Journal Home > Volume 16 , Issue 12

Chemotherapy remains one of the most prevailing strategies for cancer treatment. However, its treatment effect is hampered by drug resistance, nonspecific tumor targeting, and severe toxic side effects. Combination chemotherapy with synergistic effect has become an attractive tumor therapy. N6-methyladenosine (m6A) regulators determine the fate of m6A-modified transcripts and play vital roles in cancer development and drug resistance. Gene therapy such as small interfering RNA (siRNA) is a promising strategy to reduce the abnormal gene expression of m6A regulators. However, its poor selectivity and high systemic toxicity necessitate the use of delivery vectors to target specific cells and tissues. Here, we constructed a dual-functional targeted nanodrug platform for the synergetic m6A-associated epigenetic regulation and chemotherapy of ovarian cancer. We encapsulated siRNA targeting the m6A reader YT521-B homology (YTH) N6-methyladenosine RNA-binding protein 1 (YTHDF1) and docetaxel (DTX), the first-line chemotherapeutic agent of ovarian cancer, into mesenchymal stem cell-derived small extracellular vesicles (MsEVs). This nanosystem exhibits significant tumor targeting and endo/lysosomal escape of siYTHDF1. It effectively depletes YTHDF1 and suppresses the protein translation of eukaryotic translation initiation factor 3 subunit C (EIF3C) in an m6A-dependent manner. The combination of YTHDF1-targeting epigenetic regulation significantly enhances the anti-tumor effect of DTX and effectively inhibits ovarian cancer progression without causing significant systemic toxicity. This co-delivery nanoplatform offers a promising approach for combinational cancer treatment, showing improved anti-tumor efficacy through the synergistic effects of epigenetic regulation and chemotherapeutic inhibition.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Dual-functional extracellular vesicles enable synergistic treatment via m6A reader YTHDF1-targeting epigenetic regulation and chemotherapy

Show Author's information Rong Du1,2Qing You1Jingyi Liu1,2Chen Wang1,2( )Ling Zhu1,2( )Yanlian Yang1,2( )
CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Chemotherapy remains one of the most prevailing strategies for cancer treatment. However, its treatment effect is hampered by drug resistance, nonspecific tumor targeting, and severe toxic side effects. Combination chemotherapy with synergistic effect has become an attractive tumor therapy. N6-methyladenosine (m6A) regulators determine the fate of m6A-modified transcripts and play vital roles in cancer development and drug resistance. Gene therapy such as small interfering RNA (siRNA) is a promising strategy to reduce the abnormal gene expression of m6A regulators. However, its poor selectivity and high systemic toxicity necessitate the use of delivery vectors to target specific cells and tissues. Here, we constructed a dual-functional targeted nanodrug platform for the synergetic m6A-associated epigenetic regulation and chemotherapy of ovarian cancer. We encapsulated siRNA targeting the m6A reader YT521-B homology (YTH) N6-methyladenosine RNA-binding protein 1 (YTHDF1) and docetaxel (DTX), the first-line chemotherapeutic agent of ovarian cancer, into mesenchymal stem cell-derived small extracellular vesicles (MsEVs). This nanosystem exhibits significant tumor targeting and endo/lysosomal escape of siYTHDF1. It effectively depletes YTHDF1 and suppresses the protein translation of eukaryotic translation initiation factor 3 subunit C (EIF3C) in an m6A-dependent manner. The combination of YTHDF1-targeting epigenetic regulation significantly enhances the anti-tumor effect of DTX and effectively inhibits ovarian cancer progression without causing significant systemic toxicity. This co-delivery nanoplatform offers a promising approach for combinational cancer treatment, showing improved anti-tumor efficacy through the synergistic effects of epigenetic regulation and chemotherapeutic inhibition.

Keywords: small interfering RNA (siRNA) delivery, ovarian cancer, extracellular vesicles, docetaxel, N6-methyladenosine (m6A) modulators

References(67)

[1]

Xiao, C.; Fan, T.; Tian, H.; Zheng, Y. J.; Zhou, Z.; Li, S. F.; Li, C. X.; He, J. H3K36 trimethylation-mediated biological functions in cancer. Clin. Epigenetics 2021, 13, 199.

[2]

Dawson, M. A.; Kouzarides, T. Cancer epigenetics: From mechanism to therapy. Cell 2012, 150, 12–27.

