Journal Home > Volume 17 , Issue 4

One-pot tandem catalysis has been regarded as one of the most atomic economic ways to produce secondary amines, the important platform molecules for chemical synthesis and pharmaceutical manufacture, but it is facing serious issues in overall efficiency. New promotional effects are highly desired for boosting the activity and regulating the selectivity of conventional tandem catalysts. In this work, we report a high-performance tandem catalyst with maximized synergistic effect among each counterpart by preciously manipulating the spatial structure, which involves the active CeO2/Pt component as kernel, the densely-coated N-doped C (NC) layer as selectivity controller, and the differentially-grown Co species as catalytic performance regulators. Through comprehensive investigations, the unique growth mechanism and the promotion effect of Co regulators are clarified. Specifically, the surface-landed Co clusters (Cocs) are crucial to selectivity by altering the adsorption configuration of benzylideneaniline intermediates. Meanwhile, the inner Co particles (Cops) are essential for activity by denoting their electrons to neighboring Ptps. Benefiting from the unique promotion effect, a remarkably-improved catalytic efficiency (100% nitrobenzene conversion with 94% N-benzylaniline selectivity) is achieved at a relatively low temperature of 80 °C, which is much better than that of CeO2/Pt (100% nitrobenzene conversion with 12% N-benzylaniline selectivity) and CeO2/Pt/NC (35% nitrobenzene conversion with 94% benzylideneaniline selectivity).


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Differentially-grown cobalt regulators cooperatively involved in the tandem catalysis for high-yield production of second amines

Show Author's information Jinhui Xu1,2Xiao Wang1,2( )Ying Wang1,2Fei Wang1,2Lingling Zhang1,2Wenjie Cui1,2Shuyan Song1,2( )Hongjie Zhang1,2,3( )
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
Department of Chemistry, Tsinghua University, Beijing 100084, China

Abstract

One-pot tandem catalysis has been regarded as one of the most atomic economic ways to produce secondary amines, the important platform molecules for chemical synthesis and pharmaceutical manufacture, but it is facing serious issues in overall efficiency. New promotional effects are highly desired for boosting the activity and regulating the selectivity of conventional tandem catalysts. In this work, we report a high-performance tandem catalyst with maximized synergistic effect among each counterpart by preciously manipulating the spatial structure, which involves the active CeO2/Pt component as kernel, the densely-coated N-doped C (NC) layer as selectivity controller, and the differentially-grown Co species as catalytic performance regulators. Through comprehensive investigations, the unique growth mechanism and the promotion effect of Co regulators are clarified. Specifically, the surface-landed Co clusters (Cocs) are crucial to selectivity by altering the adsorption configuration of benzylideneaniline intermediates. Meanwhile, the inner Co particles (Cops) are essential for activity by denoting their electrons to neighboring Ptps. Benefiting from the unique promotion effect, a remarkably-improved catalytic efficiency (100% nitrobenzene conversion with 94% N-benzylaniline selectivity) is achieved at a relatively low temperature of 80 °C, which is much better than that of CeO2/Pt (100% nitrobenzene conversion with 12% N-benzylaniline selectivity) and CeO2/Pt/NC (35% nitrobenzene conversion with 94% benzylideneaniline selectivity).

Keywords: heterogeneous catalyst, CeO2, hierarchical structure, tandem catalysis, dual-site materials

References(58)

[1]

Liu, L.; Li, W. X.; Qi, R.; Zhu, Q. Q.; Li, J.; Fang, Y. Z.; Kong, X. J. Cobalt encapsulated in N-doped graphene sheet for one-pot reductive amination to synthesize secondary amines. Mol. Catal. 2021, 505, 111504.

[2]

Schuhmacher, A.; Shiro, T.; Ryan, S. J.; Bode, J. W. Synthesis of secondary and tertiary amides without coupling agents from amines and potassium acyltrifluoroborates (KATs). Chem. Sci. 2020, 11, 7609–7614.

[3]

Afanasyev, O. I.; Kuchuk, E.; Usanov, D. L.; Chusov, D. Reductive amination in the synthesis of pharmaceuticals. Chem. Rev. 2019, 119, 11857–11911.

