Journal Home > Volume 16 , Issue 11

Nanozymes, as a novel form of enzyme mimics, have garnered considerable interest. Despite overcoming the main disadvantages of their natural analogs, they still face challenges such as restricted mimic types and low substrate specificity. Herein, we introduce a reactive ligand modification strategy to diversify enzyme mimic types. Specifically, we have utilized helical plasmonic nanorods (HPNRs) modified with para-nitrothiophenol (4-NTP) to create an oxygen-sensitive nitroreductase (NTR) with light-controllability. HPNRs act as a light-adjustable source of nicotinamide adenine dinucleotide/nicotinamide adenine dinucleotide phosphate (NAD(P)H), providing photon-generated energetic electrons to adsorbed 4-NTP molecules. In the presence of O2, the activated 4-NTP transfers the captured electron to the adsorbed O2, mimicking the electron transfer process in its natural counterpart. This enhanced O2 activation notably boosts the oxidative coupling of para-aminothiophenol (4-ATP). Density functional theory (DFT) calculations reveal that hot electrons injected into the lowest unoccupied molecular orbital (LUMO) energy level of 4-NTP can be transferred to that of molecular oxygen. In conclusion, our findings underline the potential of the reactive ligand modification strategy in developing new types of enzyme reactions, which opens up promising avenues for the enhancement and diversification of nanozyme functionalities.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Plasmonic nanostructures acting as a light-driven O2-sensitive nitroreductase mimic for enhanced photochemical oxidation of para-aminothiophenol

Show Author's information Xinshuang Gao1,3Jia-jia Zheng2,3Hanbo Li1,3Rui Cai1,3Xingfa Gao2,3( )Xiaochun Wu1,3( )
CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China
Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Nanozymes, as a novel form of enzyme mimics, have garnered considerable interest. Despite overcoming the main disadvantages of their natural analogs, they still face challenges such as restricted mimic types and low substrate specificity. Herein, we introduce a reactive ligand modification strategy to diversify enzyme mimic types. Specifically, we have utilized helical plasmonic nanorods (HPNRs) modified with para-nitrothiophenol (4-NTP) to create an oxygen-sensitive nitroreductase (NTR) with light-controllability. HPNRs act as a light-adjustable source of nicotinamide adenine dinucleotide/nicotinamide adenine dinucleotide phosphate (NAD(P)H), providing photon-generated energetic electrons to adsorbed 4-NTP molecules. In the presence of O2, the activated 4-NTP transfers the captured electron to the adsorbed O2, mimicking the electron transfer process in its natural counterpart. This enhanced O2 activation notably boosts the oxidative coupling of para-aminothiophenol (4-ATP). Density functional theory (DFT) calculations reveal that hot electrons injected into the lowest unoccupied molecular orbital (LUMO) energy level of 4-NTP can be transferred to that of molecular oxygen. In conclusion, our findings underline the potential of the reactive ligand modification strategy in developing new types of enzyme reactions, which opens up promising avenues for the enhancement and diversification of nanozyme functionalities.

Keywords: nanozyme, plasmonic nanostructure, nitroreductase, hot electron injection, para-nitrothiolphenol, para-aminothiolphenol

References(62)

[1]

Huang, Y. Y.; Ren, J. S.; Qu, X. G. Nanozymes: Classification, catalytic mechanisms, activity Regulation, and applications. Chem. Rev. 2019, 119, 4357–4412.

[2]

Liu, Q. W.; Zhang, A. M.; Wang, R. H.; Zhang, Q.; Cui, D. X. A Review on metal- and metal oxide-based nanozymes: Properties, mechanisms, and applications. Nano-Micro Lett. 2021, 13, 154.

[3]

Liu, K. J.; Niu, J. X.; Liu, L.; Tian, F. Z.; Nie, H. M.; Liu, X. Y.; Chen, K.; Zhao, R. L.; Sun, S.; Jiao, M. L. et al. LUMO-mediated Se and HOMO-mediated Te nanozymes for selective redox biocatalysis. Nano Lett. 2023, 23, 5131–5140.

