AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Synthesis of uniform two-dimensional MoS2 films via thermal evaporation

Xue-Wei Lu( )Zhewei LiChen-Kai YangWeijia MouLiying Jiao( )
Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
Show Author Information

Graphical Abstract

The conventional thermal evaporation techniques face challenges in producing uniform thin films of MoS2 due to its high melting temperature of 1375 °C. To address this issue, we have designed a vacuum thermal evaporation system specifically for large-scale preparation of MoS2 thin films with a size of 50 mm × 50 mm and controllable thickness ranging from 0.8 to 2.4 nm.

Abstract

Two-dimensional (2D) molybdenum disulfide (MoS2) holds great potential for various applications such as electronic devices, catalysis, lubrication, anti-corrosion and so on. Thermal evaporation is a versatile thin film deposition technique, however, the conventional thermal evaporation techniques face challenges in producing uniform thin films of MoS2 due to its high melting temperature of 1375 °C. As a result, only thick and rough MoS2 films can be obtained using these methods. To address this issue, we have designed a vacuum thermal evaporation system specifically for large-scale preparation of MoS2 thin films. By using K2MoS4 as the precursor, we achieved reliable deposition of uniform polycrystalline MoS2 thin films with a size of 50 mm × 50 mm and controllable thickness ranging from 0.8 to 2.4 nm. This approach also allows for patterned deposition of MoS2 using shadow masks and sequential deposition of MoS2 and tungsten disulfide (WS2), similar to conventional thermal evaporation techniques. Moreover, we have demonstrated the potential applications of the obtained MoS2 thin films in field effect transistors (FETs), memristors and electrocatalysts for hydrogen evolution reaction (HER).

Electronic Supplementary Material

Download File(s)
12274_2023_6114_MOESM1_ESM.pdf (754.8 KB)

References

[1]

Wu, F.; Tian, H.; Shen, Y.; Hou, Z.; Ren, J.; Gou, G. Y.; Sun, Y. B.; Yang, Y.; Ren, T. L. Vertical MoS2 transistors with sub-1-nm gate lengths. Nature 2022, 603, 259–264.

[2]

Zheng, L.; Wang, X. W.; Jiang, H. J.; Xu, M. Z.; Huang, W.; Liu, Z. Recent progress of flexible electronics by 2D transition metal dichalcogenides. Nano Res. 2021, 15, 2413–2432.

[3]

Choi, M.; Bae, S. R.; Hu, L.; Hoang, A. T.; Kim, S. Y.; Ahn, J. H. Full-color active-matrix organic light-emitting diode display on human skin based on a large-area MoS2 backplane. Sci. Adv. 2020, 6, eabb5898.

[4]

Zhang, J. Y.; Jiang, D.; Wang, D. S.; Yu, Q. L.; Bai, Y. Y.; Cai, M. R.; Weng, L. J.; Zhou, F.; Liu, W. M. MoS2 lubricating film meets supramolecular gel: A novel composite lubricating system for space applications. ACS Appl. Mater. Interfaces 2021, 13, 58036–58047.

[5]

Liu, L. N.; Wu, J. X.; Wu, L. Y.; Ye, M.; Liu, X. Z.; Wang, Q.; Hou, S. Y.; Lu, P. F.; Sun, L. F.; Zheng, J. Y. et al. Phase-selective synthesis of 1T′ MoS2 monolayers and heterophase bilayers. Nat. Mater. 2018, 17, 1108–1114.

[6]

Liu, M. M.; Zhang, C. Y.; Han, A. L.; Wang, L.; Sun, Y. J.; Zhu, C. N.; Li, R.; Ye, S. Modulation of morphology and electronic structure on MoS2-based electrocatalysts for water splitting. Nano Res. 2022, 15, 6862–6887.

[7]

Niu, S. W.; Cai, J. Y.; Wang, G. M. Two-dimensional MoS2 for hydrogen evolution reaction catalysis: The electronic structure regulation. Nano Res. 2020, 14, 1985–2002.

[8]

Aleithan, S. H.; Al-Amer, K.; Alabbad, Z. H.; Khalaf, M. M.; Alam, K.; Alhashem, Z.; Abd El-Lateef, H. M. Highly scalable synthesis of MoS2 thin films for carbon steel coatings: Influence of synthetic route on the nanostructure and corrosion performance. J. Mater. Res. Technol. 2023, 23, 1239–1251.

[9]

Joseph, A.; Vijayan, A. S.; Shebeeb, C. M.; Akshay, K. S.; John Mathew, K. P.; Sajith, V. A review on tailoring the corrosion and oxidation properties of MoS2-based coatings. J. Mater. Chem. A 2023, 11, 3172–3209.

[10]

Liu, M. J.; Liao, J.; Liu, Y.; Li, L. Y.; Wen, R. J.; Hou, T. Y.; Ji, R.; Wang, K. L.; Xing, Z. G.; Zheng, D. et al. Periodical ripening for MOCVD growth of large 2D transition metal dichalcogenide domains. Adv. Funct. Mater. 2023, 33, 2212773.

[11]

Abdullah, N.; Muzakir, S. K.; Shaafi, N. F.; Abdul Kadir, M. Z.; Mohamed, R. Characterizations of MoS2 nanosphere fabricated using vacuum thermal evaporation at steady and rapid heating. Mater. Today: Proc. 2023, 75, 10–15.

[12]

Balendhran, S.; Ou, J. Z.; Bhaskaran, M.; Sriram, S.; Ippolito, S.; Vasic, Z.; Kats, E.; Bhargava, S.; Zhuiykov, S.; Kalantar-Zadeh, K. Atomically thin layers of MoS2 via a two step thermal evaporation-exfoliation method. Nanoscale 2012, 4, 461–466.

