Journal Home > Volume 17 , Issue 3

Hydrogen economy based on electrochemical water splitting exemplified one of the most promising means for overcoming the rapid consumption of fossil fuels and the serious deterioration of global climate. The development of earth-abundant, efficient, and durable electrocatalysts for hydrogen evolution reaction (HER) plays a vital role in the commercialization of water electrolysis. Regard, the self-supported electrode with unique nitrogen-doped reduced graphene oxide (N-rGO) nanoflakes and WS2 hierarchical nanoflower that were grown directly on carbon cloth (CC) substrate (WS2/N-rGO/CC) was successfully synthesized using a facile dual-step hydrothermal approach. The as-synthesized 50% 1T/2H-WS2/N-rGO/CC (WGC), which possessed high metallic 1T phase of 57% not only efficiently exposed more active sites and accelerated mass/charge diffusion, but also endowed excellent structural lustiness, robust stability, and durability at a high current density. As a result, the 50% WGC exhibited lower overpotentials and Tafel slopes of 21.13 mV (29.55 mV∙dec−1) and 80.35 mV (137.02 mV∙dec−1) as compared to 20% Pt-C/CC, respectively for catalyzing acidic and alkaline hydrogen evolution reactions. Pivotally, the as-synthesized 50% WGC also depicted long-term stability for more than 8 h in the high-current-density regions (100 and 220 mA∙cm−2). In brief, this work reveals a self-supported electrode as an extraordinary alternative to Pt-based catalysts for HER in a wide pH range, while paving a facile strategy to develop advanced electrocatalysts with abundant heterointerfaces for practical applications in energy-saving hydrogen production.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Synergistic integration of self-supported 1T/2H-WS2 and nitrogen-doped rGO on carbon cloth for pH-universal electrocatalytic hydrogen evolution

Show Author's information Feng Ming Yap1,2Jian Yiing Loh1,2Wee-Jun Ong1,2,3,4,5( )
School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan 43900, Malaysia
Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT), Xiamen University Malaysia, Selangor Darul Ehsan 43900, Malaysia
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
Gulei Innovation Institute, Xiamen University, Zhangzhou 363200, China
Shenzhen Research Institute of Xiamen University, Shenzhen 518057, China

Abstract

Hydrogen economy based on electrochemical water splitting exemplified one of the most promising means for overcoming the rapid consumption of fossil fuels and the serious deterioration of global climate. The development of earth-abundant, efficient, and durable electrocatalysts for hydrogen evolution reaction (HER) plays a vital role in the commercialization of water electrolysis. Regard, the self-supported electrode with unique nitrogen-doped reduced graphene oxide (N-rGO) nanoflakes and WS2 hierarchical nanoflower that were grown directly on carbon cloth (CC) substrate (WS2/N-rGO/CC) was successfully synthesized using a facile dual-step hydrothermal approach. The as-synthesized 50% 1T/2H-WS2/N-rGO/CC (WGC), which possessed high metallic 1T phase of 57% not only efficiently exposed more active sites and accelerated mass/charge diffusion, but also endowed excellent structural lustiness, robust stability, and durability at a high current density. As a result, the 50% WGC exhibited lower overpotentials and Tafel slopes of 21.13 mV (29.55 mV∙dec−1) and 80.35 mV (137.02 mV∙dec−1) as compared to 20% Pt-C/CC, respectively for catalyzing acidic and alkaline hydrogen evolution reactions. Pivotally, the as-synthesized 50% WGC also depicted long-term stability for more than 8 h in the high-current-density regions (100 and 220 mA∙cm−2). In brief, this work reveals a self-supported electrode as an extraordinary alternative to Pt-based catalysts for HER in a wide pH range, while paving a facile strategy to develop advanced electrocatalysts with abundant heterointerfaces for practical applications in energy-saving hydrogen production.

