Journal Home > Volume 17 , Issue 4

In-situ integration of multiple materials with well-defined interfaces as heterostructures is of great interest due to their unique properties and potential for new device functionality. Because of its polymorphism and diverse bonding geometries, borophene is a promising candidate for two-dimensional heterostructures, but suitable synthesis conditions have limited its potential applications. Toward this end, we demonstrate the vertical borophene and graphene heterostructures which form by epitaxial growth of borophene onto multilayer graphene on Cu substrates via chemical vapor deposition, where hydrogen and NaBH4 are respectively used as the carrier gas and the boron source. The lattice structure of the as-synthesized borophene well coincides with the predicted α′-boron sheet. The borophene-based photodetector shows an excellent broadband photoresponse from the ultraviolet (255 nm) to the infrared (940 nm) wavelengths, with enhanced responsivity compared to pristine borophene or graphene photodetectors. This work informs emerging efforts to integrate borophene into nanoelectronic applications for both fundamental investigations and technological applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Epitaxial growth of borophene on graphene surface towards efficient and broadband photodetector

Show Author's information Zenghui WuChen ShifanZitong WuYi LiuWei ShaoXinchao LiangChuang HouGuoan Tai( )
The State Key Laboratory of Mechanics and Control of Mechanical Structures and Laboratory of Intelligent Nano Materials and Devices of Ministry of Education, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Abstract

In-situ integration of multiple materials with well-defined interfaces as heterostructures is of great interest due to their unique properties and potential for new device functionality. Because of its polymorphism and diverse bonding geometries, borophene is a promising candidate for two-dimensional heterostructures, but suitable synthesis conditions have limited its potential applications. Toward this end, we demonstrate the vertical borophene and graphene heterostructures which form by epitaxial growth of borophene onto multilayer graphene on Cu substrates via chemical vapor deposition, where hydrogen and NaBH4 are respectively used as the carrier gas and the boron source. The lattice structure of the as-synthesized borophene well coincides with the predicted α′-boron sheet. The borophene-based photodetector shows an excellent broadband photoresponse from the ultraviolet (255 nm) to the infrared (940 nm) wavelengths, with enhanced responsivity compared to pristine borophene or graphene photodetectors. This work informs emerging efforts to integrate borophene into nanoelectronic applications for both fundamental investigations and technological applications.

Keywords: two-dimensional materials, heterostructure, graphene, photodetector, borophene

References(60)

[1]

Kaneti, Y. V.; Benu, D. P.; Xu, X. T.; Yuliarto, B.; Yamauchi, Y.; Golberg, D. Borophene: Two-dimensional boron monolayer: Synthesis, properties, and potential applications. Chem. Rev. 2022, 122, 1000–1051.

[2]

Hou, C.; Tai, G. A.; Wu, Z. H.; Hao, J. Q. Borophene current status, challenges and opportunities. ChemPlusChem 2020, 85, 2186–2196.

[3]

Mannix, A. J.; Zhang, Z. H.; Guisinger, N. P.; Yakobson, B. I.; Hersam, M. C. Borophene as a prototype for synthetic 2D materials development. Nat. Nanotechnol. 2018, 13, 444–450.

[4]

Zhang, Z. H.; Penev, E. S.; Yakobson, B. I. Two-dimensional boron: Structures, properties and applications. Chem. Soc. Rev. 2017, 46, 6746–6763.

[5]

Ranjan, P.; Sahu, T. K.; Bhushan, R.; Yamijala, S. S. R. K. C.; Late, D. J.; Kumar, P.; Vinu, A. Freestanding borophene and its hybrids. Adv. Mater. 2019, 31, 1900353.

[6]

Zhang, Z. H.; Yang, Y.; Gao, G. Y.; Yakobson, B. I. Two-dimensional boron monolayers mediated by metal substrates. Angew. Chem., Int. Ed. 2015, 54, 13022–13026.

[7]

Liu, Y. Y.; Penev, E. S.; Yakobson, B. I. Probing the synthesis of two-dimensional boron by first-principles computations. Angew. Chem., Int. Ed. 2013, 52, 3156–3159.