[13]

Sivarajan, S.; Padmanabhan, R. Characterization of thermally evaporated MoS2 thin film coatings. Mater. Today: Proc. 2016, 3, 2532–2536.

[14]

Tang, L.; Li, T.; Luo, Y. T.; Feng, S. M.; Cai, Z. Y.; Zhang, H.; Liu, B. L.; Cheng, H. M. Vertical chemical vapor deposition growth of highly uniform 2D transition metal dichalcogenides. ACS Nano 2020, 14, 4646–4653.

[15]

Barreau, N.; Bernède, J. C. MoS2 textured films grown on glass substrates through sodium sulfide based compounds. J. Phys. D: Appl. Phys. 2002, 35, 1197–1204.

[16]

Zhou, H. Q.; Yu, F.; Liu, Y. Y.; Zou, X. L.; Cong, C. X.; Qiu, C. Y.; Yu, T.; Yan, Z.; Shen, X. N.; Sun, L. F. et al. Thickness-dependent patterning of MoS2 sheets with well-oriented triangular pits by heating in air. Nano Res. 2013, 6, 703–711.

[17]

Baker, M. A.; Gilmore, R.; Lenardi, C.; Gissler, W. XPS investigation of preferential sputtering of S from MoS2 and determination of MoSx stoichiometry from Mo and S peak positions. Appl. Surf. Sci. 1999, 150, 255–262.

[18]

Voiry, D.; Mohite, A.; Chhowalla, M. Phase engineering of transition metal dichalcogenides. Chem. Soc. Rev. 2015, 44, 2702–2712.

[19]

Sirota, B.; Glavin, N.; Voevodin, A. A. Room temperature magnetron sputtering and laser annealing of ultrathin MoS2 for flexible transistors. Vacuum 2019, 160, 133–138.

[20]

Xu, R. J.; Jang, H.; Lee, M. H.; Amanov, D.; Cho, Y.; Kim, H.; Park, S.; Shin, H. J.; Ham, D. Vertical MoS2 double-layer memristor with electrochemical metallization as an atomic-scale synapse with switching thresholds approaching 100 mV. Nano Lett. 2019, 19, 2411–2417.

[21]

Naqi, M.; Kang, M. S.; Liu, N.; Kim, T.; Baek, S.; Bala, A.; Moon, C.; Park, J.; Kim, S. Multilevel artificial electronic synaptic device of direct grown robust MoS2 based memristor array for in-memory deep neural network. npj 2D Mater. Appl. 2022, 6, 53.

[22]

Pi, S.; Li, C.; Jiang, H.; Xia, W. W.; Xin, H. L.; Yang, J. J.; Xia, Q. F. Memristor crossbar arrays with 6-nm half-pitch and 2-nm critical dimension. Nat. Nanotechnol. 2019, 14, 35–39.

[23]

Xie, J. F.; Qu, H. C.; Xin, J. P.; Zhang, X. X.; Cui, G. W.; Zhang, X. D.; Bao, J.; Tang, B.; Xie, Y. Defect-rich MoS2 nanowall catalyst for efficient hydrogen evolution reaction. Nano Res. 2017, 10, 1178–1188.

[24]

Xie, J. F.; Zhang, H.; Li, S.; Wang, R. X.; Sun, X.; Zhou, M.; Zhou, J. F.; Lou, X. W.; Xie, Y. Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv. Mater. 2013, 25, 5807–5813.

[25]

Deng, S. J.; Luo, M.; Ai, C. Z.; Zhang, Y.; Liu, B.; Huang, L.; Jiang, Z.; Zhang, Q. H.; Gu, L.; Lin, S. W. et al. Synergistic doping and intercalation: Realizing deep phase modulation on MoS2 arrays for high-efficiency hydrogen evolution reaction. Angew. Chem., Int. Ed. 2019, 58, 16289–16296.

[26]

Gong, J.; Zhang, Z. Y.; Zeng, Z. P.; Wang, W. J.; Kong, L. X.; Liu, J. Y.; Chen, P. Graphene quantum dots assisted exfoliation of atomically-thin 2D materials and as-formed 0D/2D van der Waals heterojunction for HER. Carbon 2021, 184, 554–561.

[27]

Joyner, J.; Oliveira, E. F.; Yamaguchi, H.; Kato, K.; Vinod, S.; Galvao, D. S.; Salpekar, D.; Roy, S.; Martinez, U.; Tiwary, C. S. et al. Graphene supported MoS2 structures with high defect density for an efficient HER electrocatalysts. ACS Appl. Mater. Interfaces 2020, 12, 12629–12638.

[28]

Wang, S. H.; Wang, L. L.; Xie, L. B.; Zhao, W. W.; Liu, X.; Zhuang, Z. C.; Zhuang, Y. L.; Chen, J.; Liu, S. J.; Zhao, Q. Dislocation-strained MoS2 nanosheets for high-efficiency hydrogen evolution reaction. Nano Res. 2022, 15, 4996–5003.

[29]

Cordova, A.; Blanchard, P.; Lancelot, C.; Frémy, G.; Lamonier, C. Probing the nature of the active phase of molybdenum-supported catalysts for the direct synthesis of methylmercaptan from syngas and H2S. ACS Catal. 2015, 5, 2966–2981.

Nano Research
Pages 3217-3223
Cite this article:
Lu X-W, Li Z, Yang C-K, et al. Synthesis of uniform two-dimensional MoS2 films via thermal evaporation. Nano Research, 2024, 17(4): 3217-3223. https://doi.org/10.1007/s12274-023-6114-z
Topics:

747

Views

2

Crossref

2

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 03 July 2023
Revised: 17 August 2023
Accepted: 20 August 2023
Published: 19 September 2023
© Tsinghua University Press 2023
Return