Journal Home > Volume 17 , Issue 2

The detection of biomarkers with both high sensitivity and specificity is crucial for the diagnosis and treatment of related diseases. However, many current detections employ ex-situ detection method and non-confined condition, thus have many problems, which may eventually lead to inaccurate detection results. Compared to detection in non-confined space, detection in confined space can better reflect the real in-vivo situation. Therefore, the construction of detection for target molecules in confined space has great significance for both theoretical research and practical application. To realize the detection of target molecules in confined space, the probes should accurately enter the confined space where the target molecules reside and interact with the interface. Thus, how to explore and utilize the properties of the interface (for example, bioinspired superwettability) has always been a hot and difficult topic in this field. Herein, the recent advances and our efforts in recent 10 years on detection of bio-target molecules in confined space with superwettable interface have been introduced from the perspective of the detection methods. The suitable and most widely employed detection methods for target molecules in confined spaces are introduced firstly. Then, recent progresses for related detections based on visual, optical, and electrochemical detection methods are presented successively. Finally, the perspective for detection in confined space is discussed for the future development of biochemical detection.


menu
Abstract
Full text
Outline
About this article

Superwettable interface towards biodetection in confined space

Show Author's information Zexu PangZhikang CaoWanlu LiWenxia XuYingying ZhangQitao ZhouJing Pan( )Fan Xia
State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of the Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China

Abstract

The detection of biomarkers with both high sensitivity and specificity is crucial for the diagnosis and treatment of related diseases. However, many current detections employ ex-situ detection method and non-confined condition, thus have many problems, which may eventually lead to inaccurate detection results. Compared to detection in non-confined space, detection in confined space can better reflect the real in-vivo situation. Therefore, the construction of detection for target molecules in confined space has great significance for both theoretical research and practical application. To realize the detection of target molecules in confined space, the probes should accurately enter the confined space where the target molecules reside and interact with the interface. Thus, how to explore and utilize the properties of the interface (for example, bioinspired superwettability) has always been a hot and difficult topic in this field. Herein, the recent advances and our efforts in recent 10 years on detection of bio-target molecules in confined space with superwettable interface have been introduced from the perspective of the detection methods. The suitable and most widely employed detection methods for target molecules in confined spaces are introduced firstly. Then, recent progresses for related detections based on visual, optical, and electrochemical detection methods are presented successively. Finally, the perspective for detection in confined space is discussed for the future development of biochemical detection.

Keywords: interface, confined space, superwettability, biodetection

References(161)

[1]

Deng, D. W.; Zhang, D. Y.; Li, Y.; Achilefu, S.; Gu, Y. Q. Gold nanoparticles based molecular beacons for in vitro and in vivo detection of the matriptase expression on tumor. Biosens. Bioelectron. 2013, 49, 216–221.

[2]

Myhrvold, C.; Freije, C. A.; Gootenberg, J. S.; Abudayyeh, O. O.; Metsky, H. C.; Durbin, A. F.; Kellner, M. J.; Tan, A. L.; Paul, L. M.; Parham, L. A. et al. Field-deployable viral diagnostics using CRISPR-Cas13. Science 2018, 360, 444–448.

[3]

Premkumar, L.; Segovia-Chumbez, B.; Jadi, R.; Martinez, D. R.; Raut, R.; Markmann, A. J.; Cornaby, C.; Bartelt, L.; Weiss, S.; Park, Y. et al. The receptor-binding domain of the viral spike protein is an immunodominant and highly specific target of antibodies in SARS-CoV-2 patients. Sci. Immunol. 2020, 5, eabc8413.

[4]

Yang, M. J.; Zhou, Y.; Wang, K.; Luo, C. F.; Xie, M. N.; Shi, X.; Lin, X. G. Review of chemical sensors for hydrogen sulfide detection in organisms and living cells. Sensors 2023, 23, 3316.

[5]

Sun, F. M.; Zeng, J. Z.; Jing, M.; Zhou, J. H.; Feng, J. S.; Owen, S. F.; Luo, Y. C.; Li, F. N.; Wang, H.; Yamaguchi, T. et al. A genetically encoded fluorescent sensor enables rapid and specific detection of dopamine in flies, fish, and mice. Cell 2018, 174, 481–496.e19.

[6]

Patchsung, M.; Jantarug, K.; Pattama, A.; Aphicho, K.; Suraritdechachai, S.; Meesawat, P.; Sappakhaw, K.; Leelahakorn, N.; Ruenkam, T.; Wongsatit, T. et al. Clinical validation of a Cas13-based assay for the detection of SARS-CoV-2 RNA. Nat. Biomed. Eng. 2020, 4, 1140–1149.

[7]

Feng, B. D.; Wang, K.; Liu, J. W.; Mao, G. J.; Cui, J. Q.; Xuan, X. P.; Jiang, K.; Zhang, H. Ultrasensitive apurinic/apyrimidinic site-specific ratio fluorescent rotor for real-time highly selective evaluation of mtDNA oxidative damage in living cells. Anal. Chem. 2019, 91, 13962–13969.

[8]

Raju, M.; Nair, R. R.; Raval, I. H.; Haldar, S.; Chatterjee, P. B. Reporting a new siderophore based Ca2+ selective chemosensor that works as a staining agent in the live organism Artemia. Analyst 2015, 140, 7799–7809.

[9]

Nakatsuka, N.; Yang, K. A.; Abendroth, J. M.; Cheung, K. M.; Xu, X. B.; Yang, H. Y.; Zhao, C. Z.; Zhu, B. W.; Rim, Y. S.; Yang, Y. et al. Aptamer-field-effect transistors overcome Debye length limitations for small-molecule sensing. Science 2018, 362, 319–324.

[10]

Shi, J.; Deng, Q. C.; Wan, C. Y.; Zheng, M. M.; Huang, F. H.; Tang, B. Fluorometric probing of the lipase level as acute pancreatitis biomarkers based on interfacially controlled aggregation-induced emission (AIE). Chem. Sci. 2017, 8, 6188–6195.

[11]

Selman, J.; Spickett, J.; Jansz, J.; Mullins, B. An investigation into the rate and mechanism of incident of work-related confined space fatalities. Safety Sci. 2018, 109, 333–343.