[4]

Chen, C.; Fan, R. Y.; Han, M. M.; Zhu, X. G.; Zhang, Y. X.; Zhang, H. M.; Zhao, H. J.; Wang, G. Z. Tunable synthesis of imines and secondary-amines from tandem hydrogenation-coupling of aromatic nitro and aldehyde over NiCo5 bi-metallic catalyst. Appl. Catal. B: Environ. 2021, 280, 119448.

[5]

Zhao, H.; Li, B. Y.; Zhao, H. C.; Li, J. F.; Kou, J. F.; Zhu, H. H.; Liu, B.; Li, Z. H.; Sun, X.; Dong, Z. P. Construction of a sandwich-like UiO-66-NH2@Pt@mSiO2 catalyst for one-pot cascade reductive amination of nitrobenzene with benzaldehyde. J. Colloid Interface Sci. 2022, 606, 1524–1533.

[6]

Cao, X.; Qin, J. H.; Gou, G. L.; Li, J.; Wu, W.; Luo, S. C.; Luo, Y. T.; Dong, Z. P.; Ma, J. T.; Long, Y. Continuous solvent-free synthesis of imines over uip-γ-Al2O3-CeO2 catalyst in a fixed bed reactor. Appl. Catal. B: Environ. 2020, 272, 118958.

[7]

Alshammari, A. S.; Natte, K.; Kalevaru, N. V.; Bagabas, A.; Jagadeesh, R. V. Scalable preparation of stable and reusable silica supported palladium nanoparticles as catalysts for N-alkylation of amines with alcohols. J. Catal. 2020, 382, 141–149.

[8]

Han, X. M.; Chen, X.; Zou, Y.; Zhang, S. Electronic state regulation of supported Pt catalysts dictates selectivity of imines/secondary amines from the cascade transformation of nitroarenes and aldehydes. Appl. Catal. B: Environ. 2020, 268, 118451.

[9]

Li, M. H.; Chen, S. Y.; Jiang, Q. K.; Chen, Q. L.; Wang, X.; Yan, Y.; Liu, J.; Lv, C. C.; Ding, W. P.; Guo, X. F. Origin of the activity of Co-N-C catalysts for chemoselective hydrogenation of nitroarenes. ACS Catal. 2021, 11, 3026–3039.

[10]

Chen, G. R.; Han, J.; Niu, Z. J.; She, P. H.; Li, L.; Guan, B. Y.; Yu, J. H. Regioselective surface assembly of mesoporous carbon on zeolites creating anisotropic wettability for biphasic interface catalysis. J. Am. Chem. Soc. 2023, 145, 9021–9028.

[11]

Zhang, Y. R.; Gao, Y. J.; Yao, S. Y.; Li, S. W.; Asakura, H.; Teramura, K.; Wang, H. J.; Ma, D. Sublimation-induced sulfur vacancies in MoS2 catalyst for one-pot synthesis of secondary amines. ACS Catal. 2019, 9, 7967–7975.

[12]

Shao, F. J.; Wang, X. J.; Zhao, Z. J.; Wei, Z. Z.; Zhong, X.; Yao, Z. H.; Deng, S. W.; Wang, S. B.; Wang, H.; Li, A. Y. et al. Ru cluster-decorated Cu nanoparticles enhanced selectivity to imine from one-pot cascade transformations. Ind. Eng. Chem. Res. 2022, 61, 3474–3482.

[13]

Ge, C. Y.; Sang, X. X.; Yao, W.; Zhang, L.; Wang, D. W. Unsymmetrical indazolyl-pyridinyl-triazole ligand-promoted highly active iridium complexes supported on hydrotalcite and its catalytic application in water. Green Chem. 2018, 20, 1805–1812.

[14]

Gunanathan, C.; Milstein, D. Applications of acceptorless dehydrogenation and related transformations in chemical synthesis. Science 2013, 341, 1229712.

[15]

Huang, S. T.; Zhao, Z. J.; Wei, Z. Z.; Wang, M. X.; Chen, Y.; Wang, X. S.; Shao, F. J.; Zhong, X.; Li, X. N.; Wang, J. G. Targeted regulation of the selectivity of cascade synthesis towards imines/secondary amines by carbon-coated Co-based catalysts. Green Chem. 2022, 24, 6945–6954.

