Journal Home > Volume 17 , Issue 4

In this report, W6+ doping as a defect engineering strategy has been proposed to improve the electrochromic properties of NiO film. Further research was conducted to explore the electrochromic properties and the modified mechanism of W-doped NiO film. Compared to the pure NiO, W-doped NiO film exhibits improved electrochromic properties with significant optical modulation (61.56% at 550 nm), fast switching speed (4.42 s/1.40 s for coloring/bleaching), high coloration efficiency (45.41 cm2·C−1) and outstanding cycling stability (no significant attenuation after 2000 cycles) in Li-based electrolytes. Density functional theory (DFT) calculations combined with the experimental results indicate that the improved electrochromic properties were due to enhanced the electronic conductivity and ion conductivity after the introduction of W6+. The charge capacity of W-doped NiO has also been improved, and it can function with WO3 to achieve a high performance black electrochromic smart window (ECSW) by balancing charge. This work could advance the fundamental understanding of defect engineering as an effective strategy to boost the electrochromic properties of NiO anodic material, manifesting a significant development as a candidate counter electrode in high-performance black smart windows.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Defect engineering of W6+-doped NiO for high-performance black smart windows

Show Author's information Yingjun Xiao1Xiang Zhang2( )Dukang Yan1Jianbo Deng1Mingjun Chen1Hulin Zhang2Wenhai Sun2Jiupeng Zhao1( )Yao Li2( )
School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
Center for Composite Materials and Structure, Harbin Institute of Technology, Harbin 150001, China

Abstract

In this report, W6+ doping as a defect engineering strategy has been proposed to improve the electrochromic properties of NiO film. Further research was conducted to explore the electrochromic properties and the modified mechanism of W-doped NiO film. Compared to the pure NiO, W-doped NiO film exhibits improved electrochromic properties with significant optical modulation (61.56% at 550 nm), fast switching speed (4.42 s/1.40 s for coloring/bleaching), high coloration efficiency (45.41 cm2·C−1) and outstanding cycling stability (no significant attenuation after 2000 cycles) in Li-based electrolytes. Density functional theory (DFT) calculations combined with the experimental results indicate that the improved electrochromic properties were due to enhanced the electronic conductivity and ion conductivity after the introduction of W6+. The charge capacity of W-doped NiO has also been improved, and it can function with WO3 to achieve a high performance black electrochromic smart window (ECSW) by balancing charge. This work could advance the fundamental understanding of defect engineering as an effective strategy to boost the electrochromic properties of NiO anodic material, manifesting a significant development as a candidate counter electrode in high-performance black smart windows.

Keywords: charge balance, defect engineering, NiO, black electrochromic windows

References(63)

[1]

Huang, Q. J.; Wang, J. J.; Gong, H.; Zhang, Q. Q.; Wang, M. Y.; Wang, W. W.; Nshimiyimana, J. P.; Diao, X. G. A rechargeable electrochromic energy storage device enabling effective energy recovery. J. Mater. Chem. A 2021, 9, 6451–6459.

[2]

Liu, L.; Du, K.; He, Z. B.; Wang, T.; Zhong, X. L.; Ma, T.; Yang, J. M.; He, Y. C.; Dong, G. B.; Wang, S. H. et al. High-temperature adaptive and robust ultra-thin inorganic all-solid-state smart electrochromic energy storage devices. Nano Energy 2019, 62, 46–54.

[3]

Tian, Y. Y.; Zhang, W. K.; Cong, S.; Zheng, Y. C.; Geng, F. X.; Zhao, Z. G. Unconventional aluminum ion intercalation/deintercalation for fast switching and highly stable electrochromism. Adv. Funct. Mater. 2015, 25, 5833–5839.

[4]

Matsui, J.; Kikuchi, R.; Miyashita, T. A trilayer film approach to multicolor electrochromism. J. Am. Chem. Soc. 2014, 136, 842–845.