[12]

Dai, Z. Q.; Guo, J. L.; Xu, J.; Liu, C.; Gao, Z. D.; Song, Y. Y. Target-driven nanozyme growth in TiO2 nanochannels for improving selectivity in electrochemical biosensing. Anal. Chem. 2020, 92, 10033–10041.

[13]

Liu, Y. Y.; Li, H. M.; Gong, S. P.; Chen, Y. N.; Xie, R. R.; Wu, Q. Q.; Tao, J.; Meng, F. L.; Zhao, P. A novel non-enzymatic electrochemical biosensor based on the nanohybrid of bimetallic PdCu nanoparticles/carbon black for highly sensitive detection of H2O2 released from living cells. Sens. Actuators B Chem. 2019, 290, 249–257.

[14]

Granados-Riveron, J. T.; Aquino-Jarquin, G. CRISPR/Cas13-based approaches for ultrasensitive and specific detection of microRNAs. Cells 2021, 10, 1655.

[15]

Rose Brannon, A.; Jayakumaran, G.; Diosdado, M.; Patel, J.; Razumova, A.; Hu, Y.; Meng, F. L.; Haque, M.; Sadowska, J.; Murphy, B. J. et al. Enhanced specificity of clinical high-sensitivity tumor mutation profiling in cell-free DNA via paired normal sequencing using MSK-ACCESS. Nat. Commun. 2021, 12, 3770.

[16]

Zhao, Z. J.; Liu, B. Q.; Xie, C. L.; Ma, Y.; Wang, J.; Liu, M.; Yang, K. X.; Xu, Y. H.; Zhang, J.; Li, W. W. et al. Highly sensitive, sub-microsecond polymer photodetectors for blood oxygen saturation testing. Sci. China Chem. 2021, 64, 1302–1309.

[17]

Dey, S.; Baba, S. A.; Bhatt, A.; Dhyani, R.; Navani, N. K. Transcription factor based whole-cell biosensor for specific and sensitive detection of sodium dodecyl sulfate. Biosens. Bioelectron. 2020, 170, 112659.

[18]

Kannan, B.; Williams, D. E.; Laslau, C.; Travas-Sejdic, J. A highly sensitive, label-free gene sensor based on a single conducting polymer nanowire. Biosens. Bioelectron. 2012, 35, 258–264.

[19]

Wang, C. M.; Roy, P. K.; Juluri, B. K.; Chattopadhyay, S. A SERS tattoo for in situ, ex situ, and multiplexed detection of toxic food additives. Sens. Actuators B Chem. 2018, 261, 218–225.

[20]

Liu, N. N.; Yang, Z. K.; Lou, X. D.; Wei, B. M.; Zhang, J. T.; Gao, P. C.; Hou, R. Z.; Xia, F. Nanopore-based DNA-probe sequence-evolution method unveiling characteristics of protein-DNA binding phenomena in a nanoscale confined space. Anal. Chem. 2015, 87, 4037–4041.

[21]

Liu, Q. J.; Wu, C. S.; Cai, H.; Hu, N.; Zhou, J.; Wang, P. Cell-based biosensors and their application in biomedicine. Chem. Rev. 2014, 114, 6423–6461.

[22]

Y. J.; Wang, A. X.; Huang, L.; Zhu, X. D.; Hu, Q. X.; Zhang, Y. N.; Chen, X. J.; Li, F. W.; Wang, Q. H.; Wang, H. et al. Illuminating NAD+ metabolism in live cells and in vivo using a genetically encoded fluorescent sensor. Dev. Cell 2020, 53, 240–252.e7.

[23]

Yuan, A. J.; Xiao, H.; Yang, F.; Hao, H. F.; Wang, X. Y.; Li, J. H.; Jin, M. H.; Zhao, Q.; Sha, R.; Deng, Z. J. et al. DNA walker for signal amplification in living cells. Trends Analyt. Chem. 2023, 158, 116870.

[24]

Peng, X. X.; Qin, X. L.; Qin, Y.; Xiang, Y. H.; Zhang, G. J.; Yang, F. Bioprobes-regulated precision biosensing of exosomes: From the nanovesicle surface to the inside. Coord. Chem. Rev. 2022, 463, 214538.

[25]

Zhang, Y. T.; Du, Y. L.; Zhuo, Y. T.; Qiu, L. P. Functional nucleic acid-based live-cell fluorescence imaging. Front. Chem. 2020, 8, 598013.

[26]

Binkowski, B.; Fan, F.; Wood, K. Engineered luciferases for molecular sensing in living cells. Curr. Opin. Biotechnol. 2009, 20, 14–18.

[27]

Lu, B. L.; Wang, L. Y.; Ran, X. G.; Tang, H.; Cao, D. R. Recent advances in fluorescent methods for polyamine detection and the polyamine suppressing strategy in tumor treatment. Biosensors 2022, 12, 663.

[28]

Wu, Y. N.; Huang, J.; Yang, X. H.; Yang, Y. J.; Quan, K.; Xie, N. L.; Li, J.; Ma, C. B.; Wang, K. M. Gold nanoparticle loaded split-DNAzyme probe for amplified miRNA detection in living cells. Anal. Chem. 2017, 89, 8377–8383.

[29]

van Unen, J.; Woolard, J.; Rinken, A.; Hoffmann, C.; Hill, S. J.; Goedhart, J.; Bruchas, M. R.; Bouvier, M.; Adjobo-Hermans, M. J. W. A perspective on studying G-protein-coupled receptor signaling with resonance energy transfer biosensors in living organisms. Mol. Pharmacol. 2015, 88, 589–595.

[30]

Chen, J.; Zhang, Y. F.; Chen, D. P.; Wang, T. C.; Yin, W.; Yang, H. H.; Xu, Y. Z.; Chen, J. X.; Dai, Z.; Zou, X. Y. Toehold-mediated ligation-free rolling circle amplification enables sensitive and rapid imaging of messenger RNAs in situ in cells. Anal. Chim. Acta. 2021, 1160, 338463.

[31]

Zeng, W.; Lin, M. H.; Zhu, L. Y.; Lin, M. J. A triphenylphosphonium functionalized AIE conjugated macrocyclic tetramaleimide for mitochondrial-targeting bioimaging. Chin. J. Chem. 2022, 40, 39–45.