[4]

Liu, J. B.; Jiang, X. M.; Wang, L. M.; Hu, Z. J.; Wen, T.; Liu, W. Q.; Yin, J. J.; Chen, C. Y.; Wu, X. C. Ferroxidase-like activity of Au nanorod/Pt nanodot structures and implications for cellular oxidative stress. Nano Res. 2015, 8, 4024–4037.

[5]

Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641.

[6]

Jiang, B.; Guo, Z. J.; Liang, M. M. Recent progress in single-atom nanozymes research. Nano Res. 2023, 16, 1878–1889.

[7]

Liang, M. M.; Yan, X. Y. Nanozymes: From new concepts, mechanisms, and standards to applications. Acc. Chem. Res. 2019, 52, 2190–2200.

[8]

Xu, Y.; Zhou, Z. X.; Deng, N. K.; Fu, K. C.; Zhu, C. X.; Hong, Q.; Shen, Y. F.; Liu, S. Q.; Zhang, Y. J. Molecular insights of nanozymes from design to catalytic mechanism. Sci. China Chem. 2023, 66, 1318–1335.

[9]

Brongersma, M. L.; Halas, N. J.; Nordlander, P. Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 2015, 10, 25–34.

[10]

Clavero, C. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat. Photonics 2014, 8, 95–103.

[11]

Boerigter, C.; Aslam, U.; Linic, S. Mechanism of charge transfer from plasmonic nanostructures to chemically attached materials. ACS Nano 2016, 10, 6108–6115.

[12]

DuChene, J. S.; Tagliabue, G.; Welch, A. J.; Cheng, W. H.; Atwater, H. A. Hot hole collection and photoelectrochemical CO2 reduction with plasmonic Au/p-GaN photocathodes. Nano Lett. 2018, 18, 2545–2550.

[13]

Wang, Z. J.; Song, H.; Pang, H.; Ning, Y. X.; Dao, T. D.; Wang, Z.; Chen, H. L.; Weng, Y. X.; Fu, Q.; Nagao, T. et al. Photo-assisted methanol synthesis via CO2 reduction under ambient pressure over plasmonic Cu/ZnO catalysts. Appl. Catal. B: Environ. 2019, 250, 10–16.

[14]

Jia, H. L.; Du, A. X.; Zhang, H.; Yang, J. H.; Jiang, R. B.; Wang, J. F.; Zhang, C. Y. Site-selective growth of crystalline ceria with oxygen vacancies on gold nanocrystals for near-infrared nitrogen photofixation. J. Am. Chem. Soc. 2019, 141, 5083–5086.

[15]

Ingram, D. B.; Linic, S. Water splitting on composite plasmonic-metal/semiconductor photoelectrodes: Evidence for selective plasmon-induced formation of charge carriers near the semiconductor surface. J. Am. Chem. Soc. 2011, 133, 5202–5205.

[16]

Haider, R. S.; Wang, S. Y.; Gao, Y. Y.; Malik, A. S.; Ta, N.; Li, H.; Zeng, B.; Dupuis, M.; Fan, F. T.; Li, C. Boosting photocatalytic water oxidation by surface plasmon resonance of AgxAu1−x alloy nanoparticles. Nano Energy 2021, 87, 106189.

[17]

Shi, R.; Cao, Y. H.; Bao, Y. J.; Zhao, Y. F.; Waterhouse, G. I. N.; Fang, Z. Y.; Wu, L. Z.; Tung, C. H.; Yin, Y. D.; Zhang, T. R. Self-assembled Au/CdSe nanocrystal clusters for plasmon-mediated photocatalytic hydrogen evolution. Adv. Mater. 2017, 29, 1700803.