[5]

Zhang, D. S.; Wang, J. X.; Tong, Z. F.; Ji, H. B.; Qu. H. Y. Bioinspired dynamically switchable PANI/PS-b-P2VP thin films for multicolored electrochromic displays with long-term durability. Adv. Funct. Mater. 2021, 31, 2106577.

[6]

Granqvist, C. G. Oxide electrochromics: An introduction to devices and materials. Sol. Energy Mater. Sol. Cell 2012, 99, 1–13.

[7]

Cai, G. F.; Eh, A. L. S.; Ji, L.; Lee, P. S. Recent advances in electrochromic smart fenestration. Adv. Sustain. Syst. 2017, 1, 1700074.

[8]

Li, H. Z.; Firby, C. J.; Elezzabi, A. Y. Rechargeable aqueous hybrid Zn2+/Al3+ electrochromic batteries. Joule 2019, 3, 2268–2278.

[9]

Lin, F.; Nordlund, D.; Weng, T. C.; Moore, R. G.; Gillaspie, D. T.; Dillon, A. C.; Richards, R. M.; Engtrakul, C. Hole doping in Al-containing nickel oxide materials to improve electrochromic performance. ACS Appl. Mater. Interfaces 2013, 5, 301–309.

[10]

Zeng, J. M.; Yang, H.; Zhong, C. F.; Rajan, K.; Sagar, R. U. R.; Qi, X. P.; Deng, Y. Q.; Jiang, H. H.; Liu, Liang, T. X. Colorless-to-black electrochromic devices based on ambipolar electrochromic system consisting of cross-linked poly(4-vinyltriphenylamine) and tungsten trioxide with high optical contrast in visible and near-infrared regions. Chem. Eng. J. 2021, 404, 126402.

[11]

Zhang, J. H.; Cai, G. F.; Zhou, D.; Tang, H.; Wang, X. L.; Gu, C. D.; Tu, J. P. Co-doped NiO nanoflake array films with enhanced electrochromic properties. J. Mater. Chem. C 2014, 2, 7013–7021.

[12]

Chen, M. J.; Zhang, X.; Yan, D. K.; Deng, J. B.; Sun, W. H.; Li, Z. T.; Xiao, Y. J.; Ding, Z. M.; Zhao, J. P.; Li, Y. Oxygen vacancy modulated amorphous tungsten oxide films for fast-switching and ultra-stable dual-band electrochromic energy storage smart windows. Mater. Horiz. 2023, 10, 2191–2203.

[13]

Wang, Z. H.; Zhou, H.; Han, D. M.; Gu, F. B. Electron compensation in p-type 3DOM NiO by Sn doping for enhanced formaldehyde sensing performance. J. Mater. Chem. C 2017, 5, 3254–3263.

[14]

Lin, F.; Nordlund, D.; Weng, T. C.; Sokaras, D.; Jones, K. M.; Reed, R. B.; Gillaspie, D. T.; Weir, D. G. J.; Moore, R. G.; Dillon, A. C. et al. Origin of electrochromism in high-performing nanocomposite nickel oxide. ACS Appl. Mater. Interfaces 2013, 5, 3643–3649.

[15]

Lee, S. H.; Lee, S. J.; Kim, R.; Kang, H. W.; Seo, I.; Kim, B. H.; Han, S. H. Durability-enhanced monolithic inorganic electrochromic devices with tantalum-doped nickel oxide as a counter electrode. Sol. Energy Mater. Sol. Cell 2022, 234, 111435.

[16]

Zhou, J. L.; Luo, G.; Wei, Y. X.; Zheng, J. M.; Xu, C. Y. Enhanced electrochromic performances and cycle stability of NiO-based thin films via Li-Ti co-doping prepared by sol-gel method. Electrochim. Acta 2015, 186, 182–191.