[8]

Tai, G. A.; Hu, T. S.; Zhou, Y. G.; Wang, X. F.; Kong, J. Z.; Zeng, T.; You, Y. C.; Wang, Q. Synthesis of atomically thin boron films on copper foils. Angew. Chem., Int. Ed. 2015, 54, 15473–15477.

[9]

Ruan, Q. Y.; Wang, L. Q.; Bets, K. V.; Yakobson, B. I. Step-edge epitaxy for borophene growth on insulators. ACS Nano 2021, 15, 18347–18353.

[10]

Liu, X. L.; Hersam, M. C. 2D materials for quantum information science. Nat. Rev. Mater. 2019, 4, 669–684.

[11]

Jiao, Y. L.; Ma, F. X.; Bell, J.; Bilic, A.; Du, A. J. Two-dimensional boron hydride sheets: High stability, massless Dirac fermions, and excellent mechanical properties. Angew. Chem., Int. Ed. 2016, 55, 10292–10295.

[12]

Sun, X.; Liu, X. F.; Yin, J.; Yu, J.; Li, Y.; Hang, Y.; Zhou, X. C.; Yu, M. L.; Li, J. D.; Tai, G. A. et al. Two-dimensional boron crystals: Structural stability, tunable properties, fabrications and applications. Adv. Funct. Mater. 2017, 27, 1603300.

[13]

Gao, M.; Li, Q. Z.; Yan, X. W.; Wang, J. Prediction of phonon-mediated superconductivity in borophene. Phys. Rev. B 2017, 95, 024505.

[14]

Li, D. F.; Gao, J. F.; Cheng, P.; He, J.; Yin, Y.; Hu, Y. X.; Chen, L.; Cheng, Y.; Zhao, J. J. 2D boron sheets: Structure, growth, and electronic and thermal transport properties. Adv. Funct. Mater. 2020, 30, 1904349.

[15]

Lian, C.; Hu, S. Q.; Zhang, J.; Cheng, C.; Yuan, Z.; Gao, S. W.; Meng, S. Integrated plasmonics: Broadband Dirac plasmons in borophene. Phys. Rev. Lett. 2020, 125, 116802.

[16]

Wu, Z. H.; Tai, G. A.; Liu, R. S.; Hou, C.; Shao, W.; Liang, X. C.; Wu, Z. T. Van der Waals epitaxial growth of borophene on a mica substrate toward a high-performance photodetector. ACS Appl. Mater. Interfaces 2021, 13, 31808–31815.

[17]

Wu, Z. H.; Tai, G. A.; Liu, R. S.; Shao, W.; Hou, C.; Liang, X. C. Synthesis of borophene on quartz towards hydroelectric generators. J. Mater. Chem. A 2022, 10, 8218–8226.

[18]

Hou, C.; Tai, G. A.; Hao, J. Q.; Sheng, L. H.; Liu, B.; Wu, Z. T. Ultrastable crystalline semiconducting hydrogenated borophene. Angew. Chem., Int. Ed. 2020, 59, 10819–10825.

[19]

Hou, C.; Tai, G. A.; Liu, Y.; Wu, Z. T.; Wu, Z. H.; Liang, X. C. Ultrasensitive humidity sensing and the multifunctional applications of borophene–MoS2 heterostructures. J. Mater. Chem. A 2021, 9, 13100–13108.

[20]

Hou, C.; Tai, G. A.; Liu, Y.; Liu, X. Borophene gas sensor. Nano Res. 2022, 15, 2537–2544.

[21]

Hou, C.; Tai, G. A.; Liu, B.; Wu, Z. H.; Yin, Y. H. Borophene–graphene heterostructure: Preparation and ultrasensitive humidity sensing. Nano Res. 2021, 14, 2337–2344.

[22]

Feng, B. J.; Zhang, J.; Zhong, Q.; Li, W. B.; Li, S.; Li, H.; Cheng, P.; Meng, S.; Chen, L.; Wu, K. H. Experimental realization of two-dimensional boron sheets. Nat. Chem. 2016, 8, 564–569.

