybrids for efficient electromagnetic wave absorption. J. Colloid Interf. Sci. 2023, 630, 453–464.

[36]

Chang, M.; Li, Q. Y.; Jia, Z. R.; Zhao, W. R.; Wu, G. L. Tuning microwave absorption properties of Ti3C2Tx MXene-based materials: Component optimization and structure modulation. J. Mater. Sci. Technol. 2023, 148, 150–170.

[37]

Wang, B. J.; Huang, F. Z.; Wu, H.; Xu, Z. J.; Wang, S. P.; Han, Q. H.; Liu, F. H.; Li, S. K.; Zhang, H. Enhanced interfacial polarization of defective porous carbon confined CoP nanoparticles forming Mott–Schottky heterojunction for efficient electromagnetic wave absorption. Nano Res. 2023, 16, 4160–4169.

[38]

Gao, Z. G.; Xu, B. H.; Ma, M. L.; Feng, A. L.; Zhang, Y.; Liu, X. H.; Jia, Z. R.; Wu, G. L. Electrostatic self-assembly synthesis of ZnFe2O4 quantum dots (ZnFe2O4@C) and electromagnetic microwave absorption. Compos. Part B: Eng. 2019, 179, 107417.

[39]

Chai, L.; Wang, Y. Q.; Jia, Z. R.; Liu, Z. X.; Zhou, S. Y.; He, Q. C.; Du, H. Y.; Wu, G. L. Tunable defects and interfaces of hierarchical dandelion-like NiCo2O4 via Ostwald ripening process for high-efficiency electromagnetic wave absorption. Chem. Eng. J. 2022, 429, 132547.

[40]

Zheng, T. T.; Jia, Z. R.; Zhan, Q. Q.; Ling, M. B.; Su, Y. D.; Wang, B. B.; Zhang, C. H.; Wu, G. L. Self-assembled multi-layered hexagonal-like MWCNTs/MnF2/CoO nanocomposite with enhanced electromagnetic wave absorption. Carbon 2022, 186, 262–272.

[41]

Liang, L. L.; Gu, W. H.; Wu, Y.; Zhang, B. S.; Wang, G. H.; Yang, Y.; Ji, G. B. Heterointerface engineering in electromagnetic absorbers: New insights and opportunities. Adv. Mater. 2022, 34, 2106195.

[42]

Wang, G. H.; Ong, S. J. H.; Zhao, Y.; Xu, Z. J.; Ji, G. B. Integrated multifunctional macrostructures for electromagnetic wave absorption and shielding. J. Mater. Chem. A 2020, 8, 24368–24387.

[43]

Liu, J. K.; Jia, Z. R.; Zhou, W. H.; Liu, X. H.; Zhang, C. H.; Xu, B. H.; Wu, G. L. Self-assembled MoS2/magnetic ferrite CuFe2O4 nanocomposite for high-efficiency microwave absorption. Chem. Eng. J. 2022, 429, 132253.

[44]

Jiang, Y. Q.; Guo, F.; Liu, Y. J.; Xu, Z.; Gao, C. Three-dimensional printing of graphene-based materials for energy storage and conversion. SusMat 2021, 1, 304–323.

[45]

Zhang, Z. S.; Wang, C. H.; Yao, Y. Y.; Zhang, H.; Na, J.; Zhou, Y. J.; Zhu, Z. G.; Qi, J. W.; Eguchi, M.; Yamauchi, Y. et al. Modular assembly of MOF-derived carbon nanofibers into macroarchitectures for water treatment. Chem. Sci. 2022, 13, 9159–9164.

[46]

Cai, C. Y.; Wei, Z. C.; Deng, L. X.; Fu, Y. Temperature-invariant superelastic multifunctional MXene aerogels for high-performance photoresponsive supercapacitors and wearable strain sensors. ACS Appl. Mater. Interfaces 2021, 13, 54170–54184.

[47]

Wang, L.; Yu, X. F.; Li, X.; Zhang, J.; Wang, M.; Che, R. C. MOF-derived yolk–shell Ni@C@ZnO schottky contact structure for enhanced microwave absorption. Chem. Eng. J. 2020, 383, 123099.

[48]

Wang, L.; Li, X.; Li, Q. Q.; Yu, X. F.; Zhao, Y. H.; Zhang, J.; Wang, M.; Che, R. C. Oriented polarization tuning broadband absorption from flexible hierarchical ZnO arrays vertically supported on carbon cloth. Small 2019, 15, 1900900.

[49]

Wang, J. W.; Jia, Z. R.; Liu, X. H.; Dou, J. L.; Xu, B. H.; Wang, B. B.; Wu, G. L. Construction of 1D heterostructure NiCo@C/ZnO nanorod with enhanced microwave absorption. Nano-Micro Lett. 2021, 13, 175.

[50]

Wang, J. Y.; Wang, Y. Q.; Jiang, R.; Chen, S. S.; He, Q. C.; Wu, G. L. Self-assembly of submillimeter porous structure on metal-organic framework to construct heterogeneous interface for controlling microwave absorption. Mater. Today Phys. 2023, 35, 101126.

[51]

Wang, C. X.; Jia, Z. R.; He, S. Q.; Zhou, J. X.; Zhang, S.; Tian, M. L.; Wang, B. B.; Wu, G. L. Metal-organic framework-derived CoSn/NC nanocubes as absorbers for electromagnetic wave attenuation. J. Mater. Sci. Technol. 2022, 108, 236–243.

[52]

Chang, M.; Jia, Z. R.; He, S. Q.; Zhou, J. X.; Zhang, S.; Tian, M. L.; Wang, B. B.; Wu, G. L. Two-dimensional interface engineering of NiS/MoS2/Ti3C2Tx heterostructures for promoting electromagnetic wave absorption capability. Compos. Part B: Eng. 2021, 225, 109306.

[53]

Tang, T.; Ding, L.; Yao, Z. C.; Pan, H. R.; Hu, J. S.; Wan, L. J. Synergistic electrocatalysts for alkaline hydrogen oxidation and evolution reactions. Adv. Funct. Mater. 2022, 32, 2107479.

[54]

Hong, J. N.; Xu, C. Y.; Deng, B. W.; Gao, Y.; Zhu, X.; Zhang, X. H.; Zhang, Y. W. Photothermal chemistry based on solar energy: From synergistic effects to practical applications. Adv. Sci. 2022, 9, 2103926.

[55]

Zhang, J.; Lin, Y. D.; Lin, Z.; Wei, Q.; Qian, J. Q.; Ruan, R. J.; Jiang, X. C.; Hou, L. X.; Song, J. B.; Ding, J. X. et al. Stimuli-responsive nanoparticles for controlled drug delivery in synergistic cancer immunotherapy. Adv. Sci. 2022, 9, 2103444.

[56]

Ying, Y. R.; Luo, X.; Qiao, J. L.; Huang, H. T. “More is different:” Synergistic effect and structural engineering in double-atom catalysts. Adv. Funct. Mater. 2021, 31, 2007423.

[57]

Zhang, S. J.; Jia, Z. R.; Cheng, B.; Zhao, Z. W.; Lu, F.; Wu, G. L. Recent progress of perovskite oxides and their hybrids for electromagnetic wave absorption: A mini-review. Adv. Compos. Hybrid Mater. 2022, 5, 2440–2460.

[58]

Gu, H. L.; Huang, J.; Li, N.; Yang, H.; Chen, G.; Dong, C. J.; Gong, C. H.; Guan, H. T. Reactive MnO2 template-assisted synthesis of double-shelled PPy hollow nanotubes to boost microwave absorption. J. Mater. Sci. Technol. 2023, 146, 145–153.

[59]

Ren, L. G.; Wang, Y. Q.; Zhang, X.; He, Q. C.; Wu, G. L. Efficient microwave absorption achieved through in situ construction of core–shell CoFe2O4@mesoporous carbon hollow spheres. Inter. J. Miner. Metall. Mater. 2023, 30, 504–514.

[60]

Cheng, H. R.; Lu, Z. L.; Gao, Q. S.; Zuo, Y.; Liu, X. H.; Guo, Z. H.; Liu, C. T.; Shen, C. Y. PVDF-Ni/PE-CNTs composite foams with Co-continuous structure for electromagnetic interference shielding and photo-electro-thermal properties. Eng. Sci. 2021, 16, 331–340.

[61]

Qin, M.; Zhang, L. M.; Wu, H. J. Dielectric loss mechanism in electromagnetic wave absorbing materials. Adv. Sci. 2022, 9, 2105553.

[62]

Shi, Y. P.; Li, D.; Si, H. X.; Jiang, Z. Y.; Li, M. Y.; Gong, C. H. TiN/BN composite with excellent thermal stability for efficiency microwave absorption in wide temperature spectrum. J. Mater. Sci. Technol. 2022, 130, 249–255.

[63]

Zhou, Z. H.; Zhu, Q. Q.; Liu, Y.; Zhang, Y.; Jia, Z. R.; Wu, G. L. Construction of self-assembly based tunable absorber: Lightweight, hydrophobic and self-cleaning properties. Nano-Micro Lett. 2023, 15, 137.

[64]

Liu, C. F.; Li, M. Q.; Li, P. X.; Bai, Y.; Pang, J.; Fan, L.; Tian, W. Ruthenium(II)-coordinated supramolecular metallodrug complex realizing oxygen self-supply in situ for overcoming hypoxic tumors. Adv. Funct. Mater. 2021, 31, 2105837.

[65]

Liu, C. F.; Li, M. Q.; Sun, J. X.; Li, P. X.; Bai, Y.; Zhang, J. A.; Qian, Y. C.; Shi, M. H.; He, J.; Huo, H. B. et al. Cation-π interaction-mediated tumour drug delivery for deep intratumoral penetration and treatment. Adv. Funct. Mater. 2022, 32, 2205043.

[66]

Liu, C. F.; Liu, C. P.; Bai, Y.; Wang, J. X.; Tian, W. Drug self-delivery systems: Molecule Design, construction strategy and biological application. Adv. Healthc. Mater. 2023, 12, 2202769.

[67]

Jia, Z. R.; Kong, M. Y.; Yu, B. W.; Ma, Y. Z.; Pan, J. Y.; Wu, G. L. Tunable Co/ZnO/C@MWCNTs based on carbon nanotube-coated MOF with excellent microwave absorption properties. J. Mater. Sci. Technol. 2022, 127, 153–163.

[68]

Nasrin, K.; Sudharshan, V.; Subramani, K.; Sathish, M. Insights into 2D/2D MXene heterostructures for improved synergy in structure toward next-generation supercapacitors: A review. Adv. Funct. Mater. 2022, 32, 2110267.

[69]

Liu, Z. X.; Wang, Y. Q.; Jia, Z. R.; Ling, M. B.; Yan, Y. L.; Chai, L.; Du, H. Y.; Wu, G. L. In situ constructed honeycomb-like NiFe2O4@Ni@C composites as efficient electromagnetic wave absorber. J. Colloid Interf. Sci. 2022, 608, 2849–2859.

[70]

Kong, M. Y.; Liu, X. H.; Jia, Z. R.; Wang, B. B.; Wu, X. M.; Wu, G. L. Porous magnetic carbon CoFe alloys@ZnO@C composites based on Zn/Co-based bimetallic MOF with efficient electromagnetic wave absorption. J. Colloid Interf. Sci. 2021, 604, 39–51.

[71]

Liu, Y.; Liu, X. H.; E, X. Y.; Wang, B. B.; Jia, Z. R.; Chi, Q. G.; Wu, G. L. Synthesis of MnxOy@C hybrid composites for optimal electromagnetic wave absorption capacity and wideband absorption. J. Mater. Sci. Technol. 2022, 103, 157–164.

[72]

Gao, X. R.; Jia, Z. R.; Wang, B. B.; Wu, X. M.; Sun, T.; Liu, X. H.; Chi, Q. G.; Wu, G. L. Synthesis of NiCo-LDH/MXene hybrids with abundant heterojunction surfaces as a lightweight electromagnetic wave absorber. Chem. Eng. J. 2021, 419, 130019.

[73]

Xu, X. F.; Shi, S. H.; Tang, Y. L.; Wang, G. Z.; Zhou, M. F.; Zhao, G. Q.; Zhou, X. C.; Lin, S. W.; Meng, F. B. Growth of NiAl-layered double hydroxide on graphene toward excellent anticorrosive microwave absorption application. Adv. Sci. 2021, 8, 2002658.

[74]

Sun, L. F.; Jia, Z. R.; Xu, S.; Ling, M. B.; Hu, D. Q.; Liu, X. H.; Zhang, C. H.; Wu, G. L. Synthesis of NiCo2-0.5xCr2O3@C nanoparticles based on hydroxide with the heterogeneous interface for excellent electromagnetic wave absorption properties. Compos. Commun. 2022, 29, 100993.

[75]

Liang, C. Y.; Wang, Z. F.; Wu, L. N.; Zhang, X. C.; Wang, H.; Wang, Z. J. Light and strong hierarchical porous sic foam for efficient electromagnetic interference shielding and thermal insulation at elevated temperatures. ACS Appl. Mater. Interfaces 2017, 9, 29950–29957.

[76]

Ren, L. G.; Wang, Y. Q.; Jia, Z. R.; He, Q. C.; Wu, G. L. Controlling the heterogeneous interfaces of Fe3O4/N-doped porous carbon via facile swelling for enhancing the electromagnetic wave absorption. Compos. Commun. 2022, 29, 101052.

[77]

Chang, Q.; Liang, H. S.; Shi, B.; Wu, H. J. Microstructure induced dielectric loss in lightweight Fe3O4 foam for electromagnetic wave absorption. iScience 2022, 25, 103925.