[17]

Zhan, X. H.; Gao, F. Y.; Zhuang, Q. Y.; Zhang, Y. N.; Dang, J. Two-dimensional porous structure of V-doped NiO with enhanced electrochromic properties. ACS Omega 2022, 7, 8960–8967.

[18]

Gillaspie, D. T.; Tenent, R. C.; Dillon, A. C. Metal-oxide films for electrochromic applications: Present technology and future directions. J. Mater. Chem. 2010, 20, 9585–9592.

[19]

Li, Y. Y.; Cui, Y. C.; Yao, Z.; Liu, G. X.; Shan, F. K. Fast electrochromic switching of electrospun Cu-doped NiO nanofibers. Scr. Mater. 2020, 178, 472–476.

[20]

Wang, W. X.; Jiang, Y. L.; Yang, Y.; Xiong, F. Y.; Zhu, S. H.; Wang, J. J.; Du, L. L.; Chen, J. H.; Cui, L. M.; Xie, J. et al. Basal planes unlocking and interlayer engineering endows proton doped-MoO2.8F0.2 with fast and stable magnesium storage. ACS Nano 2022, 16, 17097–17106.

[21]

Green, S. V.; Granqvist, C. G.; Niklasson, G. A. Structure and optical properties of electrochromic tungsten-containing nickel oxide films. Sol. Energy Mater. Sol. Cell 2014, 126, 248–259.

[22]

Luo, L. H.; Liu, L.; Yang, X. Y.; Luo, X.; Bi, P.; Fu, Z. J.; Pang, A. M.; Li, W.; Yi, Y. Revealing the charge storage mechanism of nickel oxide electrochromic supercapacitors. ACS Appl. Mater. Interfaces 2020, 12, 39098–39107.

[23]

Wen, R. T.; Granqvist, C. G.; Niklasson, G. A. Anodic electrochromism for energy-efficient windows: Cation/anion-based surface processes and effects of crystal facets in nickel oxide thin films. Adv. Funct. Mater. 2015, 25, 3359–3370.

[24]

Cai, G. F.; Tu, J. P.; Zhang, J.; Mai, Y. J.; Lu, Y.; Gu, C. D.; Wang, X. L. An efficient route to a porous NiO/reduced graphene oxide hybrid film with highly improved electrochromic properties. Nanoscale, 2012, 4, 5724–5730.

[25]

Ködderitzsch, D.; Hergert, W.; Temmerman, W. M.; Szotek, Z.; Ernst, A.; Winter, H. Exchange interactions in NiO and at the NiO (100) surface. Phys. Rev. B 2022, 66, 064434.

[26]

Firat, Y. E.; Peksoz, A. Efficiency enhancement of electrochromic performance in NiO thin film via Cu doping for energy-saving potential. Electrochim. Acta 2019, 295, 645–654.

[27]

Lee, S. H.; Cheong, H. M.; Park, N. G.; Tracy, C. E.; Mascarenhas, A.; Benson, D. K.; Deb, S. K. Raman spectroscopic studies of Ni-W oxide thin films. Solid State Ionics 2001, 140, 135–139.

[28]

Usha, K. S.; Sivakumar, R.; Sanjeeviraja, C. Studies on nickel-tungsten oxide thin films. AIP Conf. Proc. 2014, 1620, 202–205.

[29]

Moulki, H.; Park, D. H.; Min, B. K.; Kwon, H.; Hwang, S. J.; Choy, J. H.; Toupance, T.; Campet, G.; Rougier, A. Improved electrochromic performances of NiO based thin films by lithium addition: From single layers to devices. Electrochim. Acta 2021, 74, 46–52.

[30]

Wei, Y. X.; Liu, W. M.; Li, J. Y.; Fu, Z. Y.; Yan, Y. Investigation on the properties of Li doped Ni-W oxide film and application for black electrochromic device. Electrochim. Acta 2022, 406, 139833.

