Journal Home > Volume 17 , Issue 4

The outstanding advantages of lightweight and flexibility enable flexible perovskite solar cells (PSCs) to have great application potential in mobile energy devices. Due to the low cost, low-temperature processibility, and high electron mobility, SnO2 nanocrystals have been widely employed as the electron transport layer in flexible PSCs. To prepare high-quality SnO2 layers, a monodispersed nanocrystal solution is normally used. However, the SnO2 nanocrystals can easily aggregate, especially after long periods of storage. Herein, we develop a green and cost-effective strategy for the synthesis of high-quality SnO2 nanocrystals at low temperatures by introducing small molecules of glycerol, obtaining a stable and well-dispersed SnO2-nanocrystal isopropanol dispersion successfully. Due to the enhanced dispersity and super wettability of this alcohol-based SnO2-nanocrystal solution, large-area smooth and dense SnO2 films are easily deposited on the plastic conductive substrate. Furthermore, this contributes to effective charge transfer and suppressed non-radiative recombination at the interface between the SnO2 and perovskite layers. As a result, a greatly enhanced power conversion efficiency (PCE) of 21.8% from 19.2% is achieved for small-area flexible PSCs. A large-area 5 cm × 5 cm flexible perovskite solar mini-module with a champion PCE of 16.5% and good stability is also demonstrated via this glycerol-modified SnO2-nanocrystal isopropanol dispersion approach.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Efficient flexible perovskite solar cells and modules using a stable SnO2-nanocrystal isopropanol dispersion

Show Author's information Zhiwei Su1,§Jing Li1,§Ruixuan Jiang1Shujie Zhang1Chengkai Jin1Feng Ye1Bingcan Ke1Mengjun Zhou1,2( )Jinhui Tong1Hyesung Park3( )Fuzhi Huang1,4Yi-Bing Cheng1,4Tongle Bu1( )
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
School of Material Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
Department of Materials Science and Engineering, Graduate School of Semiconductor Materials and Devices Engineering, Graduate School of Carbon Neutrality, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Foshan 528200, China

§ Zhiwei Su and Jing Li contributed equally to this work.

Abstract

The outstanding advantages of lightweight and flexibility enable flexible perovskite solar cells (PSCs) to have great application potential in mobile energy devices. Due to the low cost, low-temperature processibility, and high electron mobility, SnO2 nanocrystals have been widely employed as the electron transport layer in flexible PSCs. To prepare high-quality SnO2 layers, a monodispersed nanocrystal solution is normally used. However, the SnO2 nanocrystals can easily aggregate, especially after long periods of storage. Herein, we develop a green and cost-effective strategy for the synthesis of high-quality SnO2 nanocrystals at low temperatures by introducing small molecules of glycerol, obtaining a stable and well-dispersed SnO2-nanocrystal isopropanol dispersion successfully. Due to the enhanced dispersity and super wettability of this alcohol-based SnO2-nanocrystal solution, large-area smooth and dense SnO2 films are easily deposited on the plastic conductive substrate. Furthermore, this contributes to effective charge transfer and suppressed non-radiative recombination at the interface between the SnO2 and perovskite layers. As a result, a greatly enhanced power conversion efficiency (PCE) of 21.8% from 19.2% is achieved for small-area flexible PSCs. A large-area 5 cm × 5 cm flexible perovskite solar mini-module with a champion PCE of 16.5% and good stability is also demonstrated via this glycerol-modified SnO2-nanocrystal isopropanol dispersion approach.

Keywords: tin oxide, flexible perovskite solar cells, isopropanol dispersion, colloid stability

References(51)

[1]

Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J. P.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J. Electron–hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 2013, 342, 341–344.

[2]

Dong, Q. F.; Fang, Y. J.; Shao, Y. C.; Mulligan, P.; Qiu, J.; Cao, L.; Huang, J. S. Electron–hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals. Science 2015, 347, 967–970.

[3]

D'Innocenzo, V.; Grancini, G.; Alcocer, M. J. P.; Kandada, A. R. M.; Stranks, S. D.; Lee, M. M.; Lanzani, G.; Snaith, H. J.; Petrozza, A. Excitons versus free charges in organo-lead tri-halide perovskites. Nat. Commun. 2014, 5, 3586.