[18]

Erzina, M.; Guselnikova, O.; Miliutina, E.; Trelin, A.; Postnikov, P.; Svorcik, V.; Lyutakov, O. Plasmon-assisted transfer hydrogenation: Kinetic control of reaction chemoselectivity through a light illumination mode. J. Phys. Chem. C 2021, 125, 10318–10325.

[19]

Poulose, A. C.; Zoppellaro, G.; Konidakis, I.; Serpetzoglou, E.; Stratakis, E.; Tomanec, O.; Beller, M.; Bakandritsos, A.; Zbořil, R. Fast and selective reduction of nitroarenes under visible light with an earth-abundant plasmonic photocatalyst. Nat. Nanotechnol. 2022, 17, 485–492.

[20]

Wang, C.; Shi, Y.; Dan, Y. Y.; Nie, X. G.; Li, J.; Xia, X. H. Enhanced peroxidase-like performance of gold nanoparticles by hot electrons. Chem.—Eur. J. 2017, 23, 6717–6723.

[21]

Wu, D.; Hu, N.; Liu, J. C.; Fan, G. S.; Li, X. T.; Sun, J.; Dai, C. J.; Suo, Y. R.; Li, G. L.; Wu, Y. N. Ultrasensitive colorimetric sensing strategy based on ascorbic acid triggered remarkable photoactive-nanoperoxidase for signal amplification and its application to α-glucosidase activity detection. Talanta 2018, 190, 103–109.

[22]

Sun, Y.; Wang, R. X.; Liu, X.; Shan, G. Y.; Chen, Y. W.; Tong, T.; Liu, Y. C. Laser-induced formation of Au/Pt nanorods with peroxidase mimicking and SERS enhancement properties for application to the colorimetric determination of H2O2. Microchim. Acta 2018, 185, 445.

[23]

Jiang, G. H.; Liu, H. M.; Liu, J.; Liu, L. E.; Li, Y. L.; Xue, L. S.; Wu, Y. J.; Yang, R. Y. Engineering of multifunctional carbon nanodots-decorated plasmonic Au@Ag nanoenzymes for photoelectrochemical biosensing of microRNA-155. Sens. Actuators B: Chem. 2022, 360, 131653.

[24]

Maji, S. K.; Yu, S. B.; Chung, K.; Ramasamy, M. S.; Lim, J. W.; Wang, J. F.; Lee, H.; Kim, D. H. Synergistic nanozymetic activity of hybrid gold bipyramid-molybdenum disulfide core@shell nanostructures for two-photon imaging and anticancer therapy. ACS Appl. Mater. Interfaces 2018, 10, 42068–42076.

[25]

Liang, S.; Deng, X. R.; Chang, Y.; Sun, C. Q.; Shao, S.; Xie, Z. X.; Xiao, X.; Ma, P. A.; Zhang, H. Y.; Cheng, Z. Y. et al. Intelligent hollow Pt-CuS Janus architecture for synergistic catalysis-enhanced sonodynamic and photothermal cancer therapy. Nano Lett. 2019, 19, 4134–4145.

[26]

Zhu, Y. L.; Wang, Z.; Zhao, R. X.; Zhou, Y. H.; Feng, L. L.; Gai, S. L.; Yang, P. P. Pt decorated Ti3C2Tx MXene with NIR-II light amplified nanozyme catalytic activity for efficient phototheranostics. ACS Nano 2022, 16, 3105–3118.

[27]

Gu, W. X.; Hua, Z. Y.; Li, Z.; Cai, Z. H.; Wang, W. D.; Guo, K. J.; Yuan, F.; Gao, F. L.; Chen, H. L. Palladium cubes with Pt shell deposition for localized surface Plasmon resonance enhanced photodynamic and photothermal therapy of hypoxic tumors. Biomater. Sci. 2022, 10, 216–226.