[31]

Xue, J. Y.; Xu, H. B.; Wang, S.; Hao, T. T.; Yang, Y.; Zhang, X.; Song, Y.; Li, Y.; Zhao, J. P. Design and synthesis of 2D rGO/NiO heterostructure composites for high-performance electrochromic energy storage. Appl. Surf. Sci. 2021, 565, 150512.

[32]

Ding, Y. L.; Wang, M. Y.; Mei, Z. Y.; Liu, L.; Zhong, Z. L.; Wang, M.; Diao, X. G. Enhanced electrochromic performance on novel W@NiO doped composite electrode via pre-annealing. Vacuum 2022, 201, 111070.

[33]

Jiang, Y. T.; Liang, P.; Tang, M. J.; Sun, S. P.; Min, H. H.; Han, J. C.; Shen, X. D.; Yang, H.; Chao, D. L.; Wang, J. A high-throughput screening permeability separator with high catalytic conversion kinetics for Li-S batteries. J. Mater. Chem. A 2022, 10, 22080–22092.

[34]

Liang, H.; Li, R.; Li, C.; Hou, C. Y.; Li, Y. G.; Zhang, Q. H.; Wang, H. Z. Regulation of carbon content in MOF-derived hierarchical-porous NiO@C films for high-performance electrochromism. Mater. Horiz. 2019, 6, 571–579.

[35]

Wang, L. B.; Zhang, X.; Chen, X.; Li, X. B.; Zhao, Y. M.; Li, W. J.; Zhao, J. P.; Chen, Z. Y.; Li, Y. A large-area, flexible, high contrast and long-life stable solid-state electrochromic device driven by an anion-assisted method. J. Mater. Chem. C 2021, 9, 1641–1648.

[36]

Huang, Q. J.; Zhang, Q. Q.; Xiao, Y.; He, Y. C.; Diao, X. G. Improved electrochromic performance of NiO-based thin films by lithium and tantalum co-doping. J. Alloys Compd. 2018, 747, 416–422.

[37]

Xia, X. H.; Tu, J. P.; Zhang, J.; Wang, X. L.; Zhang, W. K.; Huang, H. Electrochromic properties of porous NiO thin films prepared by a chemical bath deposition. Sol. Energy Mater. Sol. Cell 2008, 92, 628–633.

[38]

Cai, G. F.; Tu, J. P.; Gu, C. D.; Zhang, J. H.; Chen, J.; Zhou, D.; Shi, S. J.; Wang, X. L. One-step fabrication of nanostructured NiO films from deep eutectic solvent with enhanced electrochromic performance. J. Mater. Chem. A 2013, 1, 4286–4292.

[39]

Boschloo, G.; Hagfeldt, A. Spectroelectrochemistry of nanostructured NiO. J. Phys. Chem. B 2001, 105, 3039–3044.

[40]

Lee, S. H.; Park, Y. S.; Joo, S. K. Characterization of Ni-W oxide thin film electrodes. Solid State Ionics 1998, 109, 303–310.

[41]

Guo, H. J.; Guo, X.; Sun, H. B.; Xie, Y. Z.; Diao, X. G.; Wang, M.; Zeng, X. P.; Zhang, Z. B. Unprecedented electrochromic stability of a-WO3−x thin films achieved by using a hybrid-cationic electrolyte. ACS Appl. Mater. Interfaces 2021, 13, 11067–11077.

[42]

Liang, Y.; Cao, S.; Wei, Q. L.; Zeng, R. S.; Zhao, J. L.; Li, H. Z.; Yu, W. W.; Zou, B. S. Reversible Zn2+ insertion in tungsten ion-activated titanium dioxide nanocrystals for electrochromic windows. Nano-Micro Lett. 2021, 13, 196.

[43]

Sun, P.; Ma, L.; Zhou, W. H.; Qiu, M. J.; Wang, Z. L.; Chao, D. L.; Mai, W. J. Simultaneous regulation on solvation shell and electrode interface for dendrite-free Zn ion batteries achieved by a low-cost glucose additive. Angew. Chem. 2021, 133, 18395–18403.