[23]

Mannix, A. J.; Zhou, X. F.; Kiraly, B.; Wood, J. D.; Alducin, D.; Myers, B. D.; Liu, X. L.; Fisher, B. L.; Santiago, U.; Guest, J. R. et al. Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs. Science 2015, 350, 1513–1516.

[24]

Wu, Z. H.; Tai, G. A.; Shao, W.; Wang, R.; Hou, C. Experimental realization of quasicubic boron sheets. Nanoscale 2020, 12, 3787–3794.

[25]

Wu, R. T.; Drozdov, I. K.; Eltinge, S.; Zahl, P.; Ismail-Beigi, S.; Božović, I.; Gozar, A. Large-area single-crystal sheets of borophene on Cu (111) surfaces. Nat. Nanotechnol. 2019, 14, 44–49.

[26]

Wu, R. T.; Eltinge, S.; Drozdov, I. K.; Gozar, A.; Zahl, P.; Sadowski, J. T.; Ismail-Beigi, S.; Božović, I. Micrometre-scale single-crystalline borophene on a square-lattice Cu (100) surface. Nat. Chem. 2022, 14, 377–383.

[27]

Kiraly, B.; Liu, X. L.; Wang, L. Q.; Zhang, Z. H.; Mannix, A. J.; Fisher, B. L.; Yakobson, B. I.; Hersam, M. C.; Guisinger, N. P. Borophene synthesis on Au (111). ACS Nano 2019, 13, 3816–3822.

[28]

Vinogradov, N. A.; Lyalin, A.; Taketsugu, T.; Vinogradov, A. S.; Preobrajenski, A. Single-phase borophene on Ir (111): Formation, structure, and decoupling from the support. ACS Nano 2019, 13, 14511–14518.

[29]

Li, W. B.; Kong, L. J.; Chen, C. Y.; Gou, J.; Sheng, S. X.; Zhang, W. F.; Li, H.; Chen, L.; Cheng, P.; Wu, K. H. Experimental realization of honeycomb borophene. Sci. Bull. 2018, 63, 282–286.

[30]

Li, T. W.; Nie, G.; Sun, Q. Highly sensitive tuning of lattice thermal conductivity of graphene-like borophene by fluorination and chlorination. Nano Res 2020, 13, 1171–1177.

[31]

Solís-Fernández, P.; Bissett, M.; Ago, H. Synthesis, structure and applications of graphene-based 2D heterostructures. Chem. Soc. Rev. 2017, 46, 4572–4613.

[32]

Liu, X. L.; Hersam, M. C. Borophene–graphene heterostructures. Sci. Adv. 2019, 5, eaax6444.

[33]

Kochaev, A.; Maslov, M.; Katin, K.; Efimov, V.; Efimova, I. Stabilization of porous borophene–graphene vertical heterostructure using unilateral hydrogenation. Mater. Today Nano 2022, 20, 100247.

[34]

Liu, Y.; Huang, Y.; Duan, X. F. Van der Waals integration before and beyond two-dimensional materials. Nature 2019, 567, 323–333.

[35]

Kochaev, A.; Meftakhutdinov, R.; Sibatov, R.; Katin, K.; Maslov, M.; Efimov, V. Enhanced properties of covalently coupled borophene-graphene layers through fluorination and hydrogenation. Appl. Surf. Sci. 2021, 562, 150150.

[36]

Shen, J. L.; Yang, Z.; Wang, Y. T.; Xu, L. C.; Liu, R. P.; Liu, X. G. The gas sensing performance of borophene/MoS2 heterostructure. Appl. Surf. Sci. 2020, 504, 144412.

[37]

Mogulkoc, A.; Mogulkoc, Y.; Kecik, D.; Durgun, E. The effect of strain and functionalization on the optical properties of borophene. Phys. Chem. Chem. Phys. 2018, 20, 21043–21050.