[78]

Zhou, Z. X.; Yang, X. Y.; Zhang, D. Q.; Zhang, H. B.; Cheng, J. Y.; Xiong, Y. F.; Huang, Z. H.; Wang, H. H.; Zhang, P.; Zheng, G. P. et al. Achieving superior GHz-absorption performance in VB-group laminated VS2 microwave absorber with dielectric and magnetic synergy effects. Adv. Compos. Hybrid Mater. 2022, 5, 2317–2327.

[79]

Wu, Y. H.; Wang, G. D.; Yuan, X. X.; Fang, G.; Li, P.; Ji, G. B. Heterointerface engineering in hierarchical assembly of the Co/Co(OH)2@carbon nanosheets composites for wideband microwave absorption. Nano Res. 2023, 16, 2611–2621.

[80]

Sun, X. X.; Li, Y. B.; Huang, Y. X.; Cheng, Y. J.; Wang, S. S.; Yin, W. L. Achieving super broadband electromagnetic absorption by optimizing impedance match of rGO sponge metamaterials. Adv. Funct. Mater. 2022, 32, 2107508.

[81]

Huang, X. G.; Yu, G. Y.; Zhang, Y. K.; Zhang, M. J.; Shao, G. F. Design of cellular structure of graphene aerogels for electromagnetic wave absorption. Chem. Eng. J. 2021, 426, 131894.

[82]

Sun, C. H.; Jia, Z. R.; Xu, S.; Hu, D. Q.; Zhang, C. H.; Wu, G. L. Synergistic regulation of dielectric–magnetic dual-loss and triple heterointerface polarization via magnetic MXene for high-performance electromagnetic wave absorption. J. Mater. Sci. Technol. 2022, 113, 128–137.

[83]

Liu, N.; Zhang, X. Y.; Dou, Y. Y.; Yan, X. F.; Yu, L. M. Design of carbon aerogels with variable surface morphology for electromagnetic wave absorption. Carbon 2022, 200, 271–280.

[84]

Pan, Y. L.; Zhu, Q. Q.; Zhu, J. H.; Cheng, Y. H.; Yu, B. W.; Jia, Z. R.; Wu, G. L. Macroscopic electromagnetic synergy network-enhanced N-doped Ni/C gigahertz microwave absorber with regulable microtopography. Nano Res. 2023, 16, 10666–10677.

[85]

Kong, L.; Yin, X. W.; Han, M. K.; Yuan, X. Y.; Hou, Z. X.; Ye, F.; Zhang, L. T.; Cheng, L. F.; Xu, Z. W.; Huang, J. F. Macroscopic bioinspired graphene sponge modified with in-situ grown carbon nanowires and its electromagnetic properties. Carbon 2017, 111, 94–102.

[86]

Zhang, Q. C.; Du, Z. J.; Hou, M. M.; Ding, Z. Z.; Huang, X. Z.; Chen, A. L.; Ma, Y. T.; Lu, S. J.; Tang, X. Z. Ultralight, anisotropic, and self-supported graphene/MWCNT aerogel with high-performance microwave absorption. Carbon 2022, 188, 442–452.

[87]

Li, M. M.; Han, F. Y.; Jiang, S.; Zhang, M. L.; Xu, Q. Y.; Zhu, J. H.; Ge, A. X.; Liu, L. F. Lightweight cellulose nanofibril/reduced graphene oxide aerogels with unidirectional pores for efficient electromagnetic interference shielding. Adv. Mater. Interfaces 2021, 8, 2101437.

[88]

Hou, T. Q.; Jia, Z. R.; Wang, B. B.; Li, H. B.; Liu, X. H.; Chi, Q. G.; Wu, G. L. Metal-organic framework-derived NiSe2-CoSe2@C/Ti3C2Tx composites as electromagnetic wave absorbers. Chem. Eng. J. 2021, 422, 130079.

[89]

Zhou, X. F.; Jia, Z. R.; Zhang, X. X.; Wang, B. B.; Liu, X. H.; Xu, B. H.; Bi, L.; Wu, G. L. Electromagnetic wave absorption performance of NiCo2X4 (X = O, S, Se, Te) spinel structures. Chem. Eng. J. 2021, 420, 129907.

[90]

Hou, T. Q.; Jia, Z. R.; Dong, Y. H.; Liu, X. H.; Wu, G. L. Layered 3D structure derived from MXene/magnetic carbon nanotubes for ultra-broadband electromagnetic wave absorption. Chem. Eng. J. 2022, 431, 133919.

[91]

Zhang, X. Y.; Jia, Z. R.; Zhang, F.; Xia, Z. H.; Zou, J. X.; Gu, Z.; Wu, G. L. MOF-derived NiFe2S4/Porous carbon composites as electromagnetic wave absorber. J. Colloid Interf. Sci. 2022, 610, 610–620.

[92]

Che, R. C.; Peng, L. M.; Duan, X. F.; Chen, Q.; Liang, X. L. Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv. Mater. 2004, 16, 401–405.

[93]

Zhang, S. J.; Li, J. Y.; Jin, X. T.; Wu, G. L. Current advances of transition metal dichalcogenides in electromagnetic wave absorption: A brief review. Int. J. Miner. Metall. Mater. 2023, 30, 428–445.

[94]

Zhang, S. J.; Cheng, B.; Jia, Z. R.; Zhao, Z. W.; Jin, X. T.; Zhao, Z. H.; Wu, G. L. The art of framework construction: Hollow-structured materials toward high-efficiency electromagnetic wave absorption. Adv. Compos. Hybrid Mater. 2022, 5, 1658–1698.

[95]

Jiang, Z. Y.; Si, H. X.; Li, Y.; Li, D.; Chen, H. H.; Gong, C. H.; Zhang, J. W. Reduced graphene oxide@carbon sphere based metacomposites for temperature-insensitive and efficient microwave absorption. Nano Res. 2022, 15, 8546–8554.

[96]

Luo, J. H.; Feng, M. N.; Dai, Z. Y.; Jiang, C. Y.; Yao, W.; Zhai, N. X. MoS2 wrapped MOF-derived N-doped carbon nanocomposite with wideband electromagnetic wave absorption. Nano Res. 2022, 15, 5781–5789.

[97]

Zhang, H. X.; Jia, Z. R.; Wang, B. B.; Wu, X. M.; Sun, T.; Liu, X. H.; Bi, L.; Wu, G. L. Construction of remarkable electromagnetic wave absorber from heterogeneous structure of Co-CoFe2O4@mesoporous hollow carbon spheres. Chem. Eng. J. 2021, 421, 129960.

[98]

Hou, T. Q.; Jia, Z. R.; Wang, B. B.; Li, H. B.; Liu, X. H.; Bi, L.; Wu, G. L. MXene-based accordion 2D hybrid structure with Co9S8/C/Ti3C2Tx as efficient electromagnetic wave absorber. Chem. Eng. J. 2021, 414, 128875.

[99]

Wang, Z. C.; Wei, R. B.; Gu, J. W.; Liu, H.; Liu, C. T.; Luo, C. J.; Kong, J.; Shao, Q.; Wang, N.; Guo, Z. H. et al. Ultralight, highly compressible and fire-retardant graphene aerogel with self-adjustable electromagnetic wave absorption. Carbon 2018, 139, 1126–1135.

[100]

Deng, L. L.; Zhang, J. B.; Shu, R. W. Fabrication of three-dimensional nitrogen-doped reduced graphene oxide/tin oxide composite aerogels as high-performance electromagnetic wave absorbers. J. Colloid Interf. Sci. 2021, 602, 282–290.

[101]

Ma, J. N.; Liu, W.; Quan, B.; Liang, X. H.; Ji, G. B. Incorporation of the polarization point on the graphene aerogel to achieve strong dielectric loss behavior. J. Colloid Interf. Sci. 2017, 504, 479–484.

[102]

Geng, H. R.; Zhang, X.; Xie, W. H.; Zhao, P. F.; Wang, G. Z.; Liao, J. H.; Dong, L. J. Lightweight and broadband 2D MoS2 nanosheets/3D carbon nanofibers hybrid aerogel for high-efficiency microwave absorption. J. Colloid Interf. Sci. 2022, 609, 33–42.

[103]

Yang, J. J.; Wang, J. Q.; Li, H. Q.; Wu, Z.; Xing, Y. Q.; Chen, Y. F.; Liu, L. MoS2/MXene aerogel with conformal heterogeneous interfaces tailored by atomic layer deposition for tunable microwave absorption. Adv. Sci. 2022, 9, 2101988.

[104]

Jiang, Y.; Xie, X.; Chen, Y.; Liu, Y. J.; Yang, R.; Sui, G. X. Hierarchically structured cellulose aerogels with interconnected MXene networks and their enhanced microwave absorption properties. J. Mater. Chem. C 2018, 6, 8679–8687.

[105]

Zhang, S.; Jia, Z. R.; Zhang, Y.; Wu, G. L. Electrospun Fe0.64Ni0.36/MXene/CNFs nanofibrous membranes with multicomponent heterostructures as flexible electromagnetic wave absorbers. Nano Res. 2023, 16, 3395–3407.

[106]

Zhou, X. F.; Jia, Z. R.; Zhang, X. X.; Wang, B. B.; Wu, W.; Liu, X. H.; Xu, B. H.; Wu, G. L. Controllable synthesis of Ni/NiO@porous carbon hybrid composites towards remarkable electromagnetic wave absorption and wide absorption bandwidth. J. Mater. Sci. Technol. 2021, 87, 120–132.

[107]

Lv, H. P.; Wu, C.; Tang, J.; Du, H. F.; Qin, F. X.; Peng, H. X.; Yan, M. Two-dimensional SnO/SnO2 heterojunctions for electromagnetic wave absorption. Chem. Eng. J. 2021, 411, 128445.

[108]

Liu, B.; Li, J. H.; Wang, L. F.; Ren, J. H.; Xu, Y. F. Ultralight graphene aerogel enhanced with transformed micro-structure led by polypyrrole nano-rods and its improved microwave absorption properties. Compos. Part A: Appl. Sci. Manuf. 2017, 97, 141–150.

[109]

Zhang, Z. W.; Li, Z.; Xia, L.; Wang, R. F.; Cao, Y. S.; Cheng, Z.; Huang, Y. Much enhanced electromagnetic wave absorbing properties from the synergistic effect of graphene/γ-graphyne heterostructure in both gigahertz and terahertz band ranges. Nano Res. 2023, 16, 88–100.

[110]

Xu, Z. J.; He, M.; Zhou, Y. M.; Nie, S. X.; Wang, Y. J.; Huo, Y.; Kang, Y. F.; Wang, R. L.; Xu, R.; Peng, H. et al. Spider web-like carbonized bacterial cellulose/MoSe2 nanocomposite with enhanced microwave attenuation performance and tunable absorption bands. Nano Res. 2021, 14, 738–746.

[111]

Xiao, J. X.; Qi, X. S.; Gong, X.; Peng, Q.; Chen, Y. L.; Xie, R.; Zhong, W. Defect and interface engineering in core@shell structure hollow carbon@MoS2 nanocomposites for boosted microwave absorption performance. Nano Res. 2022, 15, 7778–7787.

[112]

Men, Q. Q.; Wang, S.; Yan, Z. K.; Zhao, B.; Guan, L.; Chen, G. Y.; Guo, X. Q.; Zhang, R.; Che, R. C. Iron-encapsulated CNTs on carbon fiber with high-performance EMI shielding and electrocatalytic activity. Adv. Compos. Hybrid Mater. 2022, 5, 2429–2439.

[113]

Wang, C. X.; Wang, B. B.; Cao, X.; Zhao, J. W.; Chen, L.; Shan, L. G.; Wang, H. N.; Wu, G. L. 3D flower-like Co-based oxide composites with excellent wideband electromagnetic microwave absorption. Compos. Part B: Eng. 2021, 205, 108529.

[114]

Chang, M.; Jia, Z. R.; Wu, G. L.; Yin, P. F. Multiple dimension-component designed Co/Co9S8/Ti3C2Tx MXene composite for enhanced microwave absorption. Appl. Phys. Lett. 2023, 122, 131901.

[115]

Dai, B.; Ma, Y.; Dong, F.; Yu, J.; Ma, M. L.; Thabet, H. K.; El-Bahy, S. M.; Ibrahim, M. M.; Huang, M. N.; Seok, I. et al. Overview of MXene and conducting polymer matrix composites for electromagnetic wave absorption. Adv. Compos. Hybrid Mater. 2022, 5, 704–754.

[116]

Yang, M. L.; Yuan, Y.; Li, Y.; Sun, X. X.; Wang, S. S.; Liang, L.; Ning, Y. H.; Li, J. J.; Yin, W. L.; Li, Y. B. Anisotropic electromagnetic absorption of aligned Ti3C2Tx MXene/gelatin nanocomposite aerogels. ACS Appl. Mater. Interfaces 2020, 12, 33128–33138.

[117]

Dai, Y.; Wu, X. Y.; Liu, Z. S.; Zhang, H. B.; Yu, Z. Z. Highly sensitive, robust and anisotropic MXene aerogels for efficient broadband microwave absorption. Compos. Part B: Eng. 2020, 200, 108263.

[118]

Cai, Z. X.; Su, L.; Wang, H. J.; Niu, M.; Tao, L. T.; Lu, D.; Xu, L.; Li, M. Z.; Gao, H. F. Alternating multilayered Si3N4/SiC aerogels for broadband and high-temperature electromagnetic wave absorption up to 1000 °C. ACS Appl. Mater. Interfaces 2021, 13, 16704–16712.