Keywords: water splitting, pH-universal, self-supported electrocatalyst, phase engineering, carbon-based substrate

References(78)

[1]

Choi, C. L.; Feng, J.; Li, Y. G.; Wu, J.; Zak, A.; Tenne, R.; Dai, H. J. WS2 nanoflakes from nanotubes for electrocatalysis. Nano Res. 2013, 6, 921–928.

[2]

Geng, S.; Tian, F. Y.; Li, M. G.; Liu, Y. Q.; Sheng, J.; Yang, W. W.; Yu, Y. S.; Hou, Y. L. Activating interfacial S sites of MoS2 boosts hydrogen evolution electrocatalysis. Nano Res. 2022, 15, 1809–1816.

[3]

Ma, B.; Yang, Z. C.; Chen, Y. T.; Yuan, Z. H. Nickel cobalt phosphide with three-dimensional nanostructure as a highly efficient electrocatalyst for hydrogen evolution reaction in both acidic and alkaline electrolytes. Nano Res. 2019, 12, 375–380.

[4]

Sun, C. C.; Dong, Q. C.; Yang, J.; Dai, Z. Y.; Lin, J. J.; Chen, P.; Huang, W.; Dong, X. C. Metal-organic framework derived CoSe2 nanoparticles anchored on carbon fibers as bifunctional electrocatalysts for efficient overall water splitting. Nano Res. 2016, 9, 2234–2243.

[5]

Zhou, J.; Wang, F. F.; Wang, H. Q.; Hu, S. X.; Zhou, W. J.; Liu, H. Ferrocene-induced switchable preparation of metal–nonmetal codoped tungsten nitride and carbide nanoarrays for electrocatalytic HER in alkaline and acid media. Nano Res. 2023, 16, 2085–2093.

[6]

Lu, J. J.; Yin, S. B.; Shen, P. K. Carbon-encapsulated electrocatalysts for the hydrogen evolution reaction. Electrochem. Energ. Rev. 2019, 2, 105–127.

[7]

Chen, Z. L.; Qing, H.; Zhou, K.; Sun, D. L.; Wu, R. B. Metal-organic framework-derived nanocomposites for electrocatalytic hydrogen evolution reaction. Prog. Mater. Sci. 2020, 108, 100618.

[8]

Jiao, S. L.; Fu, X. W.; Wang, S. Y.; Zhao, Y. Perfecting electrocatalysts via imperfections: Towards the large-scale deployment of water electrolysis technology. Energy Environ. Sci 2021, 14, 1722–1770.

[9]

Jia, J. Y.; Seitz, L. C.; Benck, J. D.; Huo, Y. J.; Chen, Y. S.; Ng, J. W. D.; Bilir, T.; Harris, J. S.; Jaramillo, T. F. Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30%. Nat. Commun 2016, 7, 13237.

[10]

Zhang, B.; Zheng, Y. J.; Ma, T.; Yang, C. D.; Peng, Y. F.; Zhou, Z. H.; Zhou, M.; Li, S.; Wang, Y. H.; Cheng, C. Designing MOF nanoarchitectures for electrochemical water splitting. Adv. Mater. 2021, 33, 2006042.

[11]

Qu, Y. T.; Chen, B. X.; Li, Z. J.; Duan, X. Z.; Wang, L. G.; Lin, Y.; Yuan, T. W.; Zhou, F. Y.; Hu, Y. D.; Yang, Z. K. et al. Thermal emitting strategy to synthesize atomically dispersed Pt metal sites from bulk Pt metal. J. Am. Chem. Soc. 2019, 141, 4505–4509.

[12]

Wang, X. Y.; He, Y.; Han, X. P.; Zhao, J.; Li, L. L.; Zhang, J. F.; Zhong, C.; Deng, Y. D.; Hu, W. B. Engineering cobalt sulfide/oxide heterostructure with atomically mixed interfaces for synergistic electrocatalytic water splitting. Nano Res. 2022, 15, 1246–1253.