[32]

Lu, T. M.; Liese, S.; Schoenmakers, L.; Weber, C. A.; Suzuki, H.; Huck, W. T. S.; Spruijt, E. Endocytosis of coacervates into liposomes. J. Am. Chem. Soc. 2022, 144, 13451–13455.

[33]

Zhang, L.; Chu, M. G.; Ji, C. L.; Wang, W. J.; Tan, J.; Yuan, Q. Electron transfer in protein modifications: From detection to imaging. Sci. China Chem. 2023, 66, 388–405.

[34]

Gomollón-Bel, F. IUPAC top ten emerging technologies in chemistry 2021. Chem. Int. 2021, 43, 13–20.

[35]

Su, B.; Tian, Y.; Jiang, L. Bioinspired interfaces with superwettability: From materials to chemistry. J. Am. Chem. Soc. 2016, 138, 1727–1748.

[36]

Wen, L. P.; Tian, Y.; Jiang, L. Bioinspired super-wettability from fundamental research to practical applications. Angew. Chem., Int. Ed. 2015, 54, 3387–3399.

[37]

Zhu, Q. L.; Yang, Y. M.; Gao, H. X.; Xu, L. P.; Wang, S. T. Bioinspired superwettable electrodes towards electrochemical biosensing. Chem. Sci. 2022, 13, 5069–5084.

[38]

Xu, T. L.; Xu, L. P.; Zhang, X. J.; Wang, S. T. Bioinspired superwettable micropatterns for biosensing. Chem. Soc. Rev. 2019, 48, 3153–3165.

[39]

Yan, X.; Zhang, L. C.; Sett, S.; Feng, L. Z.; Zhao, C. Y.; Huang, Z. Y.; Vahabi, H.; Kota, A. K.; Chen, F.; Miljkovic, N. Droplet jumping: Effects of droplet size, surface structure, pinning, and liquid properties. ACS Nano 2019, 13, 1309–1323.

[40]

Wang, J.; Gao, W.; Zhang, H.; Zou, M. H.; Chen, Y. P.; Zhao, Y. J. Programmable wettability on photocontrolled graphene film. Sci. Adv. 2018, 4, eaat7392.

[41]

Qin, W.; Ding, D.; Liu, J. Z.; Yuan, W. Z.; Hu, Y.; Liu, B.; Tang, B. Z. Biocompatible nanoparticles with aggregation-induced emission characteristics as far-red/near-infrared fluorescent bioprobes for in vitro and in vivo imaging applications. Adv. Funct. Mater. 2012, 22, 771–779.

[42]

Zhang, D.; Zhang, X. J. Bioinspired solid-state nanochannel sensors: From ionic current signals, current, and fluorescence dual signals to faraday current signals. Small 2021, 17, 2100495.

[43]

Feric, M.; Brangwynne, C. P. A nuclear F-actin scaffold stabilizes ribonucleoprotein droplets against gravity in large cells. Nat. Cell Biol. 2013, 15, 1253–1259.

[44]

Sakai, S.; Kawabata, K.; Ono, T.; Ijima, H.; Kawakami, K. Development of mammalian cell-enclosing subsieve-size agarose capsules (<100 μm) for cell therapy. Biomaterials 2005, 26, 4786–4792.

[45]

Claycomb, W. C.; Palazzo, M. C. Culture of the terminally differentiated adult cardiac muscle cell: A light and scanning electron microscope study. Dev. Biol. 1980, 80, 466–482.

[46]

Vazquez, J.; Belmont, A. S.; Sedat, J. W. Multiple regimes of constrained chromosome motion are regulated in the interphase Drosophila nucleus. Curr. Biol. 2001, 11, 1227–1239.

[47]

Ngwa, W.; Makrigiorgos, G. M.; Berbeco, R. I. Gold nanoparticle-aided brachytherapy with vascular dose painting: Estimation of dose enhancement to the tumor endothelial cell nucleus. Med. Phys. 2012, 39, 392–398.

[48]

Kiryu-Seo, S.; Ohno, N.; Kidd, G. J.; Komuro, H.; Trapp, B. D. Demyelination increases axonal stationary mitochondrial size and the speed of axonal mitochondrial transport. J. Neurosci. 2010, 30, 6658–6666.

[49]

Vendelin, M.; Béraud, N.; Guerrero, K.; Andrienko, T.; Kuznetsov, A. V.; Olivares, J.; Kay, L.; Saks, V. A. Mitochondrial regular arrangement in muscle cells: A “crystal-like” pattern. Am. J. Physiol. Cell Physiol. 2005, 288, C757–C767.

[50]

Xie, S.; Wong, A. Y. H.; Chen, S. J.; Tang, B. Z. Fluorogenic detection and characterization of proteins by aggregation-induced emission methods. Chem. -Eur. J. 2019, 25, 5824–5847.

[51]

Feng, G. F.; Liao, S. J.; Liu, Y. F.; Zhang, H. Z.; Luo, X. Y.; Zhou, X. M.; Fang, J. When AIE meets enzymes. Analyst 2022, 147, 3958–3973.

[52]

Liu, F.; Yang, Y. M.; Wan, X. Z.; Gao, H. X.; Wang, Y. L.; Lu, J. W.; Xu, L. P.; Wang, S. T. Space-confinment-enhanced fluorescence detection of DNA on hydrogel particles array. ACS Nano 2022, 16, 6266–6273.

[53]

Wu, F.; Huang, Y.; Yang, X.; Hu, J. J.; Lou, X. D.; Xia, F.; Song, Y. L.; Jiang, L. Tunning intermolecular interaction of peptide-conjugated aiegen in nano-confined space for quantitative detection of tumor marker secreted from cells. Anal. Chem. 2021, 93, 16257–16263.

[54]

Olsson, M.; Schéele, S.; Ekblom, P. Limited expression of nuclear pore membrane glycoprotein 210 in cell lines and tissues suggests cell-type specific nuclear pores in metazoans. Exp. Cell Res. 2004, 292, 359–370.

[55]

Xie, G. H.; Wen, L. P.; Jiang, L. Biomimetic smart nanochannels for power harvesting. Nano Res. 2016, 9, 59–71.