[38]

Xu, L. C.; Du, A. J.; Kou, L. Z. Hydrogenated borophene as a stable two-dimensional Dirac material with an ultrahigh Fermi velocity. Phys. Chem. Chem. Phys. 2016, 18, 27284–27289.

[39]

Miwa, J. A.; Dendzik, M.; Grønborg, S. S.; Bianchi, M.; Lauritsen, J. V.; Hofmann, P.; Ulstrup, S. Van der Waals epitaxy of two-dimensional MoS2–graphene heterostructures in ultrahigh vacuum. ACS Nano 2015, 9, 6502–6510.

[40]

Shih, C. J.; Wang, Q. H.; Son, Y.; Jin, Z.; Blankschtein, D.; Strano, M. S. Tuning on–off current ratio and field-effect mobility in a MoS2–graphene heterostructure via Schottky barrier modulation. ACS Nano 2014, 8, 5790–5798.

[41]

Peng, Y. C.; Chou, S. L.; Lo, J. I.; Lin, M. Y.; Lu, H. C.; Cheng, B. M.; Ogilvie, J. F. Infrared and ultraviolet spectra of diborane(6): B2H6 and B2D6. J. Phys. Chem. A 2016, 120, 5562–5572.

[42]

Zhou, W.; Zeng, J. W.; Li, X. F.; Xu, J.; Shi, Y.; Ren, W.; Miao, F.; Wang, B. G.; Xing, D. Y. Ultraviolet Raman spectra of double-resonant modes of graphene. Carbon 2016, 101, 235–238.

[43]

Werheit, H.; Filipov, V.; Kuhlmann, U.; Schwarz, U.; Armbrüster, M.; Leithe-Jasper, A.; Tanaka, T.; Higashi, I.; Lundström, T.; Gurin, V. N. et al. Raman effect in icosahedral boron-rich solids. Sci. Technol. Adv. Mater. 2010, 11, 023001.

[44]

Parakhonskiy, G.; Vtech, V.; Dubrovinskaia, N.; Caracas, R.; Dubrovinsky, L. Raman spectroscopy investigation of alpha boron at elevated pressures and temperatures. Solid State Commun. 2013, 154, 34–39.

[45]

Hess, N. J.; Bowden, M. E.; Parvanov, V. M.; Mundy, C.; Kathmann, S. M.; Schenter, G. K.; Autrey, T. Spectroscopic studies of the phase transition in ammonia borane: Raman spectroscopy of single crystal NH3BH3 as a function of temperature from 88 to 330 K. J. Chem. Phys. 2008, 128, 034508.

[46]

Tassev, V. L. Heteroepitaxy, an amazing contribution of crystal growth to the world of optics and electronics. Crystals 2017, 7, 178.

[47]

Koppens, F. H. L.; Mueller, T.; Avouris, P.; Ferrari, A. C.; Vitiello, M. S.; Polini, M. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 2014, 9, 780–793.

[48]

Ma, D. T.; Wang, R.; Zhao, J. L.; Chen, Q. Y.; Wu, L. M.; Li, D. L.; Su, L. M.; Jiang, X. T.; Luo, Z. Q.; Ge, Y. Q. et al. A self-powered photodetector based on two-dimensional boron nanosheets. Nanoscale 2020, 12, 5313–5323.

[49]

An, X. H.; Liu, F. Z.; Jung, Y. J.; Kar, S. Tunable graphene–silicon heterojunctions for ultrasensitive photodetection. Nano Lett. 2013, 13, 909–916.

[50]

Mao, J.; Yu, Y. Q.; Wang, L.; Zhang, X. J.; Wang, Y. M.; Shao, Z. B.; Jie, J. S. Ultrafast, broadband photodetector based on MoSe2/Silicon heterojunction with vertically standing layered structure using graphene as transparent electrode. Adv. Sci. 2016, 3, 1600018.

[51]

Lan, C. Y.; Li, C.; Wang, S.; He, T. Y.; Jiao, T. P.; Wei, D. P.; Jing, W. K.; Li, L. Y.; Liu, Y. Zener tunneling and photoresponse of a WS2/Si van der Waals heterojunction. ACS Appl. Mater. Interfaces 2016, 8, 18375–18382.