[13]

Zhang, J. T.; Zhang, Z.; Ji, Y. F.; Yang, J. D.; Fan, K.; Ma, X. Z.; Wang, C.; Shu, R. Y.; Chen, Y. Surface engineering induced hierarchical porous Ni12P5-Ni2P polymorphs catalyst for efficient wide pH hydrogen production. Appl. Catal. B Environ. 2021, 282, 119609.

[14]

Anantharaj, S.; Noda, S.; Jothi, V. R.; Yi, S.; Driess, M.; Menezes, P. W. Strategies and perspectives to catch the missing pieces in energy-efficient hydrogen evolution reaction in alkaline media. Angew. Chem., Int. Ed. 2021, 60, 18981–19006.

[15]

Du, X. Q.; Zhang, C. Y.; Wang, H. B.; Wang, Y. H.; Zhang, X. S. Controlled synthesis of Co9S8@NiCo2O4 nanorod arrays as binder-free electrodes for water splitting with impressive performance. J. Alloys Compd. 2021, 885, 160972.

[16]

Zhang, L. C.; Liang, J.; Yue, L. C.; Dong, K.; Li, J.; Zhao, D. L.; Li, Z. R.; Sun, S. J.; Luo, Y. S.; Liu, Q. et al. Benzoate anions-intercalated NiFe-layered double hydroxide nanosheet array with enhanced stability for electrochemical seawater oxidation. Nano Res. Energy 2022, 1, e9120028.

[17]

Chen, Z. L.; Ha, Y.; Liu, Y.; Wang, H.; Yang, H. Y.; Xu, H. B.; Li, Y. J.; Wu, R. B. In situ formation of cobalt nitrides/graphitic carbon composites as efficient bifunctional electrocatalysts for overall water splitting. ACS Appl. Mater. Interfaces 2018, 10, 7134–7144.

[18]

Li, H. Q.; Chen, L.; Jin, P. F.; Li, Y. F.; Pang, J. X.; Hou, J.; Peng, S. L.; Wang, G.; Shi, Y. L. NiCo2S4 microspheres grown on N, S co-doped reduced graphene oxide as an efficient bifunctional electrocatalyst for overall water splitting in alkaline and neutral pH. Nano Res. 2022, 15, 950–958.

[19]

Zhang, L.; Li, J.; Yang, Z. H.; Sun, L.; Chen, G. J.; An, W. C.; Cheng, H. Y.; Wang, H. B.; Wang, X. G.; Chen, Y. N. et al. Phosphorus-doping-induced optimization of atomic hydrogen binding energy in MoSe2 under high coverage for efficient electrocatalytic hydrogen evolution reactions. ChemistrySelect 2021, 6, 1305–1312.

[20]

Gu, L. F.; Chen, J. J.; Zhou, T.; Lu, X. F.; Li, G. R. Engineering cobalt oxide by interfaces and pore architectures for enhanced electrocatalytic performance for overall water splitting. Nanoscale 2020, 12, 11201–11208.

[21]

Yu, J.; Zhong, Y. J.; Wu, X. H.; Sunarso, J.; Ni, M.; Zhou, W.; Shao, Z. P. Bifunctionality from synergy: CoP nanoparticles embedded in amorphous CoOx nanoplates with heterostructures for highly efficient water electrolysis. Adv. Sci. 2018, 5, 1800514.

[22]

Duan, C. P.; Wang, L. L.; Liu, J. P.; Qu, Y. N.; Gao, J.; Yang, Y. Y.; Wang, B.; Li, J. H.; Zheng, L. L.; Li, M. Z. et al. 3D carbon electrode with hierarchical nanostructure based on NiCoP core-layered double hydroxide shell for supercapacitors and hydrogen evolution. ChemElectroChem 2021, 8, 2272–2281.