[28]

Liao, X. W.; Xu, Q. Y.; Sun, H. J.; Liu, W. Y.; Chen, Y. M.; Xia, X. H.; Wang, C. Plasmonic nanozymes: Localized surface plasmonic resonance regulates reaction kinetics and antibacterial performance. J. Phys. Chem. Lett. 2022, 13, 312–323.

[29]

Zhu, Z. L.; Luo, H. Y.; Wang, T.; Zhang, C. H.; Liang, M. M.; Yang, D. Q.; Liu, M. H.; Yu, W. W.; Bai, Q.; Wang, L. N. et al. Plasmon-enhanced peroxidase-like activity of nitrogen-doped graphdiyne oxide quantum dots/gold-silver nanocage heterostructures for antimicrobial applications. Chem. Mater. 2022, 34, 1356–1368.

[30]

Xu, G. P.; Du, X. C.; Wang, W. J.; Qu, Y. Y.; Liu, X. D.; Zhao, M. W.; Li, W. F.; Li, Y. Q. Plasmonic nanozymes: Leveraging localized surface Plasmon resonance to boost the enzyme-mimicking activity of nanomaterials. Small 2022, 18, 2204131.

[31]

Cellier, M.; Fabrega, O. J.; Fazackerley, E.; James, A. L.; Orenga, S.; Perry, J. D.; Salwatura, V. L.; Stanforth, S. P. 2-Arylbenzothiazole, benzoxazole and benzimidazole derivatives as fluorogenic substrates for the detection of nitroreductase and aminopeptidase activity in clinically important bacteria. Bioorg. Med. Chem. 2011, 19, 2903–2910.

[32]

Chevalier, A.; Zhang, Y. M.; Khdour, O. M.; Kaye, J. B.; Hecht, S. M. Mitochondrial nitroreductase activity enables selective imaging and therapeutic targeting. J. Am. Chem. Soc. 2016, 138, 12009–12012.

[33]

Wang, S. Y.; Tan, W.; Lang, W. J.; Qian, H. J.; Guo, S. H.; Zhu, L. Q.; Ge, J. Y. Fluorogenic and mitochondria-localizable probe enables selective labeling and imaging of nitroreductase. Anal. Chem. 2022, 94, 7272–7277.

[34]

Shi, S.; Du, Y.; Zou, Y.; Niu, J.; Cai, Z. Y.; Wang, X. N.; Qiu, F. H.; Ding, Y.; Yang, G. C.; Wu, Y. Z. et al. Rational design for nitroreductase (NTR)-responsive proteolysis targeting chimeras (PROTACs) selectively targeting tumor tissues. J. Med. Chem. 2022, 65, 5057–5071.

[35]

Chen, Y.; Zhang, X.; Lu, X. Y.; Wu, H. W.; Zhang, D. S.; Zhu, B. C.; Huang, S. Y. Ultra-sensitive responsive near-infrared fluorescent nitroreductase probe with strong specificity for imaging tumor and detecting the invasiveness of tumor cells. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 2022, 268, 120634.

[36]

Roldán, M. D.; Pérez-Reinado, E.; Castillo, F.; Moreno-Vivián, C. Reduction of polynitroaromatic compounds: The bacterial nitroreductases. FEMS Microbiol. Rev. 2008, 32, 474–500.

[37]

Li, J. F.; Zhang, Y. J.; Ding, S. Y.; Panneerselvam, R.; Tian, Z. Q. Core–shell nanoparticle-enhanced Raman spectroscopy. Chem. Rev. 2017, 117, 5002–5069.

[38]

Pham, X. H.; Hahm, E.; Kim, T. H.; Kim, H. M.; Lee, S. H.; Lee, S. C.; Kang, H.; Lee, H. Y.; Jeong, D. H.; Choi, H. S. et al. Enzyme-amplified SERS immunoassay with Ag-Au bimetallic SERS hot spots. Nano Res. 2020, 13, 3338–3346.