[4]

Miyata, A.; Mitioglu, A.; Plochocka, P.; Portugall, O.; Wang, J. T. W.; Stranks, S. D.; Snaith, H. J.; Nicholas, R. J. Direct measurement of the exciton binding energy and effective masses for charge carriers in organic–inorganic tri-halide perovskites. Nat. Phys. 2015, 11, 582–587.

[5]

Park, N. G.; Grätzel, M.; Miyasaka, T.; Zhu, K.; Emery, K. Towards stable and commercially available perovskite solar cells. Nat. Energy 2016, 1, 16152.

[6]

Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 2012, 338, 643–647.

[7]

Jena, A. K.; Kulkarni, A.; Miyasaka, T. Halide perovskite photovoltaics: Background, status, and future prospects. Chem. Rev. 2019, 119, 3036–3103.

[8]

Jung, H. S.; Han, G. S.; Park, N. G.; Ko, M. J. Flexible perovskite solar cells. Joule 2019, 3, 1850–1880.

[9]
NREL best research-cell efficiency chart [Online]. https://www.nrel.gov/pv/assets/pdfs/cell-pv-eff-emergingpv.pdf (accessed July 18, 2023).
[10]

Gao, Y. J.; Huang, K. Q.; Long, C. Y.; Ding, Y.; Chang, J. H.; Zhang, D.; Etgar, L.; Liu, M. Z.; Zhang, J.; Yang, J. L. Flexible perovskite solar cells: From materials and device architectures to applications. ACS Energy Lett. 2022, 7, 1412–1445.

[11]

Zha, W. S.; Zhang, L. P.; Wen, L.; Kang, J. C.; Luo, Q.; Chen, Q.; Yang, S. F.; Ma, C. Q. Controllable formation of PbI2 and PbI2(DMSO) nano domains in perovskite films through precursor solvent engineering. Acta. Phys.-Chim. Sin. 2022, 38, 2003022.

[12]

Kim, J. H.; Seok, H. J.; Seo, H. J.; Seong, T. Y.; Heo, J. H.; Lim, S. H.; Ahn, K. J.; Kim, H. K. Flexible ITO films with atomically flat surfaces for high performance flexible perovskite solar cells. Nanoscale 2018, 10, 20587–20598.

[13]

Reddy, S. H.; Di Giacomo, F.; Di Carlo, A. Low-temperature-processed stable perovskite solar cells and modules: A comprehensive review. Adv. Energy Mater. 2022, 12, 2103534.

[14]

Wang, Y. C.; Li, X. D.; Zhu, L. P.; Liu, X. H.; Zhang, W. J.; Fang, J. F. Efficient and hysteresis-free perovskite solar cells based on a solution processable polar fullerene electron transport layer. Adv. Energy Mater. 2017, 7, 1701144.

[15]

Roldán-Carmona, C.; Malinkiewicz, O.; Soriano, A.; Mínguez Espallargas, G.; Garcia, A.; Reinecke, P.; Kroyer, T.; Dar, M. I.; Nazeeruddin, M. K.; Bolink, H. J. Flexible high efficiency perovskite solar cells. Energy Environ. Sci. 2014, 7, 994–997.

[16]

Yang, Z. F.; Chen, W.; Mei, A. H.; Li, Q. T.; Liu, Y. L. Flexible MAPbI3 perovskite solar cells with the high efficiency of 16.11% by low-temperature synthesis of compact anatase TiO2 film. J. Alloys Compd. 2021, 854, 155488.

[17]

Qiu, W. M.; Paetzold, U. W.; Gehlhaar, R.; Smirnov, V.; Boyen, H. G.; Tait, J. G.; Conings, B.; Zhang, W. M.; Nielsen, C. B.; McCulloch, I. et al. An electron beam evaporated TiO2 layer for high efficiency planar perovskite solar cells on flexible polyethylene terephthalate substrates. J. Mater. Chem. A. 2015, 3, 22824–22829.