[23]

Chakraborty, B.; Beltrán-Suito, R.; Hlukhyy, V.; Schmidt, J.; Menezes, P. W.; Driess, M. Crystalline copper selenide as a reliable non-noble electro(pre)catalyst for overall water splitting. ChemSusChem 2020, 13, 3222–3229.

[24]

Surendranath, Y.; Kanan, M. W.; Nocera, D. G. Mechanistic studies of the oxygen evolution reaction by a cobalt-phosphate catalyst at neutral pH. J. Am. Chem. Soc. 2010, 132, 16501–16509.

[25]

Indra, A.; Menezes, P. W.; Zaharieva, I.; Dau, H.; Driess, M. Detecting structural transformation of cobalt phosphonate to active bifunctional catalysts for electrochemical water-splitting. J. Mater. Chem. A 2020, 8, 2637–2643.

[26]

Ngo, Y. L. T.; Bhamu, K. C.; Voronova, A.; Jana, J.; Kang, S. G.; Chung, J. S.; Choi, W. M.; Jang, J. H.; Hur, S. H.; Seo, B. Carbide-directed enhancement of electrochemical hydrogen evolution reaction on tungsten carbide-oxide heterostructure. Chem. Eng. J. 2022, 450, 137915.

[27]

Ye, R. Q.; del Angel-Vicente, P.; Liu, Y. Y.; Arellano-Jimenez, M. J.; Peng, Z. W.; Wang, T.; Li, Y. L.; Yakobson, B. I.; Wei, S. H.; Yacaman, M. J. et al. High-performance hydrogen evolution from MoS2(1−x)Px solid solution. Adv. Mater. 2016, 28, 1427–1432.

[28]

Xia, C.; Jiang, Q.; Zhao, C.; Hedhili, M. N.; Alshareef, H. N. Selenide-based electrocatalysts and scaffolds for water oxidation applications. Adv. Mater. 2016, 28, 77–85.

[29]

Sun, X. R.; Wang, S. B.; Hou, Y. D.; Lu, X. F.; Zhang, J. J.; Wang, X. C. Self-supporting metal-organic framework-based hydrogen and oxygen electrocatalysts. J. Mater. Chem. A 2023, 11, 13089–13106.

[30]

Katsounaros, I.; Cherevko, S.; Zeradjanin, A. R.; Mayrhofer, K. J. J. Oxygen electrochemistry as a cornerstone for sustainable energy conversion. Angew. Chem., Int. Ed. 2014, 53, 102–121.

[31]

Dai, Z. X.; Du, X. Q.; Wang, Y. H.; Han, X. H.; Zhang, X. S. Promoting urea oxidation and water oxidation through interface construction on a CeO2@CoFe2O4 heterostructure. Dalton Trans. 2021, 50, 12301–12307.

[32]

Cao, Y.; Wang, T.; Li, X.; Zhang, L. C.; Luo, Y. L.; Zhang, F.; Asiri, A. M.; Hu, J. M.; Liu, Q.; Sun, X. P. A hierarchical CuO@NiCo layered double hydroxide core–shell nanoarray as an efficient electrocatalyst for the oxygen evolution reaction. Inorg. Chem. Front. 2021, 8, 3049–3054.

[33]

Spetter, D.; Tahir, M. N.; Hilgert, J.; Khan, I.; Qurashi, A.; Lu, H.; Weidner, T.; Tremel, W. Solvothermal synthesis of molybdenum-tungsten oxides and their application for photoelectrochemical water splitting. ACS Sustainable Chem. Eng. 2018, 6, 12641–12649.

[34]

Tan, C. L.; Cao, X. H.; Wu, X. J.; He, Q. Y.; Yang, J.; Zhang, X.; Chen, J. Z.; Zhao, W.; Han, S. K.; Nam, G. H. et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 2017, 117, 6225–6331.