[3]

Jones, P. A.; Baylin, S. B. The epigenomics of cancer. Cell 2007, 128, 683–692.

[4]

Chen, M. N.; Wei, L.; Law, C. T.; Tsang, F. H. C.; Shen, J. K.; Cheng, C. L. H.; Tsang, L. H.; Ho, D. W. H.; Chiu, D. K. C.; Lee, J. M. F. et al. RNA N6-methyladenosine methyltransferase-like 3 promotes liver cancer progression through YTHDF2-dependent posttranscriptional silencing of SOCS2. Hepatology 2018, 67, 2254–2270.

[5]

Zhang, L.; Volinia, S.; Bonome, T.; Calin, G. A.; Greshock, J.; Yang, N.; Liu, C. G.; Giannakakis, A.; Alexiou, P.; Hasegawa, K. et al. Genomic and epigenetic alterations deregulate microRNA expression in human epithelial ovarian cancer. Proc. Natl. Acad. Sci. USA 2008, 105, 7004–7009.

[6]

Calin, G. A.; Croce, C. M. MicroRNA signatures in human cancers. Nat. Rev. Cancer 2006, 6, 857–866.

[7]

Wang, X.; Lu, Z. K.; Gomez, A.; Hon, G. C.; Yue, Y. N.; Han, D. L.; Fu, Y.; Parisien, M.; Dai, Q.; Jia, G. F. et al. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 2014, 505, 117–120.

[8]

Jin, D.; Guo, J. W.; Wu, Y.; Du, J.; Yang, L. J.; Wang, X. H.; Di, W. H.; Hu, B. G.; An, J. J.; Kong, L. Q. et al. RETRACTED ARTICLE: m6A mRNA methylation initiated by METTL3 directly promotes YAP translation and increases YAP activity by regulating the MALAT1-miR-1914-3p-YAP axis to induce NSCLC drug resistance and metastasis. J. Hematol. Oncol. 2019, 12, 135.

[9]

Huang, H. L.; Weng, H. Y.; Chen, J. J. m6A modification in coding and non-coding RNAs: Roles and therapeutic implications in cancer. Cancer Cell 2020, 37, 270–288.

[10]

Wang, X.; Zhao, B. S.; Roundtree, I. A.; Lu, Z. K.; Han, D. L.; Ma, H. H.; Weng, X. C.; Chen, K.; Shi, H. L.; He, C. N6-methyladenosine modulates messenger RNA translation efficiency. Cell 2015, 161, 1388–1399.

[11]

Liu, T.; Wei, Q. L.; Jin, J.; Luo, Q. Y.; Liu, Y.; Yang, Y.; Cheng, C. M.; Li, L. F.; Pi, J. N.; Si, Y. M. et al. The m6A reader YTHDF1 promotes ovarian cancer progression via augmenting EIF3C translation. Nucleic Acids Res. 2020, 48, 3816–3831.

[12]

Emmanuel, R.; Weinstein, S.; Landesman-Milo, D.; Peer, D. eIF3c: A potential therapeutic target for cancer. Cancer Lett. 2013, 336, 158–166.

[13]

Wen, F.; Wu, Z. Y.; Nie, L.; Zhang, Q. Z.; Qin, Y. K.; Zhou, Z. L.; Wu, J. J.; Zhao, X.; Tan, J.; Sawmiller, D. et al. Eukaryotic initiation factor 3, subunit C silencing inhibits cell proliferation and promotes apoptosis in human ovarian cancer cells. Biosci. Rep. 2019, 39, BSR20191124.

[14]

Nishizawa, Y.; Konno, M.; Asai, A.; Koseki, J.; Kawamoto, K.; Miyoshi, N.; Takahashi, H.; Nishida, N.; Haraguchi, N.; Sakai, D. et al. Oncogene c-Myc promotes epitranscriptome m6A reader YTHDF1 expression in colorectal cancer. Oncotarget 2018, 9, 7476–7486.

[15]

Chen, P.; Liu, X. Q.; Lin, X.; Gao, L. Y.; Zhang, S.; Huang, X. Targeting YTHDF1 effectively re-sensitizes cisplatin-resistant colon cancer cells by modulating GLS-mediated glutamine metabolism. Mol. Ther. Oncolytics 2021, 20, 228–239.