[16]

Chen, C.; Janoszka, N.; Wong, C. K.; Gramse, C.; Weberskirch, R.; Gröschel, A. H. Scalable and recyclable all-organic colloidal cascade catalysts. Angew. Chem., Int. Ed. 2021, 60, 237–241.

[17]

Bao, L. Q.; Zhao, C. C.; Li, S. G.; Zhu, Y. Benzalaniline from nitrobenzene and benzaldehyde catalyzed efficiently by an atomically precise palladium nanocluster. Chin. J. Catal. 2019, 40, 1499–1504.

[18]

Zhou, P.; Zhang, Z. H.; Jiang, L.; Yu, C. L.; Lv, K. L.; Sun, J.; Wang, S. G. A versatile cobalt catalyst for the reductive amination of carbonyl compounds with nitro compounds by transfer hydrogenation. Appl. Catal. B: Environ. 2017, 210, 522–532.

[19]

Nuzhdin, A. L.; Artiukha, E. A.; Bukhtiyarova, G. A.; Derevyannikova, E. A.; Bukhtiyarov, V. I. Synthesis of secondary amines by reductive amination of aldehydes with nitroarenes over supported copper catalysts in a flow reactor. Catal. Commun. 2017, 102, 108–113.

[20]

Zhang, Q.; Li, S. S.; Zhu, M. M.; Liu, Y. M.; He, H. Y.; Cao, Y. Direct reductive amination of aldehydes with nitroarenes using bio-renewable formic acid as a hydrogen source. Green Chem. 2016, 18, 2507–2513.

[21]

Fertig, R.; Irrgang, T.; Freitag, F.; Zander, J.; Kempe, R. Manganese-catalyzed and base-switchable synthesis of amines or imines via borrowing hydrogen or dehydrogenative condensation. ACS Catal. 2018, 8, 8525–8530.

[22]

Long, J. L.; Shen, K.; Li, Y. W. Bifunctional N-Doped Co@C catalysts for base-free transfer hydrogenations of nitriles: Controllable selectivity to primary amines vs imines. ACS Catal. 2017, 7, 275–284.

[23]

Li, M. S.; Hao, Y. F.; Cárdenas-Lizana, F.; Keane, M. A. Gold promoted imine production by selective gas phase reductive coupling of nitrobenzene and benzaldehyde. Appl. Catal. A: Gen. 2017, 531, 52–59.

[24]

Artiukha, E. A.; Nuzhdin, A. L.; Bukhtiyarova, G. A.; Zaytsev, S. Y.; Plyusnin, P. E.; Shubin, Y. V.; Bukhtiyarov, V. I. One-pot reductive amination of aldehydes with nitroarenes over an Au/Al2O3 catalyst in a continuous flow reactor. Catal. Sci. Technol. 2015, 5, 4741–4745.

[25]

Chen, G. X.; Zhao, Y.; Fu, G.; Duchesne, P. N.; Gu, L.; Zheng, Y. P.; Weng, X. F.; Chen, M. S.; Zhang, P.; Pao, C. W. et al. Interfacial effects in iron-nickel hydroxide-platinum nanoparticles enhance catalytic oxidation. Science 2014, 344, 495–499.

[26]

Acerbi, N.; Tsang, S. C. E.; Jones, G.; Golunski, S.; Collier, P. Rationalization of interactions in precious metal/ceria catalysts using the d-band center model. Angew. Chem., Int. Ed. 2013, 52, 7737–7741.

[27]

Ta, N.; Liu, J. Y.; Chenna, S.; Crozier, P. A.; Li, Y.; Chen, A. L.; Shen, W. J. Stabilized gold nanoparticles on ceria nanorods by strong interfacial anchoring. J. Am. Chem. Soc. 2012, 134, 20585–20588.

[28]

Wu, D. D.; Wen, M.; Gu, C.; Wu, Q. S. 2D NiFe/CeO2 basic-site-enhanced catalyst via in-situ topotactic reduction for selectively catalyzing the H2 generation from N2H4·H2O. ACS Appl. Mater. Interfaces 2017, 9, 16103–16108.

[29]

Pilger, F.; Testino, A.; Carino, A.; Proff, C.; Kambolis, A.; Cervellino, A.; Ludwig, C. Size control of Pt clusters on CeO2 nanoparticles via an incorporation-segregation mechanism and study of segregation kinetics. ACS Catal. 2016, 6, 3688–3699.