[35]

Jiang, X. X.; Song, Y.; Dou, M. L.; Ji, J.; Wang, F. Selective growth of vertically aligned two-dimensional MoS2/WS2 nanosheets with decoration of Bi2S3 nanorods by microwave-assisted hydrothermal synthesis: Enhanced photo-and electrochemical performance for hydrogen evolution reaction. Int. J. Hydrogen Energy 2018, 43, 21290–21298.

[36]

Liang, L. B.; Meunier, V. First-principles Raman spectra of MoS2, WS2 and their heterostructures. Nanoscale 2014, 6, 5394–5401.

[37]

Khan, A.; Khan, I.; Khan, M. Y.; Dafallah, H.; Qurashi, A. Facile synthesis of 1T-WS2/graphite nanocomposite for efficient solar-driven oxygen evolution reaction. Int. J. Hydrogen Energy 2020, 45, 24045–24053.

[38]

Cheng, L.; Huang, W. J.; Gong, Q. F.; Liu, C. H.; Liu, Z.; Li, Y. G.; Dai, H. J. Ultrathin WS2 nanoflakes as a high-performance electrocatalyst for the hydrogen evolution reaction. Angew. Chem. 2014, 126, 7994–7997.

[39]

Zhang, Y. X.; Kuwahara, Y.; Mori, K.; Louis, C.; Yamashita, H. Hybrid phase 1T/2H-MoS2 with controllable 1T concentration and its promoted hydrogen evolution reaction. Nanoscale 2020, 12, 11908–11915.

[40]

Zhang, K.; Jiang, P. P.; Gu, Q.; Leng, Y.; Zhang, P. B. Design of a high-efficiency bifunctional electrocatalyst: Rich-nitrogen-doped reduced graphene oxide-modified carbon cloth-growing nickel-iron complex oxides for overall water splitting. Energy Fuels 2022, 36, 4911–4923.

[41]

Peng, L. W.; Wang, Y. X.; Masood, I.; Zhou, B.; Wang, Y. F.; Lin, J.; Qiao, J. L.; Zhang, F. Y. Self-growing Cu/Sn bimetallic electrocatalysts on nitrogen-doped porous carbon cloth with 3D-hierarchical honeycomb structure for highly active carbon dioxide reduction. Appl. Catal. B Environ. 2020, 264, 118447.

[42]

Ong, W. J.; Tan, L. L.; Chai, S. P.; Yong, S. T.; Mohamed, A. R. Surface charge modification via protonation of graphitic carbon nitride (g-C3N4) for electrostatic self-assembly construction of 2D/2D reduced graphene oxide (rGO)/g-C3N4 nanostructures toward enhanced photocatalytic reduction of carbon dioxide to methane. Nano Energy 2015, 13, 757–770.

[43]

Chowdhury, S. R.; Maiyalagan, T. Enhanced electro-catalytic activity of nitrogen-doped reduced graphene oxide supported PdCu nanoparticles for formic acid electro-oxidation. Int. J. Hydrogen Energy 2019, 44, 14808–14819.

[44]

Shao, R. Y.; Chen, L. W.; Yan, Q. Q.; Zeng, W. J.; Yin, P.; Liang, H. W. Is Pt/C more electrocatalytic than Ru/C for hydrogen evolution in alkaline electrolytes. ACS Appl. Energy Mater. 2021, 4, 4284–4289.

[45]

Wang, X. Q.; Chen, Y. F.; Yu, B.; Wang, Z. G.; Wang, H. Q.; Sun, B. C.; Li, W. X.; Yang, D. X.; Zhang, W. L. Hierarchically porous W-doped CoP nanoflake arrays as highly efficient and stable electrocatalyst for pH-universal hydrogen evolution. Small 2019, 15, 1902613.

[46]

Zhao, X.; Ma, X.; Sun, J.; Li, D. H.; Yang, X. R. Enhanced catalytic activities of surfactant-assisted exfoliated WS2 nanodots for hydrogen evolution. ACS Nano. 2016, 10, 2159–2166.