[16]

Hao, L.; Wang, J. M.; Liu, B. Q.; Yan, J.; Li, C.; Jiang, J. Y.; Zhao, F. Y.; Qiao, H. Y.; Wang, H. Q. m6A-YTHDF1-mediated TRIM29 upregulation facilitates the stem cell-like phenotype of cisplatin-resistant ovarian cancer cells. Biochim. Biophys. Acta (BBA)-Mol. Cell Res. 2021, 1868, 118878.

[17]

Li, Z. J.; Teng, M. Z.; Jiang, Y. B.; Zhang, L. T.; Luo, X.; Liao, Y. H.; Yang, B. YTHDF1 negatively regulates treponema pallidum-induced inflammation in THP-1 macrophages by promoting SOCS3 translation in an m6A-dependent manner. Front. Immunol. 2022, 13, 857727.

[18]

Cortes, J. E.; Pazdur, R. Docetaxel. J. Clin. Oncol. 1995, 13, 2643–2655.

[19]

Zahedi, P.; De Souza, R.; Huynh, L.; Piquette-Miller, M.; Allen, C. Combination drug delivery strategy for the treatment of multidrug resistant ovarian cancer. Mol. Pharm. 2011, 8, 260–269.

[20]

Chen, Y. Y.; Tai, Y. C. Hsa_circ_0006404 and hsa_circ_0000735 regulated ovarian cancer response to docetaxel treatment via regulating p-GP expression. Biochem. Genet. 2022, 60, 395–414.

[21]

Qiu, L. Y.; Wang, J. K.; Chen, M.; Chen, F. Y.; Tu, W. L. Exosomal microRNA-146a derived from mesenchymal stem cells increases the sensitivity of ovarian cancer cells to docetaxel and taxane via a LAMC2-mediated PI3K/Akt axis. Int. J. Mol. Med. 2020, 46, 609–620.

[22]

Dowdy, S. F. Overcoming cellular barriers for RNA therapeutics. Nat. Biotechnol. 2017, 35, 222–229.

[23]

Bai, X. W.; Wong, C. C.; Pan, Y. S.; Chen, H. R.; Liu, W. X.; Zhai, J. N.; Kang, W.; Shi, Y.; Yamamoto, M.; Tsukamoto, T. et al. Loss of YTHDF1 in gastric tumors restores sensitivity to antitumor immunity by recruiting mature dendritic cells. J. Immunother. Cancer 2022, 10, e003663.

[24]

Han, D. L.; Liu, J.; Chen, C. Y.; Dong, L. H.; Liu, Y.; Chang, R. B.; Huang, X. N.; Liu, Y. Y.; Wang, J. Y.; Dougherty, U. et al. Anti-tumour immunity controlled through mRNA m6A methylation and YTHDF1 in dendritic cells. Nature 2019, 566, 270–274.

[25]

Shi, Y. F.; Du, L. M.; Lin, L. Y.; Wang, Y. Tumour-associated mesenchymal stem/stromal cells: Emerging therapeutic targets. Nat. Rev. Drug Discov. 2017, 16, 35–52.

[26]

Quante, M.; Tu, S. P.; Tomita, H.; Gonda, T.; Wang, S. S. W.; Takashi, S.; Baik, G. H.; Shibata, W.; DiPrete, B.; Betz, K. S. et al. Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth. Cancer Cell 2011, 19, 257–272.

[27]

Ren, G. W.; Zhao, X.; Wang, Y.; Zhang, X.; Chen, X. D.; Xu, C. L.; Yuan, Z. R.; Roberts, A. I.; Zhang, L. Y.; Zheng, B. et al. CCR2-dependent recruitment of macrophages by tumor-educated mesenchymal stromal cells promotes tumor development and is mimicked by TNFα. Cell Stem Cell 2012, 11, 812–824.

[28]

Jung, Y.; Kim, J. K.; Shiozawa, Y.; Wang, J. C.; Mishra, A.; Joseph, J.; Berry, J. E.; McGee, S.; Lee, E.; Sun, H. L. et al. Recruitment of mesenchymal stem cells into prostate tumours promotes metastasis. Nat. Commun. 2013, 4, 1795.