[18]

Wang, C. L.; Guan, L.; Zhao, D. W.; Yu, Y.; Grice, C. R.; Song, Z. N.; Awni, R. A.; Chen, J.; Wang, J. B.; Zhao, X. Z. et al. Water vapor treatment of low-temperature deposited SnO2 electron selective layers for efficient flexible perovskite solar cells. ACS Energy Lett. 2017, 2, 2118–2124.

[19]

Bouhjar, F.; Derbali, L.; Marí, B. High performance novel flexible perovskite solar cell based on a low-cost-processed ZnO:Co electron transport layer. Nano Res. 2020, 13, 2546–2555.

[20]

Liu, X.; Chueh, C. C.; Zhu, Z. L.; Jo, S. B.; Sun, Y.; Jen, A. K. Y. Highly crystalline Zn2SnO4 nanoparticles as efficient electron-transporting layers toward stable inverted and flexible conventional perovskite solar cells. J. Mater. Chem. A. 2016, 4, 15294–15301.

[21]

Wang, K.; Shi, Y. T.; Gao, L. G.; Chi, R. H.; Shi, K.; Guo, B. Y.; Zhao, L.; Ma, T. L. W(Nb)Ox-based efficient flexible perovskite solar cells: From material optimization to working principle. Nano Energy 2017, 31, 424–431.

[22]

Heo, J. H.; Lee, M. H.; Han, H. J.; Patil, B. R.; Yu, J. S.; Im, S. H. Highly efficient low temperature solution processable planar type CH3NH3PbI3 perovskite flexible solar cells. J. Mater. Chem. A 2016, 4, 1572–1578.

[23]

Liu, G. L.; Zhong, Y.; Mao, H. D.; Yang, J.; Dai, R. Y.; Hu, X. T.; Xing, Z.; Sheng, W. P.; Tan, L. C.; Chen, Y. W. Highly efficient and stable ZnO-based MA-free perovskite solar cells via overcoming interfacial mismatch and deprotonation reaction. Chem. Eng. J. 2022, 431, 134235.

[24]

Feng, J. S.; Yang, Z.; Yang, D.; Ren, X. D.; Zhu, X. J.; Jin, Z. W.; Zi, W.; Wei, Q. B.; Liu, S. Z. E-beam evaporated Nb2O5 as an effective electron transport layer for large flexible perovskite solar cells. Nano Energy 2017, 36, 1–8.

[25]

Shin, S. S.; Yang, W. S.; Noh, J. H.; Suk, J. H.; Jeon, N. J.; Park, J. H.; Kim, J. S.; Seong, W. M.; Seok, S. I. High-performance flexible perovskite solar cells exploiting Zn2SnO4 prepared in solution below 100 °C. Nat. Commun. 2015, 6, 7410.

[26]

Paik, M. J.; Yoo, J. W.; Park, J.; Noh, E.; Kim, H.; Ji, S. G.; Kim, Y. Y.; Il Seok, S. SnO2-TiO2 hybrid electron transport layer for efficient and flexible perovskite solar cells. ACS Energy Lett. 2022, 7, 1864–1870.

[27]

Park, S. Y.; Zhu, K. Advances in SnO2 for efficient and stable n–i–p perovskite solar cells. Adv. Mater. 2022, 34, 2110438.

[28]

Chen, Z. Y.; Cheng, Q. R.; Chen, H. Y.; Wu, Y. Y.; Ding, J. Y.; Wu, X. X.; Yang, H. Y.; Liu, H.; Chen, W. J.; Tang, X. H. et al. Perovskite grain-boundary manipulation using room-temperature dynamic self-healing “ligaments” for developing highly stable flexible perovskite solar cells with 23.8% efficiency. Adv. Mater. 2023, 35, 2300513.

[29]

Bu, T. L.; Shi, S. W.; Li, J.; Liu, Y. F.; Shi, J. L.; Chen, L.; Liu, X. P.; Qiu, J. H.; Ku, Z. L.; Peng, Y. et al. Low-temperature presynthesized crystalline tin oxide for efficient flexible perovskite solar cells and modules. ACS Appl. Mater. Interfaces 2018, 10, 14922–14929.