[44]

Zhang, L.; Chao, D. L.; Yang, P. H.; Weber, L.; Li, J.; Kraus, T.; Fan, H. J. Flexible pseudocapacitive electrochromics via inkjet printing of additive-free tungsten oxide nanocrystal ink. Adv. Energy Mater. 2020, 10, 2000142.

[45]

Kim, J.; Inamdar, A. I.; Jo, Y.; Cho, S.; Ahmed, A. T. A.; Hou, B.; Cha, S. N.; Kim, T. G.; Kim, H.; Im, H. Nanofilament array embedded tungsten oxide for highly efficient electrochromic supercapacitor electrodes. J. Mater. Chem. A 2020, 8, 13459–13469.

[46]

Chao, D. L.; Zhou, W. H.; Ye, C.; Zhang, Q. H.; Chen, Y. H.; Gu, L.; Davey, K.; Qiao, S. Z. An electrolytic Zn-MnO2 battery for high-voltage and scalable energy storage. Angew. Chem. 2019, 131, 7905–7910.

[47]

Liu, K.; Wang, J. A.; Yang, J.; Zhao, D. Q.; Chen, P. Y.; Man, J. Z.; Yu, X. Y.; Wen, Z. Q.; Sun, J. C. Interstitial and substitutional V5+-doped TiNb2O7 microspheres: A novel doping way to achieve high-performance electrodes. Chem. Eng. J. 2021, 407, 127190.

[48]

Zhang, S. Q.; Zhang, Z. F.; Si, Y. M.; Li, B.; Deng, F.; Yang, L. X.; Liu, X.; Dai, W. L.; Luo, S. L. Gradient hydrogen migration modulated with self-adapting S vacancy in copper-doped ZnIn2S4 nanosheet for photocatalytic hydrogen evolution. ACS Nano 2021, 15, 15238–15248.

[49]

Li, Z. H.; Zhou, J.; Hua, J. H.; Hong, X. F.; Sun, C. L.; Li, H. W.; Xu, X.; Mai, L. Q. Engineering oxygen vacancies in a polysulfide-blocking layer with enhanced catalytic ability. Adv. Mater. 2020, 32, 1907444.

[50]

Hao, J. N.; Yuan, L. B.; Johannessen, B.; Zhu, Y. L.; Jiao, Y.; Ye, C.; Xie, F. X.; Qiao, S. Z. Studying the conversion mechanism to broaden cathode options in aqueous zinc-ion batteries. Angew. Chem. 2021, 133, 25318–25325.

[51]

Xiao, Y.; Dong, G. B.; Huang, Q. J.; Liu, Q. R.; Guo, J. J.; Liu, J.; Zhang, J. Y.; Diao, X. G. Electro-optical performance of inorganic monolithic electrochromic device with a pulsed DC sputtered LixMgyN ion conductor. J. Solid State Electrochem. 2018, 22, 275–283.

[52]

Chen, Z. G.; Gong, W. B.; Cong, S.; Wang, S.; Song, G.; Pan, T.; Tang, X. Q.; Chen, J.; Lu, W. B.; Zhao, Z. G. Eutectoid-structured WC/W2C heterostructures: A new platform for long-term alkaline hydrogen evolution reaction at low overpotentials. Nano Energy 2020, 68, 104335.

[53]

Song, X. W.; Dong, G. B.; Gao, F. Y.; Xiao, Y.; Liu, Q. R.; Diao, X. G. Properties of NiOx and its influence upon all-thin-film ITO/NiOx/LiTaO3/WO3/ITO electrochromic devices prepared by magnetron sputtering. Vacuum 2015, 111, 48–54.

[54]

Shao, Z. W.; Huang, A. B.; Ming, C:Bell, C.; Yu, P.; Sun, Y. Y.; Jin, L. M.; Ma, L. Y.; Luo, H. J.; Jin, P. et al. All-solid-state proton-based tandem structures for fast-switching electrochromic devices. Nat. Electron. 2022, 5, 45–52.