[56]

Wen, L. P.; Jiang, L. Construction of biomimetic smart nanochannels for confined water. Natl. Sci. Rev. 2014, 1, 144–156.

[57]

Zhang, H. C.; Tian, Y.; Jiang, L. Fundamental studies and practical applications of bio-inspired smart solid-state nanopores and nanochannels. Nano Today 2016, 11, 61–81.

[58]

Ding, D. F.; Gao, P. C.; Ma, Q.; Wang, D. G.; Xia, F. Biomolecule-functionalized solid-state ion nanochannels/nanopores: Features and techniques. Small 2019, 15, 1804878.

[59]

Kan, X. N.; Wu, C. Y.; Wen, L. P.; Jiang, L. Biomimetic nanochannels: From fabrication principles to theoretical insights. Small Methods 2022, 6, 2101255.

[60]

Yaroshchuk, A. What makes a nano-channel. A limiting-current criterion. Microfluid. Nanofluid. 2012, 12, 615–624.

[61]

Pan, J.; Yu, S. W.; Jing, Z. W.; Zhou, Q. T.; Dong, Y. F.; Lou, X. D.; Xia, F. Electrocatalytic hydrogen evolution reaction related to nanochannel materials. Small Struct. 2021, 2, 2100076.

[62]

Tagliazucchi, M.; Azzaroni, O.; Szleifer, I. Responsive polymers end-tethered in solid-state nanochannels: When nanoconfinement really matters. J. Am. Chem. Soc. 2010, 132, 12404–12411.

[63]

Yameen, B.; Ali, M.; Neumann, R.; Ensinger, W.; Knoll, W.; Azzaroni, O. Synthetic proton-gated ion channels via single solid-state nanochannels modified with responsive polymer brushes. Nano Lett. 2009, 9, 2788–2793.

[64]

Ali, M.; Nasir, S.; Froehlich, K.; Ramirez, P.; Cervera, J.; Mafe, S.; Ensinger, W. Size-based cationic molecular sieving through solid-state nanochannels. Adv. Mater. Interfaces 2021, 8, 2001766.

[65]

Ali, M.; Yameen, B.; Neumann, R.; Ensinger, W.; Knoll, W.; Azzaroni, O. Biosensing and supramolecular bioconjugation in single conical polymer nanochannels. Facile incorporation of biorecognition elements into nanoconfined geometries. J. Am. Chem. Soc. 2008, 130, 16351–16357.

[66]

Ma, T. J.; Janot, J. M.; Balme, S. Track-etched nanopore/membrane: From fundamental to applications. Small Methods 2020, 4, 2000366.

[67]

Pan, J.; Xu, W. X.; Li, W. L.; Chen, S. W.; Dai, Y.; Yu, S. W.; Zhou, Q. T.; Xia, F. Electrochemical aptamer-based sensors with tunable detection range. Anal. Chem. 2023, 95, 420–432.

[68]

Feng, J. D.; Liu, K.; Bulushev, R. D.; Khlybov, S.; Dumcenco, D.; Kis, A.; Radenovic, A. Identification of single nucleotides in MoS2 nanopores. Nat. Nanotechnol. 2015, 10, 1070–1076.

[69]

Ma, K.; Yang, L. X.; Liu, J.; Liu, J. Y. Electrochemical sensor nanoarchitectonics for sensitive detection of uric acid in human whole blood based on screen-printed carbon electrode equipped with vertically-ordered mesoporous silica-nanochannel film. Nanomaterials 2022, 12, 1157.

[70]

Gao, P. C.; Ma, Q.; Ding, D. F.; Wang, D. G.; Lou, X. D.; Zhai, T. Y.; Xia, F. Distinct functional elements for outer-surface anti-interference and inner-wall ion gating of nanochannels. Nat. Commun. 2018, 9, 4557.

[71]

Kalmar, G. B.; Kay, R. J.; Lachance, A.; Aebersold, R.; Cornell, R. B. Cloning and expression of rat liver CTP: Phosphocholine cytidylyltransferase: An amphipathic protein that controls phosphatidylcholine synthesis. Proc. Natl. Acad. Sci. USA 1990, 87, 6029–6033.

[72]

Tsai, H. A.; Chen, C. H.; Lee, W. C. Influence of surface hydrophobic groups on the adsorption of proteins onto nonporous polymeric particles with immobilized metal ions. J. Colloid Interface Sci. 2001, 240, 379–383.

[73]

Lim, H. S.; Lee, S. G.; Lee, D. H.; Lee, D. Y.; Lee, S.; Cho, K. Superhydrophobic to superhydrophilic wetting transition with programmable ion-pairing interaction. Adv. Mater. 2008, 20, 4438–4441.

[74]

Monserud, J. H.; Schwartz, D. K. Effects of molecular size and surface hydrophobicity on oligonucleotide interfacial dynamics. Biomacromolecules 2012, 13, 4002–4011.

[75]

Zhan, S. S.; Pan, Y.; Gao, Z. F.; Lou, X. D.; Xia, F. Biological and chemical sensing applications based on special wettable surfaces. Trends Analyt. Chem. 2018, 108, 183–194.

[76]

Yang, Y. M.; Zhu, Q. L.; Xu, L. P.; Zhang, X. J. Bioinspired liquid-infused surface for biomedical and biosensing applications. Front. Bioeng. Biotechnol. 2022, 10, 1032640.

[77]

Liu, J.; Xie, G. Y.; Lv, S. D.; Xiong, Q.; Xu, H. Y. Recent applications of rolling circle amplification in biosensors and DNA nanotechnology. Trends Analyt. Chem. 2023, 160, 116953.

[78]

Xia, F.; Zuo, X. L.; Yang, R. Q.; Xiao, Y.; Kang, D.; Vallée-Bélisle, A.; Gong, X.; Heeger, A. J.; Plaxco, K. W. On the binding of cationic, water-soluble conjugated polymers to DNA: Electrostatic and hydrophobic interactions. J. Am. Chem. Soc. 2010, 132, 1252–1254.

[79]

Gao, Z. F.; Liu, R.; Wang, J. H.; Dai, J.; Huang, W. H.; Liu, M. J.; Wang, S. T.; Xia, F.; Jiang, L. Controlling droplet motion on an organogel surface by tuning the chain length of DNA and its biosensing application. Chem 2018, 4, 2929–2943.