[47]

Chen, T. Y.; Chang, Y. H.; Hsu, C. L.; Wei, K. H.; Chiang, C. Y.; Li, L. J. Comparative study on MoS2 and WS2 for electrocatalytic water splitting. Int. J. Hydrogen Energy 2013, 38, 12302–12309.

[48]

Alam, S. N.; Sharma, N.; Kumar, L. Synthesis of graphene oxide (GO) by modified hummers method and its thermal reduction to obtain reduced graphene oxide (rGO). Graphene 2017, 6, 1–18.

[49]

Tao, Y.; Wang, B.; Qiao, H.; Huang, Z. Y.; Qi, X. Enhanced photoresponse of tungsten disulfide-reduced graphene oxide hybrid for photoelectrochemical photodetectors. J. Mater. Sci. Mater. Electron. 2019, 30, 11499–11507.

[50]

Ouyang, W. P.; Zeng, D. R.; Yu, X.; Xie, F. Y.; Zhang, W. H.; Chen, J.; Yan, J.; Xie, F. J.; Wang, L.; Meng, H. et al. Exploring the active sites of nitrogen-doped graphene as catalysts for the oxygen reduction reaction. Int. J. Hydrogen Energy 2014, 39, 15996–16005.

[51]

Li, G. P.; Wang, Y. L.; Bi, J. T.; Huang, X.; Mao, Y. F.; Luo, L.; Hao, H. X. Partial oxidation strategy to synthesize WS2/WO3 heterostructure with enhanced adsorption performance for organic dyes: Synthesis, modelling, and mechanism. Nanomaterials 2020, 10, 278.

[52]

Peng, T. F.; Sun, H. J.; Peng, T. J.; Liu, B.; Zhao, X. L. Structural regulation and electroconductivity change of nitrogen-doping reduced graphene oxide prepared using p-phenylene diamine as modifier. Nanomaterials 2017, 7, 292.

[53]

Bohloli, A.; Asli, M. D.; Moniri, E.; Gh, A. B. Modification of WS2 nanosheets with beta-cyclodextrone and N-isopropylacrylamide polymers for tamoxifen adsorption and investigation of in vitro drug release. Res. Chem. Intermed. 2021, 47, 1955–1978.

[54]

Hazarika, S. J.; Mohanta, D. Inorganic fullerene-type WS2 nanoparticles: Processing, characterization, and its photocatalytic performance on malachite green. Appl. Phys. A 2017, 123, 381.

[55]

Ali, I.; Basheer, A. A.; Mbianda, X. Y.; Burakov, A.; Galunin, E.; Burakova, I.; Mkrtchyan, E.; Tkachev, A.; Grachev, V. Graphene based adsorbents for remediation of noxious pollutants from wastewater. Environ. Int. 2019, 127, 160–180.

[56]

Xu, X.; Yuan, T.; Zhou, Y. K.; Li, Y. W.; Lu, J. M.; Tian, X. H.; Wang, D. L.; Wang, J. Facile synthesis of boron and nitrogen-doped graphene as efficient electrocatalyst for the oxygen reduction reaction in alkaline media. Int. J. Hydrogen Energy 2014, 39, 16043–16052.

[57]

Gong, Y. N.; Li, D. L.; Fu, Q.; Pan, C. X. Influence of graphene microstructures on electrochemical performance for supercapacitors. Prog. Nat. Sci. Mater. Int. 2015, 25, 379–385.

[58]

de la Roche-Yepes, J.; González Carmona, J. M.; Restrepo-Parra, E.; Sánchez-Sthepa, H. Corrosion resistance and tribological behavior of WS2-Ti coatings by Ti cathode power changes in magnetron co-sputtering. Dyna 2018, 85, 221–226.