[119]

Ni, L.; Chen, S. K.; Jiang, X. Y.; Luo, Y. F.; Zou, H. W.; Liu, P. B. Anisotropic electromagnetic wave absorption performance of Polyimide/multi-walled carbon nanotubes composite aerogels with aligned slit-like channels structure. Compos. Part A: Appl. Sci. Manuf. 2022, 154, 106781.

[120]

Wang, J. W.; Wang, B. B.; Wang, Z.; Chen, L.; Gao, C. H.; Xu, B. H.; Jia, Z. R.; Wu, G. L. Synthesis of 3D flower-like ZnO/ZnCo2O4 composites with the heterogeneous interface for excellent electromagnetic wave absorption properties. J. Colloid Interf. Sci. 2021, 586, 479–490.

[121]

Zhang, F.; Cui, W.; Wang, B. B.; Xu, B. H.; Liu, X. H.; Liu, X. H.; Jia, Z. R.; Wu, G. L. Morphology-control synthesis of polyaniline decorative porous carbon with remarkable electromagnetic wave absorption capabilities. Compos. Part B: Eng. 2021, 204, 108491.

[122]

Zhang, F.; Jia, Z. R.; Wang, Z.; Zhang, C. H.; Wang, B. B.; Xu, B. H.; Liu, X. H.; Wu, G. L. Tailoring nanoparticles composites derived from metal-organic framework as electromagnetic wave absorber. Mater. Today Phys. 2021, 20, 100475.

[123]

Liu, Y.; Jia, Z. R.; Zhou, J. X.; Wu, G. L. Multi-hierarchy heterostructure assembling on MnO2 nanowires for optimized electromagnetic response. Mater. Today Phys. 2022, 28, 100845.

[124]

Ren, X. Y.; Gao, Z. G.; Wu, G. L. Tunable nano-effect of Cu clusters derived from MOF-on-MOF hybrids for electromagnetic wave absorption. Compos. Commun. 2022, 35, 101292.

[125]

Dong, Y. Y.; Zhu, X. J.; Pan, F.; Deng, B. W.; Liu, Z. C.; Zhang, X.; Huang, C.; Xiang, Z.; Lu, W. Mace-like carbon fiber/ZnO nanorod composite derived from Typha orientalis for lightweight and high-efficient electromagnetic wave absorber. Adv. Compos. Hybrid Mater. 2021, 4, 1002–1014.

[126]

Gao, T.; Rong, H. W.; Mahmoud, K. H.; Ruan, J. C.; El-Bahy, S. M.; Faheim, A. A.; Li, Y. X.; Huang, M. N.; Nassan, M. A.; Zhao, R. Z. Iron/silicon carbide composites with tunable high-frequency magnetic and dielectric properties for potential electromagnetic wave absorption. Adv. Compos. Hybrid Mater. 2022, 5, 1158–1167.

[127]

Zhang, H. X.; Shi, C.; Jia, Z. R.; Liu, X. H.; Xu, B. H.; Zhang, D. D.; Wu, G. L. FeNi nanoparticles embedded reduced graphene/nitrogen-doped carbon composites towards the ultra-wideband electromagnetic wave absorption. J. Colloid Interf. Sci. 2021, 584, 382–394.

[128]

Cao, W. Q.; Wang, X. X.; Yuan, J.; Wang, W. Z.; Cao, M. S. Temperature dependent microwave absorption of ultrathin graphene composites. J. Mater. Chem. C 2015, 3, 10017–10022.

[129]

Qian, X.; Zhang, Y. H.; Wu, Z. C.; Zhang, R. X.; Li, X. H.; Wang, M.; Che, R. C. Multi-path electron transfer in 1D double-shelled Sn@Mo2C/C tubes with enhanced dielectric loss for boosting microwave absorption performance. Small 2021, 17, 2100283.

[130]

Li, Q. Q.; Zhao, Y. H.; Wang, L.; Zhang, J.; Li, X.; Che, R. C. 3D conductive network wrapped CeO2−x yolk@shell hybrid microspheres for selective-frequency microwave absorption. Carbon 2020, 162, 86–94.

[131]

Zhang, S. J.; Gao, Z. G.; Sun, Z. B.; Cheng, B.; Zhao, Z. W.; Jia, Y. C.; Wu, G. L. Solid solution strategy for bimetallic metal-polyphenolic networks deriving electromagnetic wave absorbers with regulated heterointerfaces. Appl. Surf. Sci. 2023, 611, 155707.

[132]

Gao, X. R.; Wang, B. B.; Wang, K. K.; Xu, S.; Liu, S. P.; Liu, X. H.; Jia, Z. R.; Wu, G. L. Design of Ti3C2Tx/TiO2/PANI multi-layer composites for excellent electromagnetic wave absorption performance. J. Colloid Interf. Sci. 2021, 583, 510–521.

[133]

Guo, J.; Chen, Z. R.; Xu, X. J.; Li, X.; Liu, H.; Xi, S. H.; Abdul, W.; Wu, Q.; Zhang, P.; Xu, B. B. et al. Enhanced electromagnetic wave absorption of engineered epoxy nanocomposites with the assistance of polyaniline fillers. Adv. Compos. Hybrid Mater. 2022, 5, 1769–1777.

[134]

Hou, T. Q.; Jia, Z. R.; He, S. Q.; Su, Y.; Zhang, X. D.; Xu, B. H.; Liu, X. H.; Wu, G. L. Design and synthesis of NiCo/Co4S3@C hybrid material with tunable and efficient electromagnetic absorption. J. Colloid Interf. Sci. 2021, 583, 321–330.

[135]

Wen, B.; Cao, M. S.; Lu, M. M.; Cao, W. Q.; Shi, H. L.; Liu, J.; Wang, X. X.; Jin, H. B.; Fang, X. Y.; Wang, W. Z. et al. Reduced graphene oxides: Light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv. Mater. 2014, 26, 3484–3489.

[136]

Cao, M. S.; Wang, X. X.; Cao, W. Q.; Fang, X. Y.; Wen, B.; Yuan, J. Thermally driven transport and relaxation switching self-powered electromagnetic energy conversion. Small 2018, 14, 1800987.

[137]

Ji, H. M.; Li, J. H.; Zhang, J. J.; Yan, Y. Remarkable microwave absorption performance of ultralight graphene-polyethylene glycol composite aerogels with a very low loading ratio of graphene. Compos. Part A: Appl. Sci. Manuf. 2019, 123, 158–169.

[138]

Pu, L.; Li, S. S.; Zhang, Y. W.; Zhu, H. Y.; Fan, W.; Ma, P. M.; Dong, W. F.; Wang, Z. C.; Liu, T. X. Polyimide-based graphene composite foams with hierarchical impedance gradient for efficient electromagnetic absorption. J. Mater. Chem. C 2021, 9, 2086–2094.

[139]

Pu, L.; Liu, Y. P.; Li, L.; Zhang, C.; Ma, P. M.; Dong, W. F.; Huang, Y. P.; Liu, T. X. Polyimide nanofiber-reinforced Ti3C2Tx aerogel with “lamella-pillar” microporosity for high-performance piezoresistive strain sensing and electromagnetic wave absorption. ACS Appl. Mater. Interfaces 2021, 13, 47134–47146.

[140]

Zhang, Y. W.; Li, S. S.; Tang, X. W.; Fan, W.; Lan, Q. Q.; Li, L.; Ma, P. M.; Dong, W. F.; Wang, Z. C.; Liu, T. X. Ultralight and ordered lamellar polyimide-based graphene foams with efficient broadband electromagnetic absorption. J. Mater. Sci. Technol. 2022, 102, 97–104.

[141]

Lan, D.; Zhou, H. J.; Wu, H. J. A polymer sponge with dual absorption of mechanical and electromagnetic energy. J. Colloid Interf. Sci. 2023, 633, 92–101.

[142]

Pan, C.; Zhang, J. Q.; Kou, K. C.; Zhang, Y.; Wu, G. L. Investigation of the through-plane thermal conductivity of polymer composites with in-plane oriented hexagonal boron nitride. Int. J. Heat Mass Transf. 2018, 120, 1–8.

[143]

Pan, C.; Kou, K. C.; Jia, Q.; Zhang, Y.; Wu, G. L.; Ji, T. Z. Improved thermal conductivity and dielectric properties of hBN/PTFE composites via surface treatment by silane coupling agent. Compos. Part B: Eng. 2017, 111, 83–90.

[144]

Pan, C.; Kou, K. C.; Zhang, Y.; Li, Z. Y.; Wu, G. L. Enhanced through-plane thermal conductivity of PTFE composites with hybrid fillers of hexagonal boron nitride platelets and aluminum nitride particles. Compos. Part B: Eng. 2018, 153, 1–8.

[145]

Wu, D.; Wang, Y. Q.; Deng, S. L.; Lan, D.; Xiang, Z. N.; He, Q. C. Heterostructured CoFe@N-doped carbon porous polyhedron for efficient microwave absorption. Nano Res. 2023, 16, 1859–1868.

[146]

Song, Y. H.; Liu, X. H.; Gao, Z. G.; Wang, Z. D.; Hu, Y. H.; Yang, K.; Zhao, Z. H.; Lan, D.; Wu, G. L. Core–shell Ag@C spheres derived from Ag-MOFs with tunable ligand exchanging phase inversion for electromagnetic wave absorption. J. Colloid Interf. Sci. 2022, 620, 263–272.

[147]

Jia, Z. R.; Liu, X. H.; Zhou, X. F.; Zhou, Z. H.; Wu, G. L. A seed germination-inspired interface polarization augmentation strategy toward superior electromagnetic absorption performance. Compos. Commun. 2022, 34, 101269.

[148]

Ren, X. Y.; Song, Y. H.; Gao, Z. G.; Wu, Y. L.; Jia, Z. R.; Wu, G. L. Rational manipulation of composition and construction toward Zn/Co bimetal hybrids for electromagnetic wave absorption. J. Mater. Sci. Technol. 2023, 134, 254–261.

[149]

Zhang, F.; Jia, Z. R.; Zhou, J. X.; Liu, J. K.; Wu, G. L.; Yin, P. F. Metal-organic framework-derived carbon nanotubes for broadband electromagnetic wave absorption. Chem. Eng. J. 2022, 450, 138205.

[150]

Kong, M. Y.; Jia, Z. R.; Wang, B. B.; Dou, J. L.; Liu, X. H.; Dong, Y. H.; Xu, B. H.; Wu, G. L. Construction of metal-organic framework derived Co/ZnO/Ti3C2Tx composites for excellent microwave absorption. Sustain. Mater. Technol. 2020, 26, e00219.

[151]

Cheng, J. Y.; Zhang, H. B.; Ning, M. Q.; Raza, H.; Zhang, D. Q.; Zheng, G. P.; Zheng, Q. B.; Che, R. C. Emerging materials and designs for low- and multi-band electromagnetic wave absorbers: The search for dielectric and magnetic synergy. Adv. Funct. Mater. 2022, 32, 2200123.

[152]

Zheng, T. T.; Zhang, Y.; Jia, Z. R.; Zhu, J. H.; Wu, G. L.; Yin, P. F. Customized dielectric–magnetic balance enhanced electromagnetic wave absorption performance in CuxS/CoFe2O4 composites. Chem. Eng. J. 2023, 457, 140876.

[153]

Zhang, Z. D.; Li, Z. H.; Zhao, Y. H.; Bi, X. R.; Zhang, Z. Y.; Long, Z. K.; Liu, Z. X.; Zhang, L. J.; Cai, W. J.; Liu, Y. et al. Dielectric enhancement effect in biomorphic porous carbon-based iron@iron carbide “meta-powder” for light-weight microwave absorption material design. Adv. Compos. Hybrid Mater. 2022, 5, 3176–3189.

[154]

Li, C.; Qi, X. S.; Gong, X.; Peng, Q.; Chen, Y. L.; Xie, R.; Zhong, W. Magnetic–dielectric synergy and interfacial engineering to design yolk–shell structured CoNi@void@C and CoNi@void@C@MoS2 nanocomposites with tunable and strong wideband microwave absorption. Nano Res. 2022, 15, 6761–6771.

[155]

Zhang, H. X.; Wang, B. B.; Feng, A. L.; Zhang, N.; Jia, Z. R.; Huang, Z. Y.; Liu, X. H.; Wu, G. L. Mesoporous carbon hollow microspheres with tunable pore size and shell thickness as efficient electromagnetic wave absorbers. Compos. Part B: Eng. 2019, 167, 690–699.

[156]

Liang, L. Y.; Li, Q. M.; Yan, X.; Feng, Y. Z.; Wang, Y. M.; Zhang, H. B.; Zhou, X. P.; Liu, C. T.; Shen, C. Y.; Xie, X. L. Multifunctional magnetic Ti3C2Tx MXene/graphene aerogel with superior electromagnetic wave absorption performance. ACS Nano 2021, 15, 6622–6632.

[157]

Wang, C.; Feng, Y. M.; Zhou, J. J.; Wen, G. W.; Xia, L. Numerical analysis, experimental verification and criterion establishment of non-magnetic microwave absorbing material. J. Colloid Interf. Sci. 2022, 613, 256–264.

[158]

Yan, J.; Huang, Y.; Zhang, X. Y.; Gong, X.; Chen, C.; Nie, G. D.; Liu, X. D.; Liu, P. B. MoS2-decorated/integrated carbon fiber: Phase engineering well-regulated microwave absorber. Nano-Micro Lett. 2021, 13, 114.