[30]

Bu, T. L.; Li, J.; Zheng, F.; Chen, W. J.; Wen, X. M.; Ku, Z. L.; Peng, Y.; Zhong, J.; Cheng, Y. B.; Huang, F. Z. Universal passivation strategy to slot-die printed SnO2 for hysteresis-free efficient flexible perovskite solar module. Nat. Commun. 2018, 9, 4609.

[31]

Zandi, O.; Agrawal, A.; Shearer, A. B.; Reimnitz, L. C.; Dahlman, C. J.; Staller, C. M.; Milliron, D. J. Impacts of surface depletion on the plasmonic properties of doped semiconductor nanocrystals. Nat. Mater. 2018, 17, 710–717.

[32]

Kar, A.; Yang, J. Y.; Dutta, M.; Stroscio, M. A.; Kumari, J.; Meyyappan, M. Rapid thermal annealing effects on tin oxide nanowires prepared by vapor–liquid–solid technique. Nanotechnology 2009, 20, 065704.

[33]

Li, Z. H.; Wang, Z. H.; Jia, C. M.; Wan, Z.; Zhi, C. Y.; Li, C.; Zhang, M. H.; Zhang, C.; Li, Z. Annealing free tin oxide electron transport layers for flexible perovskite solar cells. Nano Energy 2022, 94, 106919.

[34]

Roose, B.; Friend, R. H. Extrinsic electron concentration in SnO2 electron extracting contact in lead halide perovskite solar cells. Adv. Mater. Interfaces 2019, 6, 1801788.

[35]

De Souza, A. E.; Monteiro, S. H.; Santilli, C. V.; Pulcinelli, S. H. Electrical and optical characteristics of SnO2 thin films prepared by dip coating from aqueous colloidal suspensions. J. Mater. Sci. Mater. Electron. 1997, 8, 265–270.

[36]

Kim, S.; Yun, Y. J.; Kim, T.; Lee, C.; Ko, Y.; Jun, Y. Hydrolysis-regulated chemical bath deposition of tin-oxide-based electron transport layers for efficient perovskite solar cells with a reduced potential loss. Chem. Mater. 2021, 33, 8194–8204.

[37]

Hiratsuka, R. S.; Santilli, C. V.; Silva, D. V.; Pulcinelli, S. H. Effect of electrolyte on the gelation and aggregation of SnO2 colloidal suspensions. J. Non-Cryst. Solids 1992, 147–148, 67–73.

[38]

Xu, Z. H.; Ng, C. H.; Zhou, X. M.; Li, X. H.; Zhang, P. T.; Teo, S. H. Polymer-complexed SnO2 electron transport layer for high-efficiency n–i–p perovskite solar cells. Nanoscale 2022, 14, 12090–12098.

[39]

Xi, J. H.; Yuan, J. F.; Du, J. Y.; Yan, X. Q.; Tian, J. J. Efficient perovskite solar cells based on tin oxide nanocrystals with difunctional modification. Small 2022, 18, 2203519.

[40]

Yoo, J. J.; Seo, G.; Chua, M. R.; Park, T. G.; Lu, Y. L.; Rotermund, F.; Kim, Y. K.; Moon, C. S.; Jeon, N. J.; Correa-Baena, J. P. et al. Efficient perovskite solar cells via improved carrier management. Nature 2021, 590, 587–593.

[41]

Zhu, X. Y.; Dong, H.; Chen, J. B.; Xu, J.; Li, Z. J.; Yuan, F.; Dai, J. F.; Jiao, B.; Hou, X.; Xi, J. et al. Photoinduced cross linkable polymerization of flexible perovskite solar cells and modules by incorporating benzyl acrylate. Adv. Funct. Mater. 2022, 32, 2202408.

[42]

Bu, T. L.; Li, J.; Li, H. Y.; Tian, C. C.; Su, J.; Tong, G. Q.; Ono, L. K.; Wang, C.; Lin, Z. P.; Chai, N. A. Y. et al. Lead halide-templated crystallization of methylamine-free perovskite for efficient photovoltaic modules. Science 2021, 372, 1327–1332.