[59]

Lai, Z. C.; He, Q. Y.; Tran, T. H.; Repaka, D. V. M.; Zhou, D. D.; Sun, Y.; Xi, S. B.; Li, Y. X.; Chaturvedi, A.; Tan, C. L. et al. Metastable 1T′-phase group VIB transition metal dichalcogenide crystals. Nat. Mater. 2021, 20, 1113–1120.

[60]

Sudhakar, S.; Jaiswal, K. K.; Peera S, G.; Ramaswamy, A. P. Green synthesis of N-graphene by hydrothermal-microwave irradiation for alkaline fuel cell application. Int. J. Recent Sci. Res. 2017, 8, 19049–19053.

[61]

Huang, Y.; Jiang, Y.; Ma, Z. F.; Zhang, Y.; Zheng, X. F.; Yan, X. M.; Deng, X. Q.; Xiao, W.; Tang, H. L. Seaweed-liked WS2/rGO enabling ultralong cycling life and enhanced rate capability for lithium-ion batteries. Nanomaterials 2019, 9, 469.

[62]

Yang, J.; Voiry, D.; Ahn, S. J.; Kang, D.; Kim, A. Y.; Chhowalla, M.; Shin, H. S. Two-dimensional hybrid nanosheets of tungsten disulfide and reduced graphene oxide as catalysts for enhanced hydrogen evolution. Angew. Chem. 2013, 125, 13996–13999.

[63]

Guo, Z.; Sun, T. S.; Li, Y. H.; Kang, H. L.; Che, Y. H.; Zhang, Y.; Lu, J. L. Large surface and pore structure of mesoporous WS2 and RGO nanosheets with small amount of Pt as a highly efficient electrocatalyst for hydrogen evolution. Int. J. Hydrogen Energy 2018, 43, 22905–22916.

[64]

Akple, M. S.; Low, J.; Wageh, S.; Al-Ghamdi, A. A.; Yu, J. G.; Zhang, J. Enhanced visible light photocatalytic H2-production of g-C3N4/WS2 composite heterostructures. Appl. Surf. Sci. 2015, 358, 196–203.

[65]

Mahler, B.; Hoepfner, V.; Liao, K.; Ozin, G. A. Colloidal synthesis of 1T-WS2 and 2H-WS2 nanosheets: Applications for photocatalytic hydrogen evolution. J. Am. Chem. Soc. 2014, 136, 14121–14127.

[66]

Liu, Q.; Li, X. L.; Xiao, Z. R.; Zhou, Y.; Chen, H. P.; Khalil, A.; Xiang, T.; Xu, J. Q.; Chu, W. S.; Wu, X. J. et al. Stable metallic 1T-WS2 nanoribbons intercalated with ammonia ions: The correlation between structure and electrical/optical properties. Adv. Mater. 2015, 27, 4837–4844.

[67]

Voiry, D.; Yamaguchi, H.; Li, J. W.; Silva, R.; Alves, D. C. B.; Fujita, T.; Chen, M. W.; Asefa, T.; Shenoy, V. B.; Eda, G. et al. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat. Mater. 2013, 12, 850–855.

[68]

Bi, X. Y.; Xu, J.; Zhang, W. T.; Tang, D. H.; Zhang, K.; Xin, S. G.; Zhao, Z. Novel WS2/Co9S8 nanoparticles supported on N, S co-doped mesoporous carbon as efficient electrocatalyst for hydrogen evolution reaction. ChemistrySelect 2023, 8, e202300877.

[69]

He, Q. Y.; Wang, L. L.; Yin, K.; Luo, S. L. Vertically aligned ultrathin 1T-WS2 nanosheets enhanced the electrocatalytic hydrogen evolution. Nanoscale Res. Lett. 2018, 13, 167.

[70]

Wang, T. L.; Sun, C. L.; Yang, M. Z.; Zhang, L.; Shao, Y. L.; Wu, Y. Z.; Hao, X. P. Enhanced reversible lithium ion storage in stable 1T@2H WS2 nanosheet arrays anchored on carbon fiber. Electrochim. Acta 2018, 259, 1–8.