[80]

Gao, Z. F.; Liu, R.; Wang, J. H.; Dai, J.; Huang, W. H.; Liu, M. J.; Wang, S. T.; Xia, F.; Zhang, S. S.; Jiang, L. Manipulating the hydrophobicity of DNA as a universal strategy for visual biosensing. Nat. Protoc. 2020, 15, 316–337.

[81]

Feng, X. J.; Jiang, L. Design and creation of superwetting/antiwetting surfaces. Adv. Mater. 2006, 18, 3063–3078.

[82]

Zhu, H.; Wu, L. Z.; Meng, X.; Wang, Y. Q.; Huang, Y.; Lin, M. H.; Xia, F. An anti-UV superhydrophobic material with photocatalysis, self-cleaning, self-healing and oil/water separation functions. Nanoscale 2020, 12, 11455–11459.

[83]

Gao, Z. F.; Sann, E. E.; Lou, X. D.; Liu, R. Y.; Dai, J.; Zuo, X. L.; Xia, F.; Jiang, L. Naked-eye point-of-care testing platform based on a pH-responsive superwetting surface: Toward the non-invasive detection of glucose. NPG Asia Mater. 2018, 10, 177–189.

[84]

Yang, X.; Wang, J. H.; Gao, Z. F.; Zhang, W. Q.; Zhu, H.; Song, Y. J.; Wang, Q.; Liu, M. J.; Jiang, L.; Huang, Y. et al. An orthogonal dual-regulation strategy for sensitive biosensing applications. Natl. Sci. Rev. 2022, 9, nwac048.

[85]

Xia, F.; Zuo, X. L.; Yang, R. Q.; Xiao, Y.; Kang, D.; Vallée-Bélisle, A.; Gong, X.; Yuen, J. D.; Hsu, B. B. Y.; Heeger, A. J. et al. Colorimetric detection of DNA, small molecules, proteins, and ions using unmodified gold nanoparticles and conjugated polyelectrolytes. Proc. Natl. Acad. Sci. USA 2010, 107, 10837–10841.

[86]

Huang, F. J.; Chen, Y.; Wang, Y. Q.; Xia, F. Tunable superamphiphobic surfaces: A platform for naked-eye ATP detection. Anal. Bioanal. Chem. 2019, 411, 4721–4727.

[87]

Huang, F. J.; Zhang, J.; Li, T.; Duan, R. L.; Xia, F.; Willner, I. Two-photon lithographic patterning of DNA-coated single-microparticle surfaces. Nano Lett. 2019, 19, 618–625.

[88]

Vafaei, S.; Podowski, M. Z. Analysis of the relationship between liquid droplet size and contact angle. Adv. Colloid Interface Sci. 2005, 113, 133–146.

[89]

Zhang, K. K.; Zhang, J. X.; Wang, F. F.; Kong, D. S. Stretchable and superwettable colorimetric sensing patch for epidermal collection and analysis of sweat. ACS Sens. 2021, 6, 2261–2269.

[90]

Wang, X. F.; Liu, Y. C. Y.; Cheng, H. Y.; Ouyang, X. P. Surface wettability for skin-interfaced sensors and devices. Adv. Funct. Mater. 2022, 32, 2200260.

[91]

He, X. C.; Xu, T. L.; Gao, W.; Xu, L. P.; Pan, T. R.; Zhang, X. J. Flexible superwettable tapes for on-site detection of heavy metals. Anal. Chem. 2018, 90, 14105–14110.

[92]

He, X. C.; Xu, T. L.; Gu, Z.; Gao, W.; Xu, L. P.; Pan, T. R.; Zhang, X. J. Flexible and superwettable bands as a platform toward sweat sampling and sensing. Anal. Chem. 2019, 91, 4296–4300.

[93]

Danuser, G. Computer vision in cell biology. Cell 2011, 147, 973–978.

[94]

He, W. B.; Han, Y. J.; Ming, W. Y.; Du, J. G.; Liu, Y. X.; Yang, Y.; Wang, L. J.; Wang, Y. Q.; Jiang, Z. W.; Cao, C. et al. Progress of machine vision in the detection of cancer cells in histopathology. IEEE Access 2022, 10, 46753–46771.

[95]

Shi, H. H.; Cao, Y.; Xie, Z. H.; Zhao, Y. L.; Zhang, C. X.; Chen, Z. Multi-parameter photoelectric data fitting for microfluidic sweat colorimetric analysis. Sens. Actuators B Chem. 2022, 372, 132644.

[96]

Zhao, Z. Q.; Li, Q. J.; Chen, L. N.; Zhao, Y.; Gong, J. X.; Li, Z.; Zhang, J. F. A thread/fabric-based band as a flexible and wearable microfluidic device for sweat sensing and monitoring. Lab Chip 2021, 21, 916–932.

[97]

Xu, H.; Lu, Y. F.; Xiang, J. X.; Zhang, M. K.; Zhao, Y. J.; Xie, Z. Y.; Gu, Z. Z. A multifunctional wearable sensor based on a graphene/inverse opal cellulose film for simultaneous, in situ monitoring of human motion and sweat. Nanoscale 2018, 10, 2090–2098.

[98]

Zhang, Z.; Azizi, M.; Lee, M.; Davidowsky, P.; Lawrence, P.; Abbaspourrad, A. A versatile, cost-effective, and flexible wearable biosensor for in situ and ex situ sweat analysis, and personalized nutrition assessment. Lab Chip 2019, 19, 3448–3460.

[99]

de Bruijne, M. Machine learning approaches in medical image analysis: From detection to diagnosis. Med. Image Anal. 2016, 33, 94–97.

[100]

Lee, J. J.; Jedrych, J.; Pantanowitz, L.; Ho, J. Validation of digital pathology for primary histopathological diagnosis of routine, inflammatory dermatopathology cases. Am. J. Dermatopathol. 2018, 40, 17–23.

[101]

Baumann, P.; Spulber, M.; Fischer, O.; Car, A.; Meier, W. Investigation of horseradish peroxidase kinetics in an “organelle-like” environment. Small 2017, 13, 1603943.