[52]

Chowdhury, R. K.; Maiti, R.; Ghorai, A.; Midya, A.; Ray, S. K. Novel silicon compatible p-WS2 2D/3D heterojunction devices exhibiting broadband photoresponse and superior detectivity. Nanoscale 2016, 8, 13429–13436.

[53]

Yu, Z. H.; Pan, Y. M.; Shen, Y. T.; Wang, Z. L.; Ong, Z. Y.; Xu, T.; Xin, R.; Pan, L. J.; Wang, B. G.; Sun, L. T. et al. Towards intrinsic charge transport in monolayer molybdenum disulfide by defect and interface engineering. Nat. Commun. 2014, 5, 5290.

[54]

Zhang, Y.; Yu, Y. Q.; Mi, L. F.; Wang, H.; Zhu, Z. F.; Wu, Q. Y.; Zhang, Y. G.; Jiang, Y. In situ fabrication of vertical multilayered MoS2/Si homotype heterojunction for high-speed visible-near-infrared photodetectors. Small 2016, 12, 1062–1071.

[55]

Kim, H. S.; Kumar, M. D.; Patel, M.; Kim, J.; Cho, B.; Kim, D. H. High-performing MoS2-embedded Si photodetector. Mater. Sci. Semicond. Process. 2017, 71, 35–41.

[56]

Wu, D.; Guo, C. G.; Zeng, L. H.; Ren, X. Y.; Shi, Z. F.; Wen, L.; Chen, Q.; Zhang, M.; Li, X. J.; Shan, C. X. et al. Phase-controlled van der Waals growth of wafer-scale 2D MoTe2 layers for integrated high-sensitivity broadband infrared photodetection. Light Sci. Appl. 2023, 12, 5.

[57]

Zeng, L. H.; Wu, D.; Jie, J. S.; Ren, X. Y.; Hu, X.; Lau, S. P.; Chai, Y.; Tsang, Y. H. Van der Waals epitaxial growth of Mosaic-like 2D platinum ditelluride layers for room-temperature mid-infrared photodetection up to 10.6 µm. Adv. Mater. 2020, 32, 2004412.

[58]

Wu, D.; Guo, J. W.; Wang, C. Q.; Ren, X. Y.; Chen, Y. S.; Lin, P.; Zeng, L. H.; Shi, Z. F.; Li, X. J.; Shan, C. X. et al. Ultrabroadband and high-detectivity photodetector based on WS2/Ge heterojunction through defect engineering and interface passivation. ACS Nano 2021, 15, 10119–10129.

[59]

Pan, S. Q.; Wu, S. E.; Hei, J. J.; Zhou, Z. W.; Zeng, L. H.; Xing, Y. K.; Lin, P.; Shi, Z. F.; Tian, Y. T.; Li, X. J. et al. Light trapping enhanced broadband photodetection and imaging based on MoSe2/pyramid Si vdW heterojunction. Nano Res. 2023, 16, 10552–10558.

[60]

Xie, Z. J.; Xing, C. Y.; Huang, W. C.; Fan, T. J.; Li, Z. J.; Zhao, J. L.; Xiang, Y. J.; Guo, Z. N.; Li, J. Q.; Yang, Z. G. et al. Ultrathin 2D nonlayered tellurium nanosheets: Facile liquid-phase exfoliation, characterization, and photoresponse with high performance and enhanced stability. Adv. Funct. Mater. 2018, 28, 1705833.

File
12274_2023_6109_MOESM1_ESM.pdf (1.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 26 June 2023
Revised: 18 August 2023
Accepted: 20 August 2023
Published: 27 September 2023
Issue date: April 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 61774085), the Natural Science Foundation of Jiangsu Province (No. BK20201300), the Fundamental Research Funds for the Central Universities (No. NP2022401), the Fund of Prospective Layout of Scientific Research for NUAA (Nanjing University of Aeronautics and Astronautics) (No. ILA22009), and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Return