[30]

Prins R. Hydrogen spillover. Facts and fiction. Chem. Rev. 2012, 112, 2714–2738.

[31]

Im, J.; Shin, H.; Jang, H.; Kim, H.; Choi, M. Maximizing the catalytic function of hydrogen spillover in platinum-encapsulated aluminosilicates with controlled nanostructures. Nat. Commun. 2014, 5, 3370.

[32]

Zhang, S.; Chang, C. R.; Huang, Z. Q.; Li, J.; Wu, Z. M.; Ma, Y. Y.; Zhang, Z. Y.; Wang, Y.; Qu, Y. Q. High catalytic activity and chemoselectivity of sub-nanometric Pd clusters on porous nanorods of CeO2 for hydrogenation of nitroarenes. J. Am. Chem. Soc. 2016, 138, 2629–2637.

[33]

Li, G.; Abroshan, H.; Chen, Y. X.; Jin, R. C.; Kim, H. J. Experimental and mechanistic understanding of aldehyde hydrogenation using Au25 nanoclusters with Lewis acids: Unique sites for catalytic reactions. J. Am. Chem. Soc. 2015, 137, 14295–14304.

[34]

Liu, R.; Mahurin, S. M.; Li, C.; Unocic, R. R.; Idrobo, J. C.; Gao, H. J.; Pennycook, S. J.; Dai, S. Dopamine as a carbon source: The controlled synthesis of hollow carbon spheres and yolk-structured carbon nanocomposites. Angew. Chem., Int. Ed. 2011, 50, 6799–6802.

[35]

Long, Y.; Song, S. Y.; Li, J.; Wu, L. L.; Wang, Q. S.; Liu, Y.; Jin, R. C.; Zhang, H. J. Pt/CeO2@MOF core@shell nanoreactor for selective hydrogenation of furfural via the channel screening effect. ACS Catal. 2018, 8, 8506–8512.

[36]

Gänzler, A. M.; Casapu, M.; Vernoux, P.; Loridant, S.; Cadete Santos Aires, F. J.; Epicier, T.; Betz, B.; Hoyer, R.; Grunwaldt, J. D. Tuning the structure of platinum particles on ceria in situ for enhancing the catalytic performance of exhaust gas catalysts. Angew. Chem., Int. Ed. 2017, 56, 13078–13082.

[37]

Yu, D. J.; Zeng, Y. B.; Qi, Y. X.; Zhou, T. S.; Shi, G. Y. A novel electrochemical sensor for determination of dopamine based on AuNPs@SiO2 core–shell imprinted composite. Biosens. Bioelectron. 2012, 38, 270–277.

[38]

Wang, F.; Song, S. Y.; Li, K.; Li, J. Q.; Pan, J.; Yao, S.; Ge, X.; Feng, J.; Wang, X.; Zhang, H. J. A “solid dual-ions-transformation” route to S, N Co-doped carbon nanotubes as highly efficient “metal-free” catalysts for organic reactions. Adv. Mater. 2016, 28, 10679–10683.

[39]

Chen, X.; Alouani, M. Effect of metallic surfaces on the electronic structure, magnetism, and transport properties of Co-phthalocyanine molecules. Phys. Rev. B 2010, 82, 094443.

[40]

Chen, H. R.; Shen, K.; Mao, Q.; Chen, J. Y.; Li, Y. W. Nanoreactor of MOF-derived yolk-shell Co@C-N: Precisely controllable structure and enhanced catalytic activity. ACS Catal. 2018, 8, 1417–1426.

[41]

Wang, X.; Liu, D. P.; Song, S. Y.; Zhang, H. J. Pt@CeO2 multicore@shell self-assembled nanospheres: Clean synthesis, structure optimization, and catalytic applications. J. Am. Chem. Soc. 2013, 135, 15864–15872.

[42]

Yang, F.; Wang, X.; Hu, Q. L.; Jiang, D. D.; Lu, Y.; Wang, Y.; Wang, J. H.; Liu, J. H. Carbon nitride initiated photopolymerization into a luminescent elastomer hydrogel. Mater. Chem. Front. 2021, 5, 6491–6501.