[55]

Liu, Q. R.; Dong, G. B.; Chen, Q. Q.; Guo, J. J.; Xiao, Y.; Delplancke-Ogletree, M. P.; Reniers, F.; Diao, X. G. Charge-transfer kinetics and cyclic properties of inorganic all-solid-state electrochromic device with remarkably improved optical memory. Sol. Energy Mater. Sol. Cell 2018, 174, 545–553.

[56]

Wang, C. P.; Dong, G. B.; Zhao, Y. Y.; He, Y. C.; Ding, Y. L.; Du, X. P.; Zhong, X. L.; Wang, M.; Diao, X. G. Enhanced electrochromic performance on anodic nickel oxide inorganic device via lithium and aluminum co-doping. J. Alloys Compd. 2020, 821, 153365.

[57]

Li, W. J.; Zhang, X.; Chen, X.; Zhao, Y. M.; Wang, L. B.; Chen, M. J.; Zhao, J. P.; Li, Y.; Zhang, Y. F. Effect of independently controllable electrolyte ion content on the performance of all-solid-state electrochromic devices. Chem. Eng. J. 2020, 398, 125628.

[58]

Zhao, Y. M.; Zhang, X.; Chen, X.; Li, W. J.; Wang, L. B.; Li, Z. T.; Zhao, J. P.; Endres, E.; Li, Y. Preparation of Sn-NiO films and all-solid-state devices with enhanced electrochromic properties by magnetron sputtering method. Electrochim. Acta 2021, 367, 137457.

[59]

Zhao, Q.; Wang, J. K.; Cui, Y. Y.; Ai, X. H.; Chen, Z.; Cao, C. X.; Xu, F.; Gao, Y. F. The discovery of conductive ionic bonds in NiO/Ni transparent counter electrodes for electrochromic smart windows with an ultra-long cycling life. Mater. Adv. 2021, 2, 4667–4676.

[60]

Xie, Z. Q.; Liu, Q. Q.; Lu, B. X.; Zhai, Z.; Diao, X. G. Large coloration efficiency and fast response NiO electrochromic thin film electrode based on NiO nanocrystals. Mater. Today Commun. 2019, 21, 100635.

[61]

Xiao, Y.; Dong, G. B.; Guo, J. J.; Liu, Q. R.; Huang, Q. J.; Zhang, Q. Q.; Zhong, X. L.; Diao, X. G. Thickness dependent surface roughness of sputtered Li2.5TaOx ion conductor and its effect on electro-optical performance of inorganic monolithic electrochromic device. Sol. Energy Mater. Sol. Cell 2018, 179, 319–327.

[62]

Chen, X.; Dou, S. L.; Li, W. J.; Liu, D. Q.; Zhang, Y. F.; Zhao, Y. M.; Li, Y.; Zhao, J. P.; Zhang, X. All solid state electrochromic devices based on the LiF electrolyte. Chem. Commun. 2020, 56, 5018–5021.

[63]

Li, W. J.; Zhang, X.; Chen, X.; Zhao, Y. M.; Wang, L. B.; Liu, D. Q.; Li, X.; Chen, M. J.; Zhao, J. P.; Li, Y. Preparation and performance of fast-response ITO/Li-NiO/Li-WO3/ITO all-solid-state electrochromic devices by evaporation method. Mater. Lett. 2020, 265, 127464.

File
12274_2023_6106_MOESM1_ESM.pdf (2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 24 May 2023
Revised: 02 August 2023
Accepted: 17 August 2023
Published: 25 September 2023
Issue date: April 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

We thank the National Natural Science Foundation of China (No. 52002097) and the Fundamental Research Funds for the Central Universities (Nos. HIT. OCEF.2022014 and HIT. OCEF.2021004).

Return