[159]

Yan, J.; Wang, Y.; Liu, W. J.; Liu, P. B.; Chen, W. X. Two-dimensional metal organic framework derived nitrogen-doped graphene-like carbon nanomesh toward efficient electromagnetic wave absorption. J. Colloid Interf. Sci. 2023, 643, 318–327.

[160]

Xu, J. M.; Xia, L.; Luo, J. H.; Lu, S. R.; Huang, X. X.; Zhong, B.; Zhang, T.; Wen, G. W.; Wu, X.; Xiong, L. et al. High-performance electromagnetic wave absorbing CNT/SiCf composites: Synthesis, tuning, and mechanism. ACS Appl. Mater. Interfaces 2020, 12, 20775–20784.

[161]

Zhi, D. D.; Li, T.; Li, J. Z.; Ren, H. S.; Meng, F. B. A review of three-dimensional graphene-based aerogels: Synthesis, structure and application for microwave absorption. Compos. Part B: Eng. 2021, 211, 108642.

[162]

Chen, Z. P.; Xu, C.; Ma, C. Q.; Ren, W. C.; Cheng, H. M. Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv. Mater. 2013, 25, 1296–1300.

[163]

Chen, Z. P.; Ren, W. C.; Gao, L. B.; Liu, B. L.; Pei, S. F.; Cheng, H. M. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 2011, 10, 424–428.

[164]

Gu, W. H.; Quan, B.; Liang, X. H.; Liu, W.; Ji, G. B.; Du, Y. W. Composition and structure design of Co3O4 nanowires network by nickel foam with effective electromagnetic performance in C and X band. ACS Sustain. Chem. Eng. 2019, 7, 5543–5552.

[165]

Zheng, Y.; Zhang, W. D.; Zhang, X.; Zhu, Q.; Zhu, W. F.; Wang, R. M.; Qi, S. H. Structure and performance of Ni@Ni3S2 foam for microwave absorption. J. Phys. D: Appl. Phys. 2019, 52, 485003.

[166]

Kang, B.; Lu, X. C.; Chen, Y.; Xie, P. T.; Jia, Q.; Zhu, L. Y.; Liu, J.; Quan, B. Double dielectric modification of nickel foam-based microwave absorbers with improved impedance matching and absorption performances. Ceram. Int. 2021, 47, 33490–33497.

[167]

Qin, M.; Zhang, L. M.; Zhao, X. R.; Wu, H. J. Lightweight Ni foam-based ultra-broadband electromagnetic wave absorber. Adv. Funct. Mater. 2021, 31, 2103436.

[168]

Wang, W. L.; Li, Z.; Zhang, M.; Sun, C. G. Preparation of 3D network CNTs-modified nickel foam with enhanced microwave absorptivity and application potential in wastewater treatment. Sci. Total Environ. 2020, 702, 135006.

[169]

Zhang, Q. C.; Gou, Y. Z.; Wang, H.; Jian, K.; Wang, Y. F. A new simple way to polyzirconocenesilane for lightweight polymer-derived Zr/Si/C/O ceramic foams with electromagnetic wave-absorbing and high temperature-resistant properties. Mater. Design 2017, 120, 90–98.

[170]

Yan, J.; Huang, Y.; Chen, C.; Liu, X. D.; Liu, H. The 3D CoNi alloy particles embedded in N-doped porous carbon foams for high-performance microwave absorbers. Carbon 2019, 152, 545–555.

[171]

Zhao, B.; Fan, B. B.; Xu, Y. W.; Shao, G.; Wang, X. D.; Zhao, W. Y.; Zhang, R. Preparation of honeycomb SnO2 foams and configuration-dependent microwave absorption features. ACS Appl. Mater. Interfaces 2015, 7, 26217–26225.

[172]

Li, Y.; Li, S.; Zhang, T.; Shi, L. L.; Liu, S. T.; Zhao, Y. 3D hierarchical Co3O4/reduced graphene oxide/melamine derived carbon foam as a comprehensive microwave absorbing material. J. Alloys Compd. 2019, 792, 424–431.

[173]

Wei, B.; Wei, X. F.; Wang, M. Q.; Yao, Z. J.; Chen, Z. P.; Chen, P.; He, X. X.; Zhou, J. T. Ultra-broadband microwave absorption of honeycomb-like three-dimensional carbon foams embedded with zero-dimensional magnetic quantum dots. J. Alloys Compd. 2023, 939, 168781.

[174]

An, Z. M.; Ye, C. S.; Zhang, R. B.; Zhou, P. Flexible and recoverable SiC nanofiber aerogels for electromagnetic wave absorption. Ceram. Int. 2019, 45, 22793–22801.

[175]

Zhao, W. Y.; Shao, G.; Jiang, M. J.; Zhao, B.; Wang, H. L.; Chen, D. L.; Xu, H. L.; Li, X. J.; Zhang, R.; An, L. N. Ultralight polymer-derived ceramic aerogels with wide bandwidth and effective electromagnetic absorption properties. J. Eur. Ceram. Soc. 2017, 37, 3973–3980.

[176]

Cheng, Y.; Zhao, H. Q.; Lv, H. L.; Shi, T. F.; Ji, G. B.; Hou, Y. L. Lightweight and flexible cotton aerogel composites for electromagnetic absorption and shielding applications. Adv. Electron. Mater. 2020, 6, 1900796.

[177]

Zhu, M.; Yan, X. X.; Xu, H. L.; Xu, Y. J.; Kong, L. Ultralight, compressible, and anisotropic MXene@Wood nanocomposite aerogel with excellent electromagnetic wave shielding and absorbing properties at different directions. Carbon 2021, 182, 806–814.

[178]

Dai, D.; Lan, X. L.; Wu, L. N.; Wang, Z. J. Designed fabrication of lightweight SiC/Si3N4 aerogels for enhanced electromagnetic wave absorption and thermal insulation. J. Alloys Compd. 2022, 901, 163651.

[179]

Deng, W. B.; Li, T. H.; Li, H.; Niu, R. P.; Dang, A. L.; Cheng, Y. L.; Wu, H. J. In situ construction of hierarchical core–shell SiCNWs@SiO2-carbon foam hybrid composites with enhanced polarization loss for highly efficient electromagnetic wave absorption. Carbon 2023, 202, 103–111.

[180]

Zhao, Y.; Hao, L. L.; Zhang, X. D.; Tan, S. J.; Li, H. H.; Zheng, J.; Ji, G. B. A novel strategy in electromagnetic wave absorbing and shielding materials design: Multi-responsive field effect. Small Sci. 2022, 2, 2100077.

[181]

Su, K.; Wang, Y.; Hu, K. X.; Fang, X.; Yao, J.; Li, Q.; Yang, J. Ultralight and high-strength SiCnw@SiC foam with highly efficient microwave absorption and heat insulation properties. ACS Appl. Mater. Interfaces 2021, 13, 22017–22030.

[182]

Pandey, A.; Kumar, R.; Mondal, D. P.; Kumar, P.; Singh, S. Nickel oxide-sprinkled in-situ grown hierarchal graphitic jungle anchored feathery aluminum foam: A novel material for remarkable electromagnetic waves absorption. Mater. Today Nano 2023, 21, 100301.

[183]

Wang, X. X.; Cao, W. Q.; Cao, M. S.; Yuan, J. Assembling nano-microarchitecture for electromagnetic absorbers and smart devices. Adv. Mater. 2020, 32, 2002112.

[184]

Gutiérrez, M. C.; Ferrer, M. L.; del Monte, F. Ice-templated materials: Sophisticated structures exhibiting enhanced functionalities obtained after unidirectional freezing and ice-segregation-induced self-assembly. Chem. Mater. 2008, 20, 634–648.

[185]

Cao, X. L.; Jia, Z. R.; Hu, D. Q.; Wu, G. L. Synergistic construction of three-dimensional conductive network and double heterointerface polarization via magnetic FeNi for broadband microwave absorption. Adv. Compos. Hybrid Mater. 2022, 5, 1030–1043.

[186]

Pan, P. P.; Geng, Y. S.; Hu, L.; Liu, Q.; Liu, M.; Cheng, M. Q.; Chen, L.; Chen, J. D. Biologically enhanced 3D printed micro-nano hybrid scaffolds doped with abalone shell for bone regeneration. Adv. Compos. Hybrid Mater. 2023, 6, 10.

[187]

Wu, Y. L.; Lan, D.; Ren, J. W.; Zhang, S. J. A mini review of MOFs derived multifunctional absorbents: From perspective of components regulation. Mater. Today Phys. 2023, 36, 101178.

[188]

Li, X. L.; Yin, X. W.; Song, C. Q.; Han, M. K.; Xu, H. L.; Duan, W. Y.; Cheng, L. F.; Zhang, L. T. Self-assembly core–shell graphene-bridged hollow MXenes spheres 3D foam with ultrahigh specific EM absorption performance. Adv. Funct. Mater. 2018, 28, 1803938.

[189]

Anoshkin, I. V.; Campion, J.; Lioubtchenko, D. V.; Oberhammer, J. Freeze-dried carbon nanotube aerogels for high-frequency absorber applications. ACS Appl. Mater. Interfaces 2018, 10, 19806–19811.

[190]

Luo, J. W.; Wang, Y.; Qu, Z. J.; Wang, W.; Yu, D. Anisotropic, multifunctional and lightweight CNTs@CoFe2O4/polyimide aerogels for high efficient electromagnetic wave absorption and thermal insulation. Chem. Eng. J. 2022, 442, 136388.

[191]

Li, M. H.; Zhu, W. J.; Li, X.; Xu, H. L.; Fan, X. M.; Wu, H. J.; Ye, F.; Xue, J. M.; Li, X. Q.; Cheng, L. F. et al. Ti3C2Tx/MoS2 self-rolling rod-based foam boosts interfacial polarization for electromagnetic wave absorption. Adv. Sci. 2022, 9, 2201118.

[192]

Wang, D. D.; Zhang, M. Y.; Guo, Y.; Bai, T. T.; Liu, H.; Liu, C. T.; Shen, C. Y. Facile preparation of a cellulose derived carbon/BN composite aerogel for superior electromagnetic wave absorption. J. Mater. Chem. C 2022, 10, 5311–5320.

[193]

Pan, D.; Yang, G.; Abo-Dief, H. M.; Dong, J. W.; Su, F. M.; Liu, C. T.; Li, Y. F.; Xu, B. B.; Murugadoss, V.; Naik, N. et al. Vertically aligned silicon carbide nanowires/boron nitride cellulose aerogel networks enhanced thermal conductivity and electromagnetic absorbing of epoxy composites. Nano-Micro Lett. 2022, 14, 118.

[194]

Xu, J.; Zhang, X.; Zhao, Z. B.; Hu, H.; Li, B.; Zhu, C. L.; Zhang, X. T.; Chen, Y. J. Lightweight, fire-retardant, and anti-compressed honeycombed-like carbon aerogels for thermal management and high-efficiency electromagnetic absorbing properties. Small 2021, 17, 2102032.

[195]

Meng, F. B.; Wang, H. G.; Wei; Chen, Z. J.; Li, T.; Li, C. Y.; Xuan, Y.; Zhou, Z. W. Generation of graphene-based aerogel microspheres for broadband and tunable high-performance microwave absorption by electrospinning-freeze drying process. Nano Res. 2018, 11, 2847–2861.

[196]

Wang, H. G.; Ren, H. S.; Jing, C. F.; Li, J. Z.; Zhou, Q.; Meng, F. B. Two birds with one stone: Graphene oxide@sulfonated polyaniline nanocomposites towards high-performance electromagnetic wave absorption and corrosion protection. Compos. Sci. Technol. 2021, 204, 108630.

[197]

Li, T.; Zhi, D. D.; Chen, Y.; Li, B.; Zhou, Z. W.; Meng, F. B. Multiaxial electrospun generation of hollow graphene aerogel spheres for broadband high-performance microwave absorption. Nano Res. 2020, 13, 477–484.

[198]

Li, Y.; Meng, F. B.; Mei, Y.; Wang, H. G.; Guo, Y. F.; Wang, Y.; Peng, F. X.; Huang, F.; Zhou, Z. W. Electrospun generation of Ti3C2Tx MXene@graphene oxide hybrid aerogel microspheres for tunable high-performance microwave absorption. Chem. Eng. J. 2020, 391, 123512.

[199]

Zhi, D. D.; Li, T.; Qi, Z. H.; Li, J. Z.; Tian, Y. R.; Deng, W. T.; Meng, F. B. Core–shell heterogeneous graphene-based aerogel microspheres for high-performance broadband microwave absorption via resonance loss and sequential attenuation. Chem. Eng. J. 2022, 433, 134496.

[200]

Xu, Y. X.; Sheng, K. X.; Li, C.; Shi, G. Q. Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 2010, 4, 4324–4330.

[201]

Shu, R. W.; Zhang, G. Y.; Zhang, C.; Wu, Y.; Zhang, J. B. Nitrogen-doping-regulated electromagnetic wave absorption properties of ultralight three-dimensional porous reduced graphene oxide aerogels. Adv. Electron. Mater. 2021, 7, 2001001.

[202]

Shang, S. Y.; Zhao, N.; Chen, Y. Q.; Wang, X. H.; Hu, F. Y.; Fan, B. B.; Zhao, B.; Lu, H. X.; Wang, H. L.; Zhang, R. Ti3C2Tx/rGO aerogel towards high electromagnetic wave absorption and thermal resistance. CrystEngComm 2022, 24, 4556–4563.

[203]

Deng, Y. Q.; Shang, T. X.; Wu, Z. T.; Tao, Y.; Luo, C.; Liang, J. C.; Han, D. L.; Lyu, R. Y.; Qi, C. S.; Lv, W. et al. Fast gelation of Ti3C2Tx MXene initiated by metal ions. Adv. Mater. 2019, 31, 1902432.