[102]

Mu, W. J.; Ji, Z.; Zhou, M. S.; Wu, J. Z.; Lin, Y. Y.; Qiao, Y. Membrane-confined liquid-liquid phase separation toward artificial organelles. Sci. Adv. 2021, 7, eabf9000.

[103]

Jiang, S.; Caire da Silva, L.; Ivanov, T.; Mottola, M.; Landfester, K. Synthetic silica nano-organelles for regulation of cascade reactions in multi-compartmentalized systems. Angew. Chem. 2022, 134, e202113784.

[104]

Xia, M. F.; Zhang, Y. Z.; Jin, K.; Lu, Z. T.; Zeng, Z. Y.; Xiong, W. Communication between mitochondria and other organelles: A brand-new perspective on mitochondria in cancer. Cell Biosci. 2019, 9, 27.

[105]

Susin, S. A.; Zamzami, N.; Kroemer, G. Mitochondria as regulators of apoptosis: Doubt no more. Biochim. Biophys. Acta Bioenerg. 1998, 1366, 151–165.

[106]

Susin, S. A.; Lorenzo, H. K.; Zamzami, N.; Marzo, I.; Snow, B. E.; Brothers, G. M.; Mangion, J.; Jacotot, E.; Costantini, P.; Loeffler, M. et al. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 1999, 397, 441–446.

[107]

Cheng, Y.; Dai, J.; Sun, C. L.; Liu, R.; Zhai, T. Y.; Lou, X. D.; Xia, F. An intracellular H2O2-responsive aiegen for the peroxidase-mediated selective imaging and inhibition of inflammatory cells. Angew. Chem., Int. Ed. 2018, 57, 3123–3127.

[108]

Jun, S.; Arnold, A.; Ha, B. Y. Confined space and effective interactions of multiple self-avoiding chains. Phys. Rev. Lett. 2007, 98, 128303.

[109]

Paul, C. D.; Mistriotis, P.; Konstantopoulos, K. Cancer cell motility: Lessons from migration in confined spaces. Nat. Rev. Cancer 2017, 17, 131–140.

[110]

Sima, F.; Kawano, H.; Hirano, M.; Miyawaki, A.; Obata, K.; Serien, D.; Sugioka, K. Mimicking intravasation-extravasation with a 3D glass nanofluidic model for the chemotaxis-free migration of cancer cells in confined spaces. Adv. Mater. Technol. 2020, 5, 2000484.

[111]

Settembre, C.; Fraldi, A.; Medina, D. L.; Ballabio, A. Signals from the lysosome: A control centre for cellular clearance and energy metabolism. Nat. Rev. Mol. Cell Biol. 2013, 14, 283–296.

[112]

Mern, D. S.; Beierfuß, A.; Thomé, C.; Hegewald, A. A. Enhancing human nucleus pulposus cells for biological treatment approaches of degenerative intervertebral disc diseases: A systematic review. J. Tissue. Eng. Regen. Med. 2014, 8, 925–936.

[113]

Huo, S. D.; Jin, S. B.; Ma, X. W.; Xue, X. D.; Yang, K. N.; Kumar, A.; Wang, P. C.; Zhang, J. C.; Hu, Z. B.; Liang, X. J. Ultrasmall gold nanoparticles as carriers for nucleus-based gene therapy due to size-dependent nuclear entry. ACS Nano 2014, 8, 5852–5862.

[114]

Morton, G. J.; Niswender, K. D.; Rhodes, C. J.; Myers, M. G.; Blevins, J. E.; Baskin, D. G.; Schwartz, M. W. Arcuate nucleus-specific leptin receptor gene therapy attenuates the obesity phenotype of Koletsky (fak)/fak) rats. Endocrinology 2003, 144, 2016–2024.

[115]

Li, Y. F.; Lv, W.; Wang, L.; Zhang, Y. M.; Yang, L. P.; Wang, T. Y.; Zhu, L. Y.; Wang, Y. F.; Wang, W. P. Photo-triggered nucleus targeting for cancer drug delivery. Nano Res. 2021, 14, 2630–2636.

[116]

Cheng, Y.; Sun, C. L.; Liu, R.; Yang, J. L.; Dai, J.; Zhai, T. Y.; Lou, X. D.; Xia, F. A multifunctional peptide-conjugated AIEgen for efficient and sequential targeted gene delivery into the nucleus. Angew. Chem. 2019, 131, 5103–5107.

[117]

Dai, J.; Li, Y. H.; Long, Z.; Jiang, R. M.; Zhuang, Z. Y.; Wang, Z. M.; Zhao, Z. J.; Lou, X. D.; Xia, F.; Tang, B. Z. Efficient near-infrared photosensitizer with aggregation-induced emission for imaging-guided photodynamic therapy in multiple xenograft tumor models. ACS Nano 2019, 14, 854–866.

[118]

Hakeem, A.; Zahid, F.; Duan, R. X.; Asif, M.; Zhang, T. C.; Zhang, Z. Y.; Cheng, Y.; Lou, X. D.; Xia, F. Cellulose conjugated FITC-labelled mesoporous silica nanoparticles: Intracellular accumulation and stimuli responsive doxorubicin release. Nanoscale 2016, 8, 5089–5097.

[119]

Hakeem, A.; Duan, R. X.; Zahid, F.; Dong, C.; Wang, B. Y.; Hong, F.; Ou, X. W.; Jia, Y. M.; Lou, X. D.; Xia, F. Dual stimuli-responsive nano-vehicles for controlled drug delivery: Mesoporous silica nanoparticles end-capped with natural chitosan. Chem. Commun. 2014, 50, 13268–13271.

[120]

Zhen, S. J.; Yi, X. Q.; Zhao, Z. J.; Lou, X. D.; Xia, F.; Tang, B. Z. Drug delivery micelles with efficient near-infrared photosensitizer for combined image-guided photodynamic therapy and chemotherapy of drug-resistant cancer. Biomaterials 2019, 218, 119330.

[121]

Duan, R. L.; Li, T.; Duan, Z. J.; Huang, F. J.; Xia, F. Near-infrared light activated nucleic acid cascade recycling amplification for spatiotemporally controllable signal amplified mRNA imaging. Anal. Chem. 2020, 92, 5846–5854.