[43]

Ma, C. Q.; Kang, M. C.; Lee, S. H.; Kwon, S. J.; Cha, H. W.; Yang, C. W.; Park, N. G. Photovoltaically top-performing perovskite crystal facets. Joule 2022, 6, 2626–2643.

[44]

Wu, M. Z.; Duan, Y. W.; Yang, L.; You, P.; Li, Z. J.; Wang, J. G.; Zhou, H.; Yang, S. M.; Xu, D. F.; Zou, H. et al. Multifunctional small molecule as buried interface passivator for efficient planar perovskite solar cells. Adv. Funct. Mater. 2023, 33, 2300128.

[45]

Liu, C.; Huang, K. X.; Hu, B. H.; Li, Y. R.; Zhang, L. Z.; Zhou, X. Y.; Liu, Y. L.; Liu, Z. X.; Sheng, Y. F.; Chen, S. et al. Concurrent top and buried surface optimization for flexible perovskite solar cells with high efficiency and stability. Adv. Funct. Mater. 2023, 33, 2212698.

[46]

Jiang, Q.; Zhao, Y.; Zhang, X. W.; Yang, X. L.; Chen, Y.; Chu, Z. M.; Ye, Q. F.; Li, X. X.; Yin, Z. G.; You, J. B. Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 2019, 13, 460–466.

[47]

Mo, Y. P.; Wang, C.; Zheng, X. T.; Zhou, P.; Li, J.; Yu, X. X.; Yang, K. Z.; Deng, X. Y.; Park, H.; Huang, F. Z. et al. Nitrogen-doped tin oxide electron transport layer for stable perovskite solar cells with efficiency over 23%. Interdiscip. Mater. 2022, 1, 309–315.

[48]

Wu, S. F.; Li, Z.; Zhang, J.; Liu, T. T.; Zhu, Z. L.; Jen, A. K. Y. Efficient large guanidinium mixed perovskite solar cells with enhanced photovoltage and low energy losses. Chem. Commun. 2019, 55, 4315–4318.

[49]

Wang, L. P.; Xia, J. X.; Yan, Z.; Song, P. Q.; Zhen, C.; Jiang, X.; Shao, G.; Qiu, Z. L.; Wei, Z. H.; Qiu, J. H. et al. Robust interfacial modifier for efficient perovskite solar cells: Reconstruction of energy alignment at buried interface by self-diffusion of dopants. Adv. Funct. Mater. 2022, 32, 2204725.

[50]

Suo, J. J.; Yang, B. W.; Mosconi, E.; Choi, H. S.; Kim, Y.; Zakeeruddin, S. M.; De Angelis, F.; Grätzel, M.; Kim, H. S.; Hagfeldt, A. Surface reconstruction engineering with synergistic effect of mixed-salt passivation treatment toward efficient and stable perovskite solar cells. Adv. Funct. Mater. 2021, 31, 2102902.

[51]

Dong, Q. S.; Chen, M.; Liu, Y. H.; Eickemeyer, F. T.; Zhao, W. D.; Dai, Z. H.; Yin, Y. F.; Jiang, C.; Feng, J. S.; Jin, S. Y. et al. Flexible perovskite solar cells with simultaneously improved efficiency, operational stability, and mechanical reliability. Joule 2021, 5, 1587–1601.

File
12274_2023_6115_MOESM1_ESM.pdf (2.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 07 July 2023
Revised: 13 August 2023
Accepted: 18 August 2023
Published: 12 September 2023
Issue date: April 2024

Copyright

© Tsinghua University Press 2023, corrected publication 2023

Acknowledgements

Acknowledgements

This work was financially supported by the National Key Research and Development Plan (No. 2019YFE0107200), the National Natural Science Foundation of China (Nos. 22279099, 52202292, and 52172230), Guangdong Basic and Applied Basic Research Fund (No. 2021B1515120003), the NSF of Hubei Province (No. 2021CFB051), the Fundamental Research Funds for the Central Universities (No. WUT: 2023IVA074), and the National Research Foundation of Korea (NRF) (No. 2019K1A3A1A61091345).

Return