[204]

Trivedi, T. J.; Rao, K. S.; Kumar, A. Facile preparation of agarose-chitosan hybrid materials and nanocomposite ionogels using an ionic liquid via dissolution, regeneration and sol-gel transition. Green Chem. 2014, 16, 320–330.

[205]

Zhou, X. J.; Wen, J. W.; Ma, X. H.; Wu, H. J. Manipulation of microstructure of MXene aerogel via metal ions-initiated gelation for electromagnetic wave absorption. J. Colloid Interf. Sci. 2022, 624, 505–514.

[206]

Song, L. M.; Chen, Y. Q.; Gao, Q. C.; Li, Z.; Zhang, X. Y.; Wang, H. L.; Guan, L.; Yu, Z. J.; Zhang, R.; Fan, B. B. Low weight, low thermal conductivity, and highly efficient electromagnetic wave absorption of three-dimensional graphene/SiC-nanosheets aerogel. Compos. Part A: Appl. Sci. Manuf. 2022, 158, 106980.

[207]

You, G. Q.; Han, D. Y.; Tian, H. J.; Liang, J. F.; Wang, C. A.; Yuan, K. K.; Li, M. L.; Wang, H. L.; Zhang, R.; Shao, G. 3D nano-network structured SiCN ceramic aerogels on mullite fiber felts for electromagnetic wave absorption. Ceram. Int. 2022, 48, 35519–35524.

[208]

Kang, S.; Qiao, S. Y.; Cao, Y. T.; Hu, Z. M.; Yu, J. R.; Wang, Y. Compression strain-dependent tubular carbon nanofibers/graphene aerogel absorber with ultrabroad absorption band. Chem. Eng. J. 2022, 433, 133619.

[209]

Cai, Y. F.; Cheng, Y.; Wang, Z. H.; Fei, G. X.; Lavorgna, M.; Xia, H. S. Facile and scalable preparation of ultralight cobalt@graphene aerogel microspheres with strong and wide bandwidth microwave absorption. Chem. Eng. J. 2023, 457, 141102.

[210]

Zhou, S. Y.; Zhang, G. H.; Nie, Z. Q.; Liu, H. Z.; Yu, H. H.; Liu, Y. X.; Bi, K. X.; Geng, W. P.; Duan, H. G.; Chou, X. J. Recent advances in 3D printed structures for electromagnetic wave absorbing and shielding. Mater. Chem. Front. 2022, 6, 1736–1751.

[211]

Ni, J. X.; Huang, X. L.; Bai, Y. B.; Zhao, B.; Han, Y. Q.; Han, S. Y.; Xu, T.; Si, C. L.; Zhang, C. L. Resistance to aggregation-caused quenching: Chitosan-based solid carbon dots for white light-emitting diode and 3D printing. Adv. Compos. Hybrid Mater. 2022, 5, 1865–1875.

[212]

Pan, D.; Dong, J. W.; Yang, G.; Su, F. M.; Chang, B. B.; Liu, C. T.; Zhu, Y. C.; Guo, Z. H. Ice template method assists in obtaining carbonized cellulose/boron nitride aerogel with 3D spatial network structure to enhance the thermal conductivity and flame retardancy of epoxy-based composites. Adv. Compos. Hybrid Mater. 2022, 5, 58–70.

[213]

Trebbin, M.; Steinhauser, D.; Perlich, J.; Buffet, A.; Roth, S. V.; Zimmermann, W.; Thiele, J.; Förster, S. Anisotropic particles align perpendicular to the flow direction in narrow microchannels. Proc. Natl. Acad. Sci. USA 2013, 110, 6706–6711.

[214]

Duan, Y. B.; Liang, Q. X.; Yang, Z.; Li, Z. H.; Yin, H. Y.; Cao, Y.; Li, D. C. A wide-angle broadband electromagnetic absorbing metastructure using 3D printing technology. Mater. Design 2021, 208, 109900.

[215]

Zhou, R.; Wang, Y. S.; Liu, Z. Y.; Pang, Y. Q.; Chen, J. X.; Kong, J. Digital light processing 3D-printed ceramic metamaterials for electromagnetic wave absorption. Nano-Micro Lett. 2022, 14, 122.

[216]

Xu, M. L.; Wei, L. F.; Ma, L.; Lu, J. W.; Liu, T.; Zhang, L.; Zhao, L.; Park, C. B. Microcellular foamed polyamide 6/carbon nanotube composites with superior electromagnetic wave absorption. J. Mater. Sci. Technol. 2022, 117, 215–224.

[217]

Shu, J. C.; Cao, W. Q.; Cao, M. S. Diverse metal-organic framework architectures for electromagnetic absorbers and shielding. Adv. Funct. Mater. 2021, 31, 2100470.

[218]

Liu, J. K.; Jia, Z. R.; Dong, Y. H.; Li, J. J.; Cao, X. L.; Wu, G. L. Structural engineering and compositional manipulation for high-efficiency electromagnetic microwave absorption. Mater. Today Phys. 2022, 27, 100801.

[219]

Zhang, M.; Zhao, L. B.; Zhao, W. X.; Wang, T.; Yuan, L. Y.; Guo, Y. Y.; Xie, Y. X.; Cheng, T. T.; Meng, A. L.; Li, Z. J. Boosted electromagnetic wave absorption performance from synergistic induced polarization of SiCNWs@MnO2@PPy heterostructures. Nano Res. 2023, 16, 3558–3569.

[220]

Gai, L. X.; Zhao, H. H.; Wang, F. Y.; Wang, P.; Liu, Y. L.; Han, X. J.; Du, Y. C. Advances in core–shell engineering of carbon-based composites for electromagnetic wave absorption. Nano Res. 2022, 15, 9410–9439.

[221]

Xiang, L. L.; Qi, X. S.; Rao, Y. C.; Wang, L.; Gong, X.; Chen, Y. L.; Peng, Q.; Zhong, W. A simple strategy to develop heterostructured carbon paper/Co nanoparticles composites with lightweight, tunable and broadband microwave absorption. Mater. Today Phys. 2023, 34, 101030.

[222]

Wang, Y.; Gao, X.; Lin, C. H.; Shi, L. Y.; Li, X. H.; Wu, G. L. Metal organic frameworks-derived Fe-Co nanoporous carbon/graphene composite as a high-performance electromagnetic wave absorber. J. Alloys Compd. 2019, 785, 765–773.

[223]

Zhou, J. X.; Jia, Z. R.; Zhang, Y.; Wu, G. L. Construction of 3D conductive network by flower-like V2O3 synergy with magnetic NiCo for superior electromagnetic wave absorption performance. Mater. Today Phys. 2022, 29, 100902.

[224]

Huang, X. M.; Liu, X. H.; Jia, Z. R.; Wang, B. B.; Wu, X. M.; Wu, G. L. Synthesis of 3D cerium oxide/porous carbon for enhanced electromagnetic wave absorption performance. Adv. Compos. Hybrid Mater. 2021, 4, 1398–1412.

[225]

Wu, Q.; Wang, B. L.; Fu, Y. G.; Zhang, Z. F.; Yan, P. F.; Liu, T. MOF-derived Co/CoO particles prepared by low temperature reduction for microwave absorption. Chem. Eng. J. 2021, 410, 128378.

[226]

Xiang, Z. N.; Wang, Y. Q.; Yin, X. M.; He, Q. C. Microwave absorption performance of porous heterogeneous SiC/SiO2 microspheres. Chem. Eng. J. 2023, 451, 138742.

[227]

Ma, W. L.; Liu, X. Y.; Qiu, Z. R.; Cai, Z. H.; Diao, J. L.; Huang, Y. Hydrophobic and flame-retardant multifunctional foam for enhanced thermal insulation and broadband microwave absorption via a triple-continuous network of RGO/MWCNT-melamine composite. Carbon 2022, 196, 913–922.

[228]

Liu, J. L.; Liang, H. S.; Zhang, Y.; Wu, G. L.; Wu, H. J. Facile synthesis of ellipsoid-like MgCo2O4/Co3O4 composites for strong wideband microwave absorption application. Compos. Part B: Eng. 2019, 176, 107240.

[229]

Zhang, H. X.; Jia, Z. R.; Feng, A. L.; Zhou, Z. H.; Chen, L.; Zhang, C. H.; Liu, X. H.; Wu, G. L. In situ deposition of pitaya-like Fe3O4@C magnetic microspheres on reduced graphene oxide nanosheets for electromagnetic wave absorber. Compos. Part B: Eng. 2020, 199, 108261.

[230]

Zhang, M.; Ling, H. L.; Wang, T.; Jiang, Y. J.; Song, G. Y.; Zhao, W.; Zhao, L. B.; Cheng, T. T.; Xie, Y. X.; Guo, Y. Y. et al. An equivalent substitute strategy for constructing 3D ordered porous carbon foams and their electromagnetic attenuation mechanism. Nano-Micro Lett. 2022, 14, 157.

[231]

Quan, L.; Wang, C. H.; Xu, Y. L.; Qiu, J. L.; Zhang, H. Y.; Cunning, B.; Huang, M.; Wei, H. J.; Seong, W. K.; Seo, J. et al. Electromagnetic properties of graphene aerogels made by freeze-casting. Chem. Eng. J. 2022, 428, 131337.

[232]

Zhao, T. B.; Jia, Z. R.; Zhang, Y.; Wu, G. L. Multiphase molybdenum carbide doped carbon hollow sphere engineering: The superiority of unique double-shell structure in microwave absorption. Small 2023, 19, 2206323.

[233]

Yu, L. Y.; Zhu, Q. Q.; Guo, Z. Q.; Cheng, Y. H.; Jia, Z. R.; Wu, G. L. Unique electromagnetic wave absorber for three-dimensional framework engineering with copious heterostructures. J. Mater. Sci. Technol. 2024, 170, 129–139.

[234]

Xiao, J. X.; Qi, X. S.; Gong, X.; Peng, Q.; Chen, Y. L.; Xie, R.; Zhong, W. Tunable and improved microwave absorption of flower-like core@shell MFe2O4@MoS2 (M = Mn, Ni, and Zn) nanocomposites by defect and interface engineering. J. Mater. Sci. Technol. 2023, 139, 137–146.

[235]

Huang, W. H.; Wang, S.; Yang, X. F.; Zhang, X. X.; Zhang, Y. N.; Pei, K.; Che, R. C. Temperature induced transformation of Co@C nanoparticle in 3D hierarchical core–shell nanofiber network for enhanced electromagnetic wave adsorption. Carbon 2022, 195, 44–56.

[236]

Feng, X.; Yin, P. F.; Zhang, L. M.; Sun, X. Y.; Wang, J.; Zhao, L.; Lu, C. F.; Gao, Z. H.; Zhan, Y. X. Innovative preparation of Co@CuFe2O4 composite via ball-milling assisted chemical precipitation and annealing for glorious electromagnetic wave absorption. Int. J. Miner. Metall. Mater. 2023, 30, 559–569.

[237]

Wu, S. T.; Zou, M. C.; Li, Z. C.; Chen, D. Q.; Zhang, H.; Yuan, Y. J.; Pei, Y. M.; Cao, A. Y. Robust and stable Cu nanowire@graphene core–shell aerogels for ultraeffective electromagnetic interference shielding. Small 2018, 14, 1800634.

[238]

Shi, X. F.; Liu, Z. W.; Li, X.; You, W. B.; Shao, Z. Z.; Che, R. C. Enhanced dielectric polarization from disorder-engineered Fe3O4@black TiO2−x heterostructure for broadband microwave absorption. Chem. Eng. J. 2021, 419, 130020.

[239]

Wu, Z. C.; Pei, K.; Xing, L. S.; Yu, X. F.; You, W. B.; Che, R. C. Enhanced microwave absorption performance from magnetic coupling of magnetic nanoparticles suspended within hierarchically tubular composite. Adv. Funct. Mater. 2019, 29, 1901448.

[240]

Shi, X. F.; You, W. B.; Li, X.; Wang, L.; Shao, Z. Z.; Che, R. C. In-situ regrowth constructed magnetic coupling 1D/2D Fe assembly as broadband and high-efficient microwave absorber. Chem. Eng. J. 2021, 415, 128951.

[241]

Wang, Q. J.; Wang, J. N.; Zhao, Y. Z.; Zhao, Y.; Yan, J. F.; Deng, Z. H.; Zhang, H.; Zhao, W.; Tian, J. X.; Yun, J. N. et al. NiO/NiFe2O4@N-doped reduced graphene oxide aerogel towards the wideband electromagnetic wave absorption: Experimental and theoretical study. Chem. Eng. J. 2022, 430, 132814.

[242]

Ren, F.; Guo, Z. Z.; Shi, Y. F.; Jia, L. C.; Qing, Y. C.; Ren, P. G.; Yan, D. X. Lightweight and highly efficient electromagnetic wave-absorbing of 3D CNTs/GNS@CoFe2O4 ternary composite aerogels. J. Alloys Compd. 2018, 768, 6–14.

[243]

Zhang, H. X.; Sun, K. G.; Sun, K. K.; Chen, L.; Wu, G. L. Core–shell Ni3Sn2@C particles anchored on 3D N-doped porous carbon skeleton for modulated electromagnetic wave absorption. J. Mater. Sci. Technol. 2023, 158, 242–252.

[244]

Zhang, S. J.; Zhao, Z. W.; Cheng, B.; Wang, S.; Wu, Y. L.; Wu, G. L. Tailored construction of magnetic hollow glass microspheres/N-doped carbon toward lightweight and efficient electromagnetic wave absorption. Compos. Commun. 2022, 36, 101369.