[122]

Xia, F.; Wu, J.; Wu, X.; Hu, Q. Y.; Dai, J.; Lou, X. D. Modular design of peptide-or DNA-modified AIEgen probes for biosensing applications. Acc. Chem Res. 2019, 52, 3064–3074.

[123]

Huang, F. J.; Duan, R. L.; Zhou, Z. X.; Vázquez-González, M.; Xia, F.; Willner, I. Near-infrared light-activated membrane fusion for cancer cell therapeutic applications. Chem. Sci. 2020, 11, 5592–5600.

[124]

Shen, J. W.; Li, Y. B.; Gu, H. S.; Xia, F.; Zuo, X. L. Recent development of sandwich assay based on the nanobiotechnologies for proteins, nucleic acids, small molecules, and ions. Chem. Rev. 2014, 114, 7631–7677.

[125]

Li, H.; Li, S. G.; Dai, J.; Li, C. C.; Zhu, M.; Li, H. X.; Lou, X. D.; Xia, F.; Plaxco, K. W. High frequency, calibration-free molecular measurements in situ in the living body. Chem. Sci. 2019, 10, 10843–10848.

[126]

Wang, X. D.; Dai, J.; Min, X. H.; Yu, Z. H.; Cheng, Y.; Huang, K. X.; Yang, J. L.; Yi, X. Q.; Lou, X. D.; Xia, F. DNA-conjugated amphiphilic aggregation-induced emission probe for cancer tissue imaging and prognosis analysis. Anal. Chem. 2018, 90, 8162–8169.

[127]

Lou, X. D.; Song, Y. J.; Liu, R.; Cheng, Y.; Dai, J.; Chen, Q.; Gao, P. C.; Zhao, Z. J.; Xia, F. Enzyme and AIEgens modulated solid-state nanochannels: In situ and noninvasive monitoring of H2O2 released from living cells. Small Methods 2020, 4, 1900432.

[128]

Yi, X. Q.; Dai, J.; Han, Y. Y.; Xu, M.; Zhang, X. J.; Zhen, S. J.; Zhao, Z. J.; Lou, X. D.; Xia, F. A high therapeutic efficacy of polymeric prodrug nano-assembly for a combination of photodynamic therapy and chemotherapy. Commun. Biol. 2018, 1, 202.

[129]

Huang, F. J.; Lin, M. H.; Duan, R. L.; Lou, X. D.; Xia, F.; Willner, I. Photoactivated specific mRNA detection in single living cells by coupling “signal-on” fluorescence and “signal-off” electrochemical signals. Nano Lett. 2018, 18, 5116–5123.

[130]

Lin, M. H.; Yi, X. Q.; Huang, F. J.; Ma, X.; Zuo, X. L.; Xia, F. Photoactivated nanoflares for mRNA detection in single living cells. Anal. Chem. 2019, 91, 2021–2027.

[131]

Chen, Y. X.; Xu, L. P.; Meng, J. X.; Deng, S. H.; Ma, L. L.; Zhang, S. D.; Zhang, X. J.; Wang, S. T. Superwettable microchips with improved spot homogeneity toward sensitive biosensing. Biosens. Bioelectron. 2018, 102, 418–424.

[132]

Song, Y. C.; Xu, T. L.; Xu, L. P.; Zhang, X. J. Superwettable nanodendritic gold substrates for direct miRNA SERS detection. Nanoscale 2018, 10, 20990–20994.

[133]

Xu, L. P.; Chen, Y. X.; Yang, G.; Shi, W. X.; Dai, B.; Li, G. N.; Cao, Y. H.; Wen, Y. Q.; Zhang, X. J.; Wang, S. T. Ultratrace DNA detection based on the condensing-enrichment effect of superwettable microchips. Adv. Mater. 2015, 27, 6878–6884.

[134]

Chen, Y. X.; Min, X. H.; Zhang, X. Q.; Zhang, F. L.; Lu, S. M.; Xu, L. P.; Lou, X. D.; Xia, F.; Zhang, X. J.; Wang, S. T. AIE-based superwettable microchips for evaporation and aggregation induced fluorescence enhancement biosensing. Biosens. Bioelectron 2018, 111, 124–130.

[135]

Simon, J.; Schwalm, M.; Morstein, J.; Trauner, D.; Jasanoff, A. Mapping light distribution in tissue by using MRI-detectable photosensitive liposomes. Nat. Biomed. Eng. 2023, 7, 313–322.

[136]

Xia, Y. Q.; Xu, C. Z.; Zhang, X. H.; Ning, P. B.; Wang, Z. L.; Tian, J.; Chen, X. Y. Liposome-based probes for molecular imaging: From basic research to the bedside. Nanoscale 2019, 11, 5822–5838.

[137]

Chen, Q.; Liang, C.; Sun, X. Q.; Chen, J. W.; Yang, Z. J.; Zhao, H.; Feng, L. Z.; Liu, Z. H2O2-responsive liposomal nanoprobe for photoacoustic inflammation imaging and tumor theranostics via in vivo chromogenic assay. Proc. Natl. Acad. Sci. USA 2017, 114, 5343–5348.

[138]

Li, H.; Dauphin-Ducharme, P.; Arroyo-Currás, N.; Tran, C. H.; Vieira, P. A.; Li, S. G.; Shin, C.; Somerson, J.; Kippin, T. E.; Plaxco, K. W. A biomimetic phosphatidylcholine-terminated monolayer greatly improves the in vivo performance of electrochemical aptamer-based sensors. Angew. Chem. 2017, 129, 7600–7603.

[139]

Wu, J. G.; Chen, J. H.; Liu, K. T.; Luo, S. C. Engineering antifouling conducting polymers for modern biomedical applications. ACS Appl. Mater. Interfaces 2019, 11, 21294–21307.

[140]

Lou, X. D.; Huang, Y.; Yang, X.; Zhu, H.; Heng, L. P.; Xia, F. External stimuli responsive liquid-infused surfaces switching between slippery and nonslippery states: Fabrications and applications. Adv. Funct. Mater. 2020, 30, 1901130.

[141]

Wang, J. H.; Huang, Y.; You, K.; Yang, X.; Song, Y. J.; Zhu, H.; Xia, F.; Jiang, L. Temperature-driven precise control of biological droplet’s adhesion on a slippery surface. ACS Appl. Mater. Interfaces 2019, 11, 7591–7599.