[43]

Ryu, J.; Ku, S. H.; Lee, H.; Park, C. B. Mussel-inspired polydopamine coating as a universal route to hydroxyapatite crystallization. Adv. Funct. Mater. 2010, 20, 2132–2139.

[44]

Paier, J.; Penschke, C.; Sauer, J. Oxygen defects and surface chemistry of ceria: Quantum chemical studies compared to experiment. Chem. Rev. 2013, 113, 3949–3985.

[45]

Esch, F.; Fabris, S.; Zhou, L.; Montini, T.; Africh, C.; Fornasiero, P.; Comelli, G.; Rosei, R. Electron localization determines defect formation on ceria substrates. Science 2005, 309, 752–755.

[46]

Waite, J. H. Mussel power. Nat. Mater. 2008, 7, 8–9.

[47]

She, W.; Wang, J.; Li, X. W.; Li, J. F.; Mao, G. J.; Li, W. Z.; Li, G. M. Highly chemoselective synthesis of imine over Co/Zn bimetallic MOFs derived Co3ZnC-ZnO embed in carbon nanosheet catalyst. J. Catal. 2021, 401, 17–26.

[48]

Bera, S. S.; Szostak, M. Cobalt-N-heterocyclic carbene complexes in catalysis. ACS Catal. 2022, 12, 3111–3137.

[49]

Mukherjee, A.; Milstein, D. Homogeneous catalysis by cobalt and manganese pincer complexes. ACS Catal. 2018, 8, 11435–11469.

[50]

Chen, H. L.; Yang, H.; Omotoso, O.; Ding, L. H.; Briker, Y.; Zheng, Y.; Ring, Z. Contribution of hydrogen spillover to the hydrogenation of naphthalene over diluted Pt/RHO catalysts. Appl. Catal. A: Gen. 2009, 358, 103–109.

[51]

Thang, H. V.; Le Minh Pham, T. DFT insights into the electronic structure of Rh single-atom catalysts stabilized on the CeO2 (111) surface. Chem. Phys. Lett. 2022, 803, 139810.

[52]

Zhao, L.; Wu, Y. W.; Han, J.; Lu, Q.; Yang, Y. P.; Zhang, L. B. Mechanism of mercury adsorption and oxidation by oxygen over the CeO2 (111) surface: A DFT study. Materials 2018, 11, 485.

[53]

Wang, M.; Li, C. M. Excitonic properties of graphene-based materials. Nanoscale 2012, 4, 1044–1050.

[54]

Wang, H. L.; Wang, X.; Pan, J.; Zhang, L. L.; Zhao, M.; Xu, J.; Liu, B.; Shi, W. D.; Song, S. Y.; Zhang, H. J. Ball-milling induced debonding of surface atoms from metal bulk for construing high-performance dual-site single-atom catalysts. Angew. Chem., Int. Ed. 2021, 60, 23154–23158.

[55]

Shojaie, F. N2 adsorption on the inside and outside the single-walled carbon nanotubes by density functional theory study. Pramana 2018, 90, 4.

[56]

Li, Z. J.; Chen, Y. Y.; Lu, X. W.; Li, H. H.; Leng, L. P.; Zhang, T. L.; Horton, J. H. Synthesis of cobalt single atom catalyst by a solid-state transformation strategy for direct C–C cross-coupling of primary and secondary alcohols. Nano Res. 2022, 15, 4023–4031.

[57]

Lozano-Blanco, G.; Adamczyk, A. J. Cobalt-catalyzed nitrile hydrogenation: Insights into the reaction mechanism and product selectivity from DFT analysis. Surf. Sci. 2019, 688, 31–44.

[58]

Oliva, C.; Van Den Berg, C.; Niemantsverdriet, J. W.; Curulla-Ferré, D. A density functional theory study of HCN hydrogenation to methylamine on Co (111). J. Catal. 2007, 248, 38–45.

File
12274_2023_6117_MOESM1_ESM.pdf (4.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 10 July 2023
Revised: 11 August 2023
Accepted: 20 August 2023
Published: 30 September 2023
Issue date: April 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by financial aid from the National Science and Technology Major Project of China (No. 2021YFB3500700), the National Natural Science Foundation of China (Nos. 22020102003, 22025506, and 22271274), and the Program of Science and Technology Development Plan of Jilin Province of China (Nos. 20230101035JC and 20230101022JC).

Return