[245]

Sun, R. L.; Yan, G. L.; Zhang, X. L.; Li, Z. Y.; Chen, J. Y.; Wang, L.; Wu, Y. P.; Wang, Y. Q.; Li, H. Fe-ZIF-derived hollow porous carbon nanofibers for electromagnetic wave absorption. Chem. Eng. J. 2023, 455, 140608.

[246]

Cao, X. L.; Liu, X. H.; Zhu, J. H.; Jia, Z. R.; Liu, J. K.; Wu, G. L. Optimal particle distribution induced interfacial polarization in hollow double-shell composites for electromagnetic waves absorption performance. J. Colloid Interf. Sci. 2023, 634, 268–278.

[247]

Liu, D.; Wan, J. W.; Pang, G. S.; Tang, Z. Y. Hollow metal-organic-framework micro/nanostructures and their derivatives: Emerging multifunctional materials. Adv. Mater. 2019, 31, 1803291.

[248]

Wu, N. N.; Zhao, B. B.; Liu, J. Y.; Li, Y. L.; Chen, Y. B.; Chen, L.; Wang, M.; Guo, Z. H. MOF-derived porous hollow Ni/C composites with optimized impedance matching as lightweight microwave absorption materials. Adv. Compos. Hybrid Mater. 2021, 4, 707–715.

[249]

Li, N. N.; Shu, R. W.; Zhang, J. B.; Wu, Y. Synthesis of ultralight three-dimensional nitrogen-doped reduced graphene oxide/multi-walled carbon nanotubes/zinc ferrite composite aerogel for highly efficient electromagnetic wave absorption. J. Colloid Interf. Sci. 2021, 596, 364–375.

[250]

Luo, J. W.; Wang, Y.; Qu, Z. J.; Wang, W.; Yu, D. Lightweight and robust cobalt ferrite/carbon nanotubes/waterborne polyurethane hybrid aerogels for efficient microwave absorption and thermal insulation. J. Mater. Chem. C 2021, 9, 12201–12212.

[251]

Luo, H. C.; Lu, Y. Y.; Qiu, J. An electromagnetic microwave stealth photothermal soft actuator with lightweight and hydrophobic properties. ACS Appl. Mater. Interfaces 2021, 13, 32046–32057.

[252]

Ye, X. L.; Chen, Z. F.; Li, M.; Wang, T.; Wu, C.; Zhang, J. X.; Zhou, Q. B.; Liu, H. Z.; Cui, S. Hollow SiC foam with a double interconnected network for superior microwave absorption ability. J. Alloys Compd. 2020, 817, 153276.

[253]

Zhao, J.; Wei, Y.; Zhang, Y.; Zhang, Q. G. 3D flower-like hollow CuS@PANI microspheres with superb X-band electromagnetic wave absorption. J. Mater. Sci. Technol. 2022, 126, 141–151.

[254]

Liu, B. H.; Xu, J.; Wan, Z. L.; Shu, R. W. Fabrication of nitrogen-doped reduced graphene oxide/hollow copper ferrite composite aerogels as lightweight, thin and high-efficiency electromagnetic wave absorbers in the X band. J. Colloid Interf. Sci. 2022, 628, 712–720.

[255]

Xu, J.; Shu, R. W.; Wan, Z. L.; Shi, J. J. Construction of three-dimensional hierarchical porous nitrogen-doped reduced graphene oxide/hollow cobalt ferrite composite aerogels toward highly efficient electromagnetic wave absorption. J. Mater. Sci. Technol. 2023, 132, 193–200.

[256]

Wang, C. X.; Liu, Y.; Jia, Z. R.; Zhao, W. R.; Wu, G. L. Multicomponent nanoparticles synergistic one-dimensional nanofibers as heterostructure absorbers for tunable and efficient microwave absorption. Nano-Micro Lett. 2023, 15, 13.

[257]

Huang, X. M.; Liu, X. H.; Zhang, Y.; Zhou, J. X.; Wu, G. L.; Jia, Z. R. Construction of NiCeOx nanosheets-skeleton cross-linked by carbon nanotubes networks for efficient electromagnetic wave absorption. J. Mater. Sci. Technol. 2023, 147, 16–25.

[258]

Jia, T. M.; Qi, X. S.; Wang, L.; Yang, J. L.; Gong, X.; Chen, Y. L.; Qu, Y. P.; Peng, Q.; Zhong, W. Constructing mixed-dimensional lightweight flexible carbon foam/carbon nanotubes-based heterostructures: An effective strategy to achieve tunable and boosted microwave absorption. Carbon 2023, 206, 364–374.

[259]

Liang, Q. Q.; Wang, L.; Qi, X. S.; Peng, Q.; Gong, X.; Chen, Y. L.; Xie, R.; Zhong, W. Hierarchical engineering of CoNi@Air@C/SiO2@Polypyrrole multicomponent nanocubes to improve the dielectric loss capability and magnetic–dielectric synergy. J. Mater. Sci. Technol. 2023, 147, 37–46.

[260]

Zhao, Y. P.; Zuo, X. Q.; Guo, Y.; Huang, H.; Zhang, H.; Wang, T.; Wen, N. X.; Chen, H.; Cong, T. Z.; Muhammad, J. et al. Structural engineering of hierarchical aerogels comprised of multi-dimensional gradient carbon nanoarchitectures for highly efficient microwave absorption. Nano-Micro Lett. 2021, 13, 144.

[261]

Liu, Y.; Jia, Z. R.; Zhan, Q. Q.; Dong, Y. H.; Xu, Q. M.; Wu, G. L. Magnetic manganese-based composites with multiple loss mechanisms towards broadband absorption. Nano Res. 2022, 15, 5590–5600.

[262]

Wu, N. N.; Du, W. J.; Hu, Q.; Vupputuri, S.; Jiang, Q. L. Recent development in fabrication of Co nanostructures and their carbon nanocomposites for electromagnetic wave absorption. Eng. Sci. 2021, 13, 11–23.

[263]

Lu, S. R.; Xia, L.; Xu, J. M.; Ding, C. H.; Li, T. T.; Yang, H.; Zhong, B.; Zhang, T.; Huang, L. N.; Xiong, L. et al. Permittivity-regulating strategy enabling superior electromagnetic wave absorption of lithium aluminum silicate/rGO nanocomposites. ACS Appl. Mater. Interfaces 2019, 11, 18626–18636.

[264]

Li, Y.; Qing, Y. C.; Li, W.; Zong, M.; Luo, F. Novel Magnéli Ti4O7/Ni/poly(vinylidene fluoride) hybrids for high-performance electromagnetic wave absorption. Adv. Compos. Hybrid Mater. 2021, 4, 1027–1038.

[265]

Lu, X. K.; Zhu, D. M.; Li, X.; Li, M. H.; Chen, Q.; Qing, Y. C. Gelatin-derived N-doped hybrid carbon nanospheres with an adjustable porous structure for enhanced electromagnetic wave absorption. Adv. Compos. Hybrid Mater. 2021, 4, 946–956.

[266]

Yang, J.; Tong, L. Z.; Alsubaie, A. S.; Mahmoud, K. H.; Guo, Y. Y.; Liu, L.; Guo, L.; Sun, Z. H.; Wang, C. Hybrid proton exchange membrane used in fuel cell with amino-functionalized metal-organic framework in sulfonated polyimide to construct efficient ion transport channel. Adv. Compos. Hybrid Mater. 2022, 5, 834–842.

[267]

Yang, H. W.; Shi, R. X.; Jiang, Q. L.; Ren, J. N. Properties and mechanism of two-way shape memory polyurethane composite under stress-free condition. Adv. Compos. Hybrid Mater. 2023, 6, 1.

[268]

Jia, Z. R.; Zhang, X. Y.; Gu, Z.; Wu, G. L. MOF-derived Ni-Co bimetal/porous carbon composites as electromagnetic wave absorber. Adv. Compos. Hybrid Mater. 2023, 6, 28.

[269]

Luo, F.; Liu, D. Q.; Cao, T. S.; Cheng, H. F.; Kuang, J. C.; Deng, Y. J.; Xie, W. Study on broadband microwave absorbing performance of gradient porous structure. Adv. Compos. Hybrid Mater. 2021, 4, 591–601.

[270]

Ding, Z. D.; Tian, Z. J.; Ji, X. X.; Dai, H. Q.; Si, C. L. Bio-inspired catalytic one-step prepared R-siloxane cellulose composite membranes with highly efficient oil separation. Adv. Compos. Hybrid Mater. 2022, 5, 2138–2153.

[271]

Yan, Z. H.; Li, J. B.; Chen, Q.; Chen, S. F.; Luo, L. J.; Chen, Y. J. Synthesis of CoSe2/Mxene composites using as high-performance anode materials for lithium-ion batteries. Adv. Compos. Hybrid Mater. 2022, 5, 2977–2987.

[272]

Sun, L. F.; Zhu, Q. Q.; Jia, Z. R.; Guo, Z. Q.; Zhao, W. R.; Wu, G. L. CrN attached multi-component carbon nanotube composites with superior electromagnetic wave absorption performance. Carbon 2023, 208, 1–9.

[273]

Wang, P.; Yang, L.; Ling, J. C.; Song, J.; Song, T.; Chen, X. L.; Gao, S.; Feng, S. J.; Ding, Y.; Murugadoss, V. et al. Frontal ring-opening metathesis polymerized polydicyclopentadiene carbon nanotube/graphene aerogel composites with enhanced electromagnetic interference shielding. Adv. Compos. Hybrid Mater. 2022, 5, 2066–2077.

[274]

Wang, W.; Liu, D. Q.; Cheng, H. F.; Cao, T. S.; Li, Y. L.; Deng, Y. J.; Xie, W. Structural design and broadband radar absorbing performance of multi-layer patch using carbon black. Adv. Compos. Hybrid Mater. 2022, 5, 3137–3145.

[275]

Yan, H.; Dai, X. J.; Ruan, K. P.; Zhang, S. J.; Shi, X. T.; Guo, Y. Q.; Cai, H. Q.; Gu, J. W. Flexible thermally conductive and electrically insulating silicone rubber composite films with BNNS@Al2O3 fillers. Adv. Compos. Hybrid. Mater. 2021, 4, 36–50.

[276]

Wang, S. Y.; Wang, Y. R.; Sun, C. H.; Qi, S. Q.; Wang, B. B.; Li, D. H.; Wu, G. L. Multifunctional carbon nanofibers coated Co-Zn alloy nanoparticles composite for efficient energy conversion and microwave absorption. J. Alloys Compd. 2023, 932, 167458.

[277]

Wang, Y. Y.; Zhu, J. L.; Li, N.; Shi, J. F.; Tang, J. H.; Yan, D. X.; Li, Z. M. Carbon aerogel microspheres with in-situ mineralized TiO2 for efficient microwave absorption. Nano Res. 2022, 15, 7723–7730.

[278]

Zhang, W.; Feng, Y.; Althakafy, J. T.; Liu, Y.; Abo-Dief, H. M.; Huang, M. N.; Zhou, L. C.; Su, F. M.; Liu, C. T.; Shen, C. Y. Ultrahigh molecular weight polyethylene fiber/boron nitride composites with high neutron shielding efficiency and mechanical performance. Adv. Compos. Hybrid Mater. 2022, 5, 2012–2020.

[279]

Yang, W. Y.; Peng, D. N.; Kimura, H.; Zhang, X. Y.; Sun, X. Q.; Pashameah, R. A.; Alzahrani, E.; Wang, B.; Guo, Z. H.; Du, W. et al. Honeycomb-like nitrogen-doped porous carbon decorated with Co3O4 nanoparticles for superior electrochemical performance pseudo-capacitive lithium storage and supercapacitors. Adv. Compos. Hybrid Mater. 2022, 5, 3146–3157.

[280]

Deng, W. B.; Li, T. H.; Li, H.; Liu, X.; Dang, A. L.; Liu, Y. F.; Wu, H. J. Controllable graphitization degree of carbon foam bulk toward electromagnetic wave attenuation loss behavior. J. Colloid Interf. Sci. 2022, 618, 129–140.

[281]

Zhou, X. F.; Jia, Z. R.; Feng, A. L.; Wang, X. X.; Liu, J. J.; Zhang, M.; Cao, H. J.; Wu, G. L. Synthesis of fish skin-derived 3D carbon foams with broadened bandwidth and excellent electromagnetic wave absorption performance. Carbon 2019, 152, 827–836.

[282]

Lan, D.; Wang, Y.; Wang, Y. Y.; Zhu, X. F.; Li, H. F.; Guo, X. M.; Ren, J. N.; Guo, Z. H.; Wu, G. L. Impact mechanisms of aggregation state regulation strategies on the microwave absorption properties of flexible polyaniline. J. Colloid Interf. Sci. 2023, 651, 494–503.

[283]

Babar, R.; Kabir, M. Ferromagnetism in nitrogen-doped graphene. Phys. Rev. B 2019, 99, 115442.

[284]

Shu, R. W.; Wan, Z. L.; Zhang, J. B.; Wu, Y.; Shi, J. J. Synergistically assembled nitrogen-doped reduced graphene oxide/multi-walled carbon nanotubes composite aerogels with superior electromagnetic wave absorption performance. Compos. Sci. Technol. 2021, 210, 108818.

[285]

Cheng, Z.; Wang, R. F.; Wang, Y.; Cao, Y. S.; Shen, Y. X.; Huang, Y.; Chen, Y. S. Recent advances in graphene aerogels as absorption-dominated electromagnetic interference shielding materials. Carbon 2023, 205, 112–137.