[142]

Duan, R. X.; Lou, X. D.; Xia, F. The development of nanostructure assisted isothermal amplification in biosensors. Chem. Soc. Rev. 2016, 45, 1738–1749.

[143]

Xu, T. L.; Song, Y. C.; Gao, W.; Wu, T. T.; Xu, L. P.; Zhang, X. J.; Wang, S. T. Superwettable electrochemical biosensor toward detection of cancer biomarkers. ACS Sens. 2018, 3, 72–78.

[144]

Sevencan, C.; McCoy, R. S. A.; Ravisankar, P.; Liu, M.; Govindarajan, S.; Zhu, J. Y.; Bay, B. H.; Leong, D. T. Cell membrane nanotherapeutics: From synthesis to applications emerging tools for personalized cancer therapy. Adv. Ther. 2020, 3, 1900201.

[145]

Chen, X. Y.; Li, J. S. Bioinspired by cell membranes: Functional polymeric materials for biomedical applications. Mater. Chem. Front. 2020, 4, 750–774.

[146]

Huang, Q. W.; Zhu, W. S.; Gao, X. Y.; Liu, X. P.; Zhang, Z. J.; Xing, B. G. Nanoparticles-mediated ion channels manipulation: From their membrane interactions to bioapplications. Adv. Drug Deliv. Rev. 2023, 195, 114763.

[147]

Pappas, D.; Burrows, S. M.; Reif, R. D. Exploring biomolecular interactions by single-molecule fluorescence. Trends Analyt. Chem. 2007, 26, 884–894.

[148]

Pulikkathodi, A. K.; Sarangadharan, I.; Chen, Y. H.; Lee, G. Y.; Chyi, J. I.; Lee, G. B.; Wang, Y. L. Dynamic monitoring of transmembrane potential changes: A study of ion channels using an electrical double layer-gated FET biosensor. Lab Chip 2018, 18, 1047–1056.

[149]

Kang, Y. Y.; Liu, J.; Jiang, Y. P.; Yin, S. H.; Huang, Z. D.; Zhang, Y. L.; Wu, J. R.; Chen, L. L.; Shao, L. Q. Understanding the interactions between inorganic-based nanomaterials and biological membranes. Adv. Drug Deliv. Rev. 2021, 175, 113820.

[150]

Gao, P. C.; Hu, L. T.; Liu, N. N.; Yang, Z. K.; Lou, X. D.; Zhai, T. Y.; Li, H. Q.; Xia, F. Functional "Janus" annulus in confined channels. Adv. Mater. 2016, 28, 460–465.

[151]

Long, Z.; Zhan, S. S.; Gao, P. C.; Wang, Y. Q.; Lou, X. D.; Xia, F. Recent advances in solid nanopore/channel analysis. Anal. Chem. 2018, 90, 577–588.

[152]

Sun, Y.; Chen, S.; Chen, X. Y.; Xu, Y. L.; Zhang, S. Y.; Ouyang, Q. Y.; Yang, G. F.; Li, H. B. A highly selective and recyclable NO-responsive nanochannel based on a spiroring opening− closing reaction strategy. Nat. Commun. 2019, 10, 1323.

[153]

Zhang, J. T.; Liu, N. N.; Wei, B. M.; Ou, X. W.; Xu, X. M.; Lou, X. D.; Xia, F. The opposite gating behaviors of solid-state nanochannels modified with long and short polymer chains. Chem. Commun. 2015, 51, 10146–10149.

[154]

Ma, Q.; Si, Z. X.; Li, Y.; Wang, D. G.; Wu, X. L.; Gao, P. C.; Xia, F. Functional solid-state nanochannels for biochemical sensing. Trends Analyt. Chem. 2019, 115, 174–186.

[155]

Huang, Y.; Zhang, W. Q.; Xia, F.; Jiang, L. Solid-state nanochannel-based sensing systems: Development, challenges, and opportunities. Langmuir 2022, 38, 2415–2422.

[156]

Liu, N. N.; Li, C.; Zhang, T. C.; Hou, R. Z.; Xiong, Z. P.; Li, Z. Y.; Wei, B. M.; Yang, Z. K.; Gao, P. C.; Lou, X. D. et al. Fabrication of “plug and play” channels with dual responses by host-guest interactions. Small 2017, 13, 1600287.

[157]

Li, H.; Somerson, J.; Xia, F.; Plaxco, K. W. Electrochemical DNA-based sensors for molecular quality control: Continuous, real-time melamine detection in flowing whole milk. Anal. Chem. 2018, 90, 10641–10645.

[158]

Xu, X. M.; Hou, R. Z.; Gao, P. C.; Miao, M.; Lou, X. D.; Liu, B. F.; Xia, F. Highly robust nanopore-based dual-signal-output ion detection system for achieving three successive calibration curves. Anal. Chem. 2016, 88, 2386–2391.

[159]

Li, X. C.; Zhai, T. Y.; Gao, P. C.; Cheng, H. L.; Hou, R. Z.; Lou, X. D.; Xia, F. Role of outer surface probes for regulating ion gating of nanochannels. Nat. Commun. 2018, 9, 40.

[160]

Liu, L. X.; Luo, C. H.; Zhang, J. H.; He, X.; Shen, Y.; Yan, B.; Huang, Y.; Xia, F.; Jiang, L. Synergistic effect of bio-inspired nanochannels: Hydrophilic DNA probes at inner wall and hydrophobic coating at outer surface for highly sensitive detection. Small 2022, 18, 2201925.

[161]

Ma, Q.; Li, Y.; Wang, R. S.; Xu, H. Q.; Du, Q. J.; Gao, P. C.; Xia, F. Towards explicit regulating-ion-transport: Nanochannels with only function-elements at outer-surface. Nat. Commun. 2021, 12, 1573.

Publication history
Copyright
Acknowledgements

Publication history

Received: 30 June 2023
Revised: 14 August 2023
Accepted: 17 August 2023
Published: 08 September 2023
Issue date: February 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 22204150), GuangDong Basic and Applied Basic Research Foundation (No. 2021A1515110036), the National Key R&D Program of China (Nos. 2021YFA1200403 and 2018YFE0206900), the Joint NSFC-ISF Research Grant Program (No. 22161142020).

Return