[71]

Mu, Z. J.; Gao, S.; Huo, S. H.; Zhao, K. N. Mixed-phase 1T/2H-WS2 nanosheets on N-doped multichannel carbon nanofiber as current collector-integrated electrode for potassium battery anode. J. Colloid Interface Sci. 2023, 630, 823–832.

[72]

Silva, V. D.; Simões, T. A.; Grilo, J. P. F.; Medeiros, E. S.; Macedo, D. A. Impact of the NiO nanostructure morphology on the oxygen evolution reaction catalysis. J. Mater. Sci. 2020, 55, 6648–6659.

[73]

Ma, Y. F.; Chen, M.; Geng, H. B.; Dong, H. F.; Wu, P.; Li, X. M.; Guan, G. Q.; Wang, T. J. Molybdenum carbide electrocatalysts: Synergistically tuning electronic structure of porous β-Mo2C spheres by co doping and mo-vacancies defect engineering for optimizing hydrogen evolution reaction activity (Adv. Funct. Mater. 19/2020). Adv. Funct. Mater. 2020, 30, 2070118.

[74]

Han, D.; Du, G. H.; Wang, Y. T.; Jia, L. N.; Zhao, W. Q.; Su, Q. M.; Ding, S. K.; Zhang, M.; Xu, B. S. Chemical energy-driven lithiation preparation of defect-rich transition metal nanostructures for electrocatalytic hydrogen evolution. Small 2022, 18, 2202779.

[75]

Xu, Q.; Zang, L. L.; Li, Z. Y.; Shen, F. T.; Zhang, Y. H.; Sun, L. G. Synthesis of Ni2P/Ni5P4 on porous N decorated rGO foam for efficiently electrocatalytic hydrogen evolution reaction. Int. J. Hydrogen Energy 2022, 47, 38571–38582.

[76]

Liu, Z. Q.; Li, N.; Su, C.; Zhao, H. Y.; Xu, L. L.; Yin, Z. Y.; Li, J.; Du, Y. P. Colloidal synthesis of 1T' phase dominated WS2 towards endurable electrocatalysis. Nano Energy 2018, 50, 176–181.

[77]

Wang, T. T.; Wang, P. Y.; Zang, W. J.; Li, X.; Chen, D.; Kou, Z. K.; Mu, S. C.; Wang, J. Nanoframes of Co3O4–Mo2N heterointerfaces enable high-performance bifunctionality toward both electrocatalytic HER and OER. Adv. Funct. Mater. 2022, 32, 2107382.

[78]

Tang, T. M.; Wang, Z. L.; Guan, J. Q. A review of defect engineering in two-dimensional materials for electrocatalytic hydrogen evolution reaction. Chin. J. Catal. 2022, 43, 636–678.

File
12274_2023_6118_MOESM1_ESM.pdf (2.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 12 July 2023
Revised: 14 August 2023
Accepted: 19 August 2023
Published: 27 September 2023
Issue date: March 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

The authors would like to acknowledge the financial support provided by the Ministry of Higher Education (MOHE) Malaysia under the Fundamental Research Grant Scheme (FRGS) (No. FRGS/1/2020/TK0/XMU/02/1). We would also like to thank the Ministry of Science, Technology and Innovation (MOSTI) Malaysia under the Strategic Research Fund (SRF-APP) (No. S.22015). The authors would also like to acknowledge the financial supports provided by the National Natural Science Foundation of China (No. 22202168) and the Guangdong Basic and Applied Basic Research Foundation (No. 2021A1515111019). This work was also funded by the Xiamen University Malaysia Investigatorship Grant (No. IENG/0038), the Xiamen University Malaysia Research Fund (Nos. ICOE/0001, XMUMRF/2021-C8/IENG/0041, and XMUMRF/2019-C3/IENG/0013), and the Hengyuan International Sdn. Bhd. (No. EENG/0003).

Return