[39]

Peng, J. P.; Liu, P. J.; Chen, Y. T.; Guo, Z. H.; Liu, Y. H.; Yue, K. Templated synthesis of patterned gold nanoparticle assemblies for highly sensitive and reliable SERS substrates. Nano Res. 2022, 16, 5056–5064.

[40]

Chen, J. Q.; Gao, X. S.; Zheng, Q.; Liu, J. B.; Meng, D. J.; Li, H. Y.; Cai, R.; Fan, H. Z.; Ji, Y. L.; Wu, X. C. Bottom-up synthesis of helical plasmonic nanorods and their application in generating circularly polarized luminescence. ACS Nano 2021, 15, 15114–15122.

[41]

Vigderman, L.; Zubarev, E. R. High-yield synthesis of gold nanorods with longitudinal SPR peak greater than 1200 nm using hydroquinone as a reducing agent. Chem. Mater. 2013, 25, 1450–1457.

[42]

Xie, J. N.; Wang, N.; Dong, X. H.; Wang, C. Y.; Du, Z.; Mei, L. Q.; Yong, Y.; Huang, C. S.; Li, Y. L.; Gu, Z. J. et al. Graphdiyne nanoparticles with high free radical scavenging activity for radiation protection. ACS Appl. Mater. Interfaces 2019, 11, 2579–2590.

[43]

Joseph, V.; Engelbrekt, C.; Zhang, J. D.; Gernert, U.; Ulstrup, J.; Kneipp, J. Characterizing the kinetics of nanoparticle-catalyzed reactions by surface-enhanced Raman scattering. Angew. Chem., Int. Ed. 2012, 51, 7592–7596.

[44]

Lee, S.; Hwang, H.; Lee, W.; Schebarchov, D.; Wy, Y.; Grand, J.; Auguié, B.; Wi, D. H.; Cortés, E.; Han, S. W. Core–shell bimetallic nanoparticle trimers for efficient light-to-chemical energy conversion. ACS Energy Lett. 2020, 5, 3881–3890.

[45]

Sheng, S. X.; Ji, Y. F.; Yan, X. H.; Wei, H.; Luo, Y.; Xu, H. X. Azo-dimerization mechanisms of p-aminothiophenol and p-nitrothiophenol molecules on plasmonic metal surfaces revealed by tip-/surface-enhanced Raman spectroscopy. J. Phys. Chem. C 2020, 124, 11586–11594.

[46]

Zhang, Z. Y.; Kneipp, J. Mapping the inhomogeneity in plasmonic catalysis on supported gold nanoparticles using surface-enhanced Raman scattering microspectroscopy. Anal. Chem. 2018, 90, 9199–9205.

[47]

Li, H. H.; Si, M. T.; Liu, L. H.; Chu, X. Q.; Wang, S.; Wan, L.; Yan, R.; Sun, M. T.; Fang, Y. C. Ag nanoparticle-induced oxidative dimerization of thiophenols: Efficiency and mechanism. Langmuir 2018, 34, 11347–11353.

[48]

Huang, Y. F.; Zhu, H. P.; Liu, G. K.; Wu, D. Y.; Ren, B.; Tian, Z. Q. When the signal is not from the original molecule to be detected: Chemical transformation of para-aminothiophenol on Ag during the SERS measurement. J. Am. Chem. Soc. 2010, 132, 9244–9246.

[49]

Gabudean, A. M.; Biro, D.; Astilean, S. Localized surface Plasmon resonance (LSPR) and surface-enhanced Raman scattering (SERS) studies of 4-aminothiophenol adsorption on gold nanorods. J. Mol. Struct. 2011, 993, 420–424.

[50]

Osawa, M.; Matsuda, N.; Yoshii, K.; Uchida, I. Charge transfer resonance Raman process in surface-enhanced Raman scattering from p-aminothiophenol adsorbed on silver: Herzberg-Teller contribution. J. Phys. Chem. 1994, 98, 12702–12707.