[286]

Wu, M.; Darboe, A. K.; Qi, X. S.; Xie, R.; Qin, S. J.; Deng, C. Y.; Wu, G. L.; Zhong, W. Optimization, selective and efficient production of CNTs/CoxFe3−xO4 core/shell nanocomposites as outstanding microwave absorbers. J. Mater. Chem. C 2020, 8, 11936–11949.

[287]

Lv, H. L.; Li, Y.; Jia, Z. R.; Wang, L. J.; Guo, X. Q.; Zhao, B.; Zhang, R. Exceptionally porous three-dimensional architectural nanostructure derived from CNTs/graphene aerogel towards the ultra-wideband EM absorption. Compos. Part B: Eng. 2020, 196, 108122.

[288]

Wang, Y.; Gao, X.; Fu, Y. Q.; Wu, X. M.; Wang, Q. G.; Zhang, W. Z.; Luo, C. Y. Enhanced microwave absorption performances of polyaniline/graphene aerogel by covalent bonding. Compos. Part B: Eng. 2019, 169, 221–228.

[289]

Shu, X. F.; Yan, S. C.; Fang, B.; Song, Y. N.; Zhao, Z. J. A 3D multifunctional nitrogen-doped RGO-based aerogel with silver nanowires assisted self-supporting networks for enhanced electromagnetic wave absorption. Chem. Eng. J. 2023, 451, 138825.

[290]

Li, J. Z.; Xu, Z. K.; Li, T.; Zhi, D. D.; Chen, Y.; Lu, Q. H.; Wang, J. J.; Liu, Q.; Meng, F. B. Multifunctional antimony tin oxide/reduced graphene oxide aerogels with wideband microwave absorption and low infrared emissivity. Compos. Part B: Eng. 2022, 231, 109565.

[291]

Cheng, J. B.; Wang, Y. Q.; Zhang, A. N.; Zhao, H. B.; Wang, Y. Z. Growing MoO3-doped WO3 nanoflakes on rGO aerogel sheets towards superior microwave absorption. Carbon 2021, 183, 205–215.

[292]

Zhao, H. B.; Fu, Z. B.; Liu, X. Y.; Zhou, X. C.; Chen, H. B.; Zhong, M. L.; Wang, C. Y. Magnetic and conductive Ni/carbon aerogels toward high-performance microwave absorption. Ind. Eng. Chem. Res. 2018, 57, 202–211.

[293]

Sun, F.; Liu, Q. D.; Xu, Y. F.; Xin, X. P.; Wang, Z. Z.; Song, X. F.; Zhao, X. F.; Xu, J. J.; Liu, J.; Zhao, L. P. et al. Attapulgite modulated thorny nickel nanowires/graphene aerogel with excellent electromagnetic wave absorption performance. Chem. Eng. J. 2021, 415, 128976.

[294]

Peng, F. X.; Meng, F. B.; Guo, Y. F.; Wang, H. G.; Huang, F.; Zhou, Z. W. Intercalating hybrids of sandwich-like Fe3O4-graphite: Synthesis and their synergistic enhancement of microwave absorption. ACS Sustain. Chem. Eng. 2018, 6, 16744–16753.

[295]

Zhao, H. B.; Cheng, J. B.; Zhu, J. Y.; Wang, Y. Z. Ultralight CoNi/rGO aerogels toward excellent microwave absorption at ultrathin thickness. J. Mater. Chem. C 2019, 7, 441–448.

[296]

Wang, X. Y.; Lu, Y. K.; Zhu, T.; Chang, S. C.; Wang, W. CoFe2O4/N-doped reduced graphene oxide aerogels for high-performance microwave absorption. Chem. Eng. J. 2020, 388, 124317.

[297]

Dong, Y. Y.; Zhu, X. J.; Pan, F.; Cai, L.; Jiang, H. J.; Cheng, J.; Shi, Z.; Xiang, Z.; Lu, W. Implanting NiCo2O4 equalizer with designable nanostructures in agaric aerogel-derived composites for efficient multiband electromagnetic wave absorption. Carbon 2022, 190, 68–79.

[298]

Zhang, N.; Chen, W. X.; Chen, P. Z.; Wang, Y. Insight of S, N co-doped graphene aerogel (double reduction)/cobalt(II)-substituted α-Keggin-type polyoxometalate nanocomposites with synergistically enhanced impedance matching and energy conservation performance. Compos. Part B: Eng. 2020, 191, 107962.

[299]

Jiang, R.; Wang, Y. Q.; Wang, J. Y.; He, Q. C.; Wu, G. L. Controlled formation of multiple core–shell structures in metal-organic frame materials for efficient microwave absorption. J. Colloid Interf. Sci. 2023, 648, 25–36.

[300]

Zhang, H. X.; Jia, Z. R.; Feng, A. L.; Zhou, Z. H.; Zhang, C. H.; Wang, K. K.; Liu, N.; Wu, G. L. Enhanced microwave absorption performance of sulfur-doped hollow carbon microspheres with mesoporous shell as a broadband absorber. Compos. Commun. 2020, 19, 42–50.

[301]

Zhao, B.; Li, Y.; Ji, H. Y.; Bai, P. W.; Wang, S.; Fan, B. B.; Guo, X. Q.; Zhang, R. Lightweight graphene aerogels by decoration of 1D CoNi chains and CNTs to achieve ultra-wide microwave absorption. Carbon 2021, 176, 411–420.

[302]

Guo, T.; Chen, X. L.; Zeng, G. J.; Yang, J. L.; Huang, X. Z.; Li, C. G.; Tang, X. Z. Impregnating epoxy into N-doped-CNTs@carbon aerogel to prepare high-performance microwave-absorbing composites with extra-low filler content. Compos. Part A: Appl. Sci. Manuf. 2021, 140, 106159.

[303]

Guo, R.; Zheng, Q.; Wang, L. J.; Fan, Y. C.; Jiang, W. Porous N-doped Ni@SiO2/graphene network: Three-dimensional hierarchical architecture for strong and broad electromagnetic wave absorption. J. Mater. Sci. Technol. 2022, 106, 108–117.

[304]

Cai, Z. X.; Su, L.; Wang, H. J.; Xie, Q.; Gao, H. F.; Niu, M.; Lu, D. Hierarchically assembled carbon microtube@SiC nanowire/Ni nanoparticle aerogel for highly efficient electromagnetic wave absorption and multifunction. Carbon 2022, 191, 227–235.

[305]

Xiong, Y.; Xu, L. L.; Yang, C. X.; Sun, Q. F.; Xu, X. J. Implanting FeCo/C nanocages with tunable electromagnetic parameters in anisotropic wood carbon aerogels for efficient microwave absorption. J. Mater. Chem. A 2020, 8, 18863–18871.

[306]

Huang, W. H.; Qiu, Q.; Yang, X. F.; Zuo, S. W.; Bai, J. N.; Zhang, H. B.; Pei, K.; Che, R. C. Ultrahigh density of atomic CoFe-electron synergy in noncontinuous carbon matrix for highly efficient magnetic wave adsorption. Nano-Micro Lett. 2022, 14, 96.

[307]

Zhou, B.; Song, J. Z.; Wang, B.; Feng, Y. Z.; Liu, C. T.; Shen, C. Y. Robust double-layered ANF/MXene-PEDOT:PSS Janus films with excellent multi-source driven heating and electromagnetic interference shielding properties. Nano Res. 2022, 15, 9520–9530.

[308]

VahidMohammadi, A.; Rosen, J.; Gogotsi, Y. The world of two-dimensional carbides and nitrides (MXenes). Science 2021, 372, eabf1581.

[309]

Sun, C. H.; Li, Q. Y.; Jia, Z. R.; Wu, G. L.; Yin, P. F. Hierarchically flower-like structure assembled with porous nanosheet-supported MXene for ultrathin electromagnetic wave absorption. Chem. Eng. J. 2023, 454, 140277.

[310]

Hu, K. X.; Wang, H. H.; Zhang, X.; Huang, H.; Qiu, T.; Wang, Y.; Zhang, C. F.; Pan, L. M.; Yang, J. Ultralight Ti3C2Tx MXene foam with superior microwave absorption performance. Chem. Eng. J. 2021, 408, 127283.

[311]

Han, M. K.; Yin, X. W.; Hantanasirisakul, K.; Li, X. L.; Iqbal, A.; Hatter, C. B.; Anasori, B.; Koo, C. M.; Torita, T.; Soda, Y. et al. Anisotropic MXene aerogels with a mechanically tunable ratio of electromagnetic wave reflection to absorption. Adv. Optical Mater. 2019, 7, 1900267.

[312]

Wang, L. B.; Liu, H.; Lv, X. L.; Cui, G. Z.; Gu, G. X. Facile synthesis 3D porous MXene Ti3C2Tx@RGO composite aerogel with excellent dielectric loss and electromagnetic wave absorption. J. Alloys Compd. 2020, 828, 154251.

[313]

Ning, Y. H.; Yang, M. L.; Zhao, Z. B.; Sun, X. X.; Yang, S.; Wang, S. S.; Liang, L.; Cheng, Y. J.; Yin, W. L.; Yuan, Y. et al. Anisotropic electromagnetic absorption of the aligned Ti3C2Tx MXene/RGO nanocomposite foam. Compos. Sci. Technol. 2022, 227, 109609.

[314]

Wang, K. F.; Chu, W. S.; Li, H.; Chen, Y. J.; Cai, Y. L.; Liu, H. Z. Ferromagnetic Ti3CNCl2-decorated RGO aerogel: From 3D interconnecting conductive network construction to ultra-broadband microwave absorber with thermal insulation property. J. Colloid Interf. Sci. 2021, 604, 402–414.

[315]

Xu, H. L.; Yin, X. W.; Li, X. L.; Li, M. H.; Liang, S.; Zhang, L. T.; Cheng, L. F. Lightweight Ti2CTx MXene/poly(vinyl alcohol) composite foams for electromagnetic wave shielding with absorption-dominated feature. ACS Appl. Mater. Interfaces 2019, 11, 10198–10207.

[316]

Liu, J.; Zhang, H. B.; Xie, X.; Yang, R.; Liu, Z. S.; Liu, Y. F.; Yu, Z. Z. Multifunctional, superelastic, and lightweight MXene/polyimide aerogels. Small 2018, 14, 1802479.

[317]

Zhou, X. J.; Li, S. C.; Zhang, M. L.; Yuan, X. Y.; Wen, J. W.; Xi, H.; Wu, H. J.; Ma, X. H. MXene/PEO aerogels with two-hierarchically porous architecture for electromagnetic wave absorption. Carbon 2023, 204, 538–546.

[318]

Pan, F.; Rao, Y. P.; Batalu, D.; Cai, L.; Dong, Y. Y.; Zhu, X. J.; Shi, Y. Y.; Shi, Z.; Liu, Y. W.; Lu, W. Macroscopic electromagnetic cooperative network-enhanced MXene/Ni chains aerogel-based microwave absorber with ultra-low matching thickness. Nano-Micro Lett. 2022, 14, 140.

[319]

Cai, Z.; Ma, Y. F.; Zhao, K.; Yun, M. C.; Wang, X. Y.; Tong, Z. M.; Wang, M.; Suhr, J.; Xiao, L. T.; Jia, S. T. et al. Ti3C2Tx MXene/graphene oxide/Co3O4 nanorods aerogels with tunable and broadband electromagnetic wave absorption. Chem. Eng. J. 2023, 462, 142042.

[320]

Han, M. K.; Yin, X. W.; Hou, Z. X.; Song, C. Q.; Li, X. L.; Zhang, L. T.; Cheng, L. F. Flexible and thermostable graphene/SiC nanowire foam composites with tunable electromagnetic wave absorption properties. ACS Appl. Mater. Interfaces 2017, 9, 11803–11810.

[321]

Han, M. K.; Yin, X. W.; Duan, W. Y.; Ren, S.; Zhang, L. T.; Cheng, L. F. Hierarchical graphene/SiC nanowire networks in polymer-derived ceramics with enhanced electromagnetic wave absorbing capability. J. Eur. Ceram. Soc. 2016, 36, 2695–2703.

[322]

Liang, C. Y.; Wang, Z. J. Eggplant-derived SiC aerogels with high-performance electromagnetic wave absorption and thermal insulation properties. Chem. Eng. J. 2019, 373, 598–605.

[323]

Lv, X. Y.; Ye, F.; Cheng, L. F.; Zhang, L. T. 3D printing “wire-on-sphere” hierarchical SiC nanowires/SiC whiskers foam for efficient high-temperature electromagnetic wave absorption. J. Mater. Sci. Technol. 2022, 109, 94–104.

[324]

Zeng, G. J.; Li, X.; Wei, Y. J.; Guo, T.; Huang, X. Z.; Chen, X. L.; Tang, X. Z. Significantly toughened SiC foams with enhanced microwave absorption via in situ growth of Si3N4 nanowires. Chem. Eng. J. 2021, 426, 131745.

[325]

Li, H. H.; Yuan, X. Y.; Zhao, P. H.; Ping, Z. Y.; Liu, Y.; Guo, S. W. A synergistic strategy for SiC/C nanofibers@MXene with core-sheath microstructure toward efficient electromagnetic wave absorption and photothermal conversion. Appl. Surf. Sci. 2023, 613, 155998.

[326]

Jiang, Y.; Chen, Y.; Liu, Y. J.; Sui, G. X. Lightweight spongy bone-like graphene@SiC aerogel composites for high-performance microwave absorption. Chem. Eng. J. 2018, 337, 522–531.