[51]

Sun, Z. H.; Wang, C. X.; Yang, J. X.; Zhao, B.; Lombardi, J. R. Nanoparticle metal-semiconductor charge transfer in ZnO/PATP/Ag assemblies by surface-enhanced Raman spectroscopy. J. Phys. Chem. C 2008, 112, 6093–6098.

[52]

Dong, B.; Fang, Y. R.; Chen, X. W.; Xu, H. X.; Sun, M. T. Substrate-, wavelength-, and time-dependent plasmon-assisted surface catalysis reaction of 4-nitrobenzenethiol dimerizing to p,p'-dimercaptoazobenzene on Au, Ag, and Cu films. Langmuir 2011, 27, 10677–10682.

[53]

Zhao, L. B.; Huang, Y. F.; Liu, X. M.; Anema, J. R.; Wu, D. Y.; Ren, B.; Tian, Z. Q. A DFT study on photoinduced surface catalytic coupling reactions on nanostructured silver: Selective formation of azobenzene derivatives from para-substituted nitrobenzene and aniline. Phys. Chem. Chem. Phys. 2012, 14, 12919–12929.

[54]

Li, Z. D.; Kurouski, D. Elucidation of photocatalytic properties of gold-platinum bimetallic nanoplates using tip-enhanced Raman spectroscopy. J. Phys. Chem. C 2020, 124, 12850–12854.

[55]

Li, Z. D.; El-Khoury, P. Z.; Kurouski, D. Tip-enhanced Raman imaging of photocatalytic reactions on thermally-reshaped gold and gold-palladium microplates. Chem. Commun. 2021, 57, 891–894.

[56]

Madzharova, F.; Heiner, Z.; Kneipp, J. Surface-enhanced hyper Raman spectra of aromatic thiols on gold and silver nanoparticles. J. Phys. Chem. C 2020, 124, 6233–6241.

[57]

Tiwari, N. R.; Liu, M. Y.; Kulkarni, S.; Fang, Y. Study of adsorption behavior of aminothiophenols on gold nanorods using surface-enhanced Raman spectroscopy. J. Nanophotonics 2011, 5, 053513.

[58]

Lindquist, N. C.; de Albuquerque, C. D. L.; Sobral-Filho, R. G.; Paci, I.; Brolo, A. G. High-speed imaging of surface-enhanced Raman scattering fluctuations from individual nanoparticles. Nat. Nanotechnol. 2019, 14, 981–987.

[59]

Gao, X. S.; Zheng, Q.; Li, H. B.; Zhang, C. Q.; Cai, R.; Ji, Y. L.; Hu, Z. J.; Wu, X. C. Modulation of plasmonic chiral shell growth on gold nanorods via nonchiral surfactants. Nanoscale 2023, 15, 10651–10660.

[60]

Chen, J. Q.; Meng, D. J.; Wang, H.; Li, H. Y.; Ji, Y. L.; Shi, X. H.; Wu, X. C. Aromatic thiol-modulated Ag overgrowth on gold nanoparticles: Tracking the thiol's position in the core–shell nanoparticles. Nanoscale 2019, 11, 17471–17477.

[61]

Xie, W.; Schlücker, S. Hot electron-induced reduction of small molecules on photorecycling metal surfaces. Nat. Commun. 2015, 6, 7570.

[62]

Kafle, B.; Poveda, M.; Habteyes, T. G. Surface ligand-mediated plasmon-driven photochemical reactions. J. Phys. Chem. Lett. 2017, 8, 890–894.

File
12274_2023_6110_MOESM1_ESM.pdf (3.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 03 July 2023
Revised: 18 August 2023
Accepted: 20 August 2023
Published: 30 September 2023
Issue date: November 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Key Basic Research Program of China (No. 2021YFA1202803), the National Natural Science Foundation of China (No. 22072032), and the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB36000000).

Return