[327]

Dai, D.; Lan, X. L.; Wang, Z. J. Hierarchical carbon fiber reinforced SiC/C aerogels with efficient electromagnetic wave absorption properties. Compos. Part B: Eng. 2023, 248, 110376.

[328]

Zhang, Y. W.; He, J.; Fu, Z. Y.; Yang, H. T. Lightweight porous NiCo-SiC aerogel with synergistically dielectric and magnetic losses to enhance electromagnetic wave absorption performances. J. Alloys Compd. 2022, 926, 166758.

[329]

Ruan, K. P.; Gu, J. W. Ordered alignment of liquid crystalline graphene fluoride for significantly enhancing thermal conductivities of liquid crystalline polyimide composite films. Macromolecules 2022, 55, 4134–4145.

[330]

Ruan, K. P.; Guo, Y. Q.; Gu, J. W. Liquid crystalline polyimide films with high intrinsic thermal conductivities and robust toughness. Macromolecules 2021, 54, 4934–4944.

[331]

Jiang, Q.; Qiao, Y.; Xiang, C. J.; Uddin, A.; Wu, L. W.; Qin, F. X. Metacomposite based on three-dimensional ferromagnetic microwire architecture for electromagnetic response. Adv. Compos. Hybrid Mater. 2022, 5, 3190–3200.

[332]

Phadtare, V. D.; Parale, V. G.; Lee, K. Y.; Kim, T.; Puri, V. R.; Park, H. H. Flexible and lightweight Fe3O4/polymer foam composites for microwave-absorption applications. J. Alloys Compd. 2019, 805, 120–129.

[333]

Liu, S.; Xu, Q.; Bai, Y. T.; Wang, X.; Liu, X. Y.; Yan, C. Q.; Wang, Y. H.; Qin, J. Q.; Cheng, P. Toward strong X-band-electromagnetic-wave-absorbing materials: Polyimide/carbon nanotube composite aerogel with radial needle-like porous structure. J. Mater. Chem. A 2022, 10, 25140–25147.

[334]

Zhao, B.; Li, X. P.; Zeng, S. P.; Wang, R. M.; Wang, L.; Che, R. C.; Zhang, R.; Park, C. B. Highly compressible polymer composite foams with thermal heating-boosted electromagnetic wave absorption abilities. ACS Appl. Mater. Interfaces 2020, 12, 50793–50802.

[335]

Yang, M. H.; Zhang, Y. F.; Wang, C.; Li, Y. J.; He, G.; Sang, G. L.; Lan, F. Y.; Xia, Z.; Xi, X. Q.; Wang, X. H. et al. SiC nanowire mesh in high-porosity silicon foam for enhanced electromagnetic wave absorption. ACS Appl. Nano Mater. 2022, 5, 16061–16069.

[336]

Cheng, H. R.; Xing, L. L.; Zuo, Y.; Pan, Y. M.; Huang, M. N.; Alhadhrami, A.; Ibrahim, M. M.; El-Bahy, Z. M.; Liu, C. T.; Shen, C. Y. et al. Constructing nickel chain/MXene networks in melamine foam towards phase change materials for thermal energy management and absorption-dominated electromagnetic interference shielding. Adv. Compos. Hybrid Mater. 2022, 5, 755–765.

[337]

Cao, Y.; Weng, M. M.; Mahmoud, M. H. H.; Elnaggar, A. Y.; Zhang, L.; El Azab, I. H.; Chen, Y.; Huang, M. N.; Huang, J. T.; Sheng, X. X. Flame-retardant and leakage-proof phase change composites based on MXene/polyimide aerogels toward solar thermal energy harvesting. Adv. Compos. Hybrid Mater. 2022, 5, 1253–1267.

[338]

Chamanehpour, E.; Sayadi, M. H.; Hajiani, M. A hierarchical graphitic carbon nitride supported by metal-organic framework and copper nanocomposite as a novel bifunctional catalyst with long-term stability for enhanced carbon dioxide photoreduction under solar light irradiation. Adv. Compos. Hybrid Mater. 2022, 5, 2461–2477.

[339]

Ma, G. S.; Xia, L.; Yang, H.; Wang, X. Y.; Zhang, T.; Huang, X. X.; Xiong, L.; Qin, C. L.; Wen, G. W. Multifunctional lithium aluminosilicate/CNT composite for gas filtration and electromagnetic wave absorption. Chem. Eng. J. 2021, 418, 129429.

[340]

Hu, F.; Wu, S. Y.; Sun, Y. G. Hollow-structured materials for thermal insulation. Adv. Mater. 2019, 31, 1801001.

[341]

Cao, Y. S.; Cheng, Z.; Wang, R. F.; Liu, X. Y.; Zhang, T. R.; Fan, F.; Huang, Y. Multifunctional graphene/carbon fiber aerogels toward compatible electromagnetic wave absorption and shielding in gigahertz and terahertz bands with optimized radar cross section. Carbon 2022, 199, 333–346.

[342]

Gu, W. H.; Sheng, J. Q.; Huang, Q. Q.; Wang, G. H.; Chen, J. B.; Ji, G. B. Environmentally friendly and multifunctional shaddock peel-based carbon aerogel for thermal-insulation and microwave absorption. Nano-Micro Lett. 2021, 13, 102.

[343]

Gao, Y.; Lei, Z. K.; Pan, L. N.; Wu, Q.; Zhuang, X. H.; Tan, G. G.; Ning, M. Q.; Man, Q. K. Lightweight chitosan-derived carbon/rGO aerogels loaded with hollow Co1−xNixO nanocubes for superior electromagnetic wave absorption and heat insulation. Chem. Eng. J. 2023, 457, 141325.

[344]

Lu, X. K.; Zhu, D. M.; Li, X.; Wang, Y. J. Architectural design and interfacial engineering of CNTs@ZnIn2S4 heterostructure/cellulose aerogel for efficient electromagnetic wave absorption. Carbon 2022, 197, 209–217.

[345]

Wang, D. D.; Jin, J.; Guo, Y.; Liu, H.; Guo, Z. H.; Liu, C. T.; Shen, C. Y. Lightweight waterproof magnetic carbon foam for multifunctional electromagnetic wave absorbing material. Carbon 2023, 202, 464–474.

[346]

Guo, Y.; Wang, D. D.; Bai, T. T.; Liu, H.; Zheng, Y. J.; Liu, C. T.; Shen, C. Y. Electrostatic self-assembled NiFe2O4/Ti3C2Tx MXene nanocomposites for efficient electromagnetic wave absorption at ultralow loading level. Adv. Compos. Hybrid Mater. 2021, 4, 602–613.

[347]

Yang, F.; Yao, J. R.; Shen, Z.; Ma, Q.; Peng, G. Y.; Zhou, J. T.; Yao, Z. J.; Tao, X. W. Multifunctional carbon nanotubes-based hybrid aerogels with high-efficiency electromagnetic wave absorption at elevated temperature. J. Colloid Interf. Sci. 2023, 638, 843–854.

[348]

Yang, F.; Yao, J. R.; Jin, L. Q.; Huyan, W. J.; Zhou, J. T.; Yao, Z. J.; Liu, P. J.; Tao, X. W. Multifunctional Ti3C2Tx MXene/aramid nanofiber/polyimide aerogels with efficient thermal insulation and tunable electromagnetic wave absorption performance under thermal environment. Compos. Part B: Eng. 2022, 243, 110161.

[349]

Dong, Y. Y.; Zhu, X. J.; Pan, F.; Xiang, Z.; Zhang, X.; Cai, L.; Lu, W. Fire-retardant and thermal insulating honeycomb-like NiS2/SnS2 nanosheets@3D porous carbon hybrids for high-efficiency electromagnetic wave absorption. Chem. Eng. J. 2021, 426, 131272.

[350]

Xu, D. W.; Ren, Y. M.; Guo, X. Q.; Feng, D. S.; Yang, R.; Zhao, B.; Zhang, R. Synthesis of super-hydrophobic and self-cleaning magnetic graphene aerogel with excellent microwave absorption properties. Diam. Relat. Mater. 2022, 126, 109045.

[351]

He, J. Z.; Li, J. J.; Zhang, J. L.; Yi, P.; Sun, X.; Han, G. Y.; Li, X. F.; Zhang, R. B.; Liu, X. F.; Yu, R. H. Metal ions-assisted construction of SiO2/MXene/Fe3O4 aerogel as multifunctional electromagnetic wave absorbing material. Carbon 2023, 214, 118266.

[352]

Li, Y.; Liu, X. F.; Nie, X. Y.; Yang, W. W.; Wang, Y. D.; Yu, R. H.; Shui, J. L. Multifunctional organic–inorganic hybrid aerogel for self-cleaning, heat-insulating, and highly efficient microwave absorbing material. Adv. Funct. Mater. 2019, 29, 1807624.

[353]

Liu, D. S.; Mou, P. P.; Wei, Q. Y.; Xu, Y.; Wan, G. P.; Wang, G. Z. Nanowires/nanohelices hybrid carbon aerogels as the lightweight and hydrophobic microwave absorbers with excellent electrothermal properties. Carbon 2023, 204, 7–16.

[354]

Song, L. M.; Wu, C. W.; Zhi, Q.; Zhang, F.; Song, B. Z.; Guan, L.; Chen, Y. Q.; Wang, H. L.; Zhang, R.; Fan, B. B. Multifunctional SiC aerogel reinforced with nanofibers and nanowires for high-efficiency electromagnetic wave absorption. Chem. Eng. J. 2023, 467, 143518.

[355]

Zhao, Z. H.; Lan, D.; Zhang, L. M.; Wu, H. J. A flexible, mechanically strong, and anti-corrosion electromagnetic wave absorption composite film with periodic electroconductive patterns. Adv. Funct. Mater. 2022, 32, 2111045.

[356]

Li, S. Z.; Ma, L.; Lei, Z. X.; Hua, A.; Zhang, A. Q.; Song, Y. H.; Liu, F. C.; Geng, D. Y.; Liu, W.; Ma, S. et al. Bifunctional two-dimensional nanocomposite for electromagnetic wave absorption and comprehensive anti-corrosion. Carbon 2022, 186, 520–529.

[357]

Hu, D. W.; Jiang, P. K.; Huang, X. Y. Mixed-dimensional engineering of 3D MXene ultralight hybrid aerogel for anticorrosive and microwave absorption applications. Compos. Part A: Appl. Sci. Manuf. 2022, 156, 106865.

[358]

Wang, Y.; Di, X. C.; Chen, J.; She, L. N.; Pan, H. G.; Zhao, B.; Che, R. C. Multi-dimensional C@NiCo-LDHs@Ni aerogel: Structural and componential engineering towards efficient microwave absorption, anti-corrosion and thermal-insulation. Carbon 2022, 191, 625–635.

[359]

Ren, H. S.; Li, T.; Wang, H. G.; Guo, Z. H.; Chen, T. L.; Meng, F. B. Two birds with one stone: Superhelical chiral polypyrrole towards high-performance electromagnetic wave absorption and corrosion protection. Chem. Eng. J. 2022, 427, 131582.

[360]

Xie, T. W.; Li, S. Z.; Ma, L.; Li, J.; Pang, S. Y.; Hu, C. L.; Zhao, R. D.; Tang, S. F. Bimetallic MOF-derived composites with broad electromagnetic wave absorption and strong corrosion resistance. Carbon 2023, 208, 33–42.

[361]

Song, G. L.; Gai, L. X.; Yang, K. K.; Wang, X. T.; An, Q. D.; Xiao, Z. Y.; Zhai, S. R. A versatile N-doped honeycomb-like carbonaceous aerogels loaded with bimetallic sulfide and oxide for superior electromagnetic wave absorption and supercapacitor applications. Carbon 2021, 181, 335–347.

[362]

Gai, L. X.; Song, G. L.; Li, Y. Y.; Niu, W. S.; Qin, L. F.; An, Q. D.; Xiao, Z. Y.; Zhai, S. R. Versatile bimetal sulfides nanoparticles-embedded N-doped hierarchical carbonaceous aerogels (N-NixSy/CoxSy@C) for excellent supercapacitors and microwave absorption. Carbon 2021, 179, 111–124.

[363]

Qiao, H. Y.; Qin, W. J.; Chen, J. J.; Feng, L.; Gu, C. S.; Yang, M.; Tian, Z. H.; Chen, J. X.; Li, X. X.; Wang, Y. L. et al. AuCu decorated MXene/RGO aerogels towards wearable thermal management and pressure sensing applications. Mater. Design 2023, 228, 111814.

[364]

Bi, S.; Tang, J.; Wang, D. J.; Su, Z. A.; Hou, G. L.; Li, H.; Li, J. Lightweight non-woven fabric graphene aerogel composite matrices for assembling carbonyl iron as flexible microwave absorbing textiles. J. Mater. Sci. Mater. Electron. 2019, 30, 17137–17144.

Publication history
Copyright
Acknowledgements

Publication history

Received: 16 July 2023
Revised: 06 August 2023
Accepted: 21 August 2023
Published: 14 October 2023
Issue date: March 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgement

This work was financially supported by the National Natural Science Foundation of China (No. 52274362), the Doctorial Foundation of Henan University of Technology (Nos. 2021BS030 and 2020BS030), the Key R&D projects of Henan Province (No. 221111230800), the Innovative Funds Plan of Henan University of Technology (No. 2021ZKCJ05), the Key Scientific and Technological Research Projects in Henan Province (No. 222102240091), the Natural Science Foundation from the Department of Science and Technology of Henan Province (No. 232300420309), the Taishan Scholars and Young Experts Program of Shandong Province (No. tsqn202103057), and the Key Laboratory of Engineering Dielectrics and Its Application (Harbin University of Science and Technology), Ministry of Education.

Return