[29]

Spaeth, E.; Klopp, A.; Dembinski, J.; Andreeff, M.; Marini, F. Inflammation and tumor microenvironments: Defining the migratory itinerary of mesenchymal stem cells. Gene Therapy 2008, 15, 730–738.

[30]

Lin, Z. J.; Wu, Y. L.; Xu, Y. T.; Li, G. Q.; Li, Z. H.; Liu, T. Mesenchymal stem cell-derived exosomes in cancer therapy resistance: Recent advances and therapeutic potential. Mol. Cancer 2022, 21, 179.

[31]

Zhang, F. S.; Guo, J. S.; Zhang, Z. H.; Qian, Y. P.; Wang, G.; Duan, M. Q.; Zhao, H. Y.; Yang, Z.; Jiang, X. F. Mesenchymal stem cell-derived exosome: A tumor regulator and carrier for targeted tumor therapy. Cancer Lett. 2022, 526, 29–40.

[32]

Fitts, C. A.; Ji, N.; Li, Y. S.; Tan, C. Exploiting exosomes in cancer liquid biopsies and drug delivery. Adv. Healthc. Mater. 2019, 8, 1801268.

[33]

Herrmann, I. K.; Wood, M. J. A.; Fuhrmann, G. Extracellular vesicles as a next-generation drug delivery platform. Nat. Nanotechnol. 2021, 16, 748–759.

[34]

Yeo, R. W. Y.; Lai, R. C.; Zhang, B.; Tan, S. S.; Yin, Y. J.; Teh, B. J.; Lim, S. K. Mesenchymal stem cell: An efficient mass producer of exosomes for drug delivery. Adv. Drug Deliv. Rev. 2013, 65, 336–341.

[35]

Li, W. Z.; Shao, B.; Liu, C. L.; Wang, H. Y.; Zheng, W. S.; Kong, W. Y.; Liu, X. R.; Xu, G. B.; Wang, C.; Li, H. P. et al. Noninvasive diagnosis and molecular phenotyping of breast cancer through microbead-assisted flow cytometry detection of tumor-derived extracellular vesicles. Small Methods 2018, 2, 1800122.

[36]

Théry, C.; Zitvogel, L.; Amigorena, S. Exosomes: Composition, biogenesis and function. Nat. Rev. Immunol. 2002, 2, 569–579.

[37]

Riazifar, M.; Mohammadi, M. R.; Pone, E. J.; Yeri, A.; Lässer, C.; Segaliny, A. I.; McIntyre, L. L.; Shelke, G. V.; Hutchins, E.; Hamamoto, A. et al. Stem cell-derived exosomes as nanotherapeutics for autoimmune and neurodegenerative disorders. ACS Nano 2019, 13, 6670–6688.

[38]

Melzer, C.; Rehn, V.; Yang, Y. Y.; Bähre, H.; von der Ohe, J.; Hass, R. Taxol-loaded MSC-derived exosomes provide a therapeutic vehicle to target metastatic breast cancer and other carcinoma cells. Cancers 2019, 11, 798.

[39]

Kalluri, R.; LeBleu, V. S. The biology, function, and biomedical applications of exosomes. Science 2020, 367, eaau6977.

[40]

Cheng, Q.; Wei, T.; Farbiak, L.; Johnson, L. T.; Dilliard, S. A.; Siegwart, D. J. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR-Cas gene editing. Nat. Nanotechnol. 2020, 15, 313–320.

[41]

Blanco, E.; Shen, H. F.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 2015, 33, 941–951.

[42]

Yang, Z. G.; Xie, J.; Zhu, J.; Kang, C.; Chiang, C.; Wang, X. M.; Wang, X. B.; Kuang, T. R.; Chen, F.; Chen, Z. et al. Functional exosome-mimic for delivery of siRNA to cancer: In vitro and in vivo evaluation. J. Control. Release 2016, 243, 160–171.

[43]

Usman, W. M.; Pham, T. C.; Kwok, Y. Y.; Vu, L. T.; Ma, V.; Peng, B. Y.; Chan, Y. S.; Wei, L. K.; Chin, S. M.; Azad, A. et al. Efficient RNA drug delivery using red blood cell extracellular vesicles. Nat. Commun. 2018, 9, 2359.

[44]

Li, C. H.; Zhou, J. H.; Wu, Y. D.; Dong, Y. L.; Du, L. L.; Yang, T. R.; Wang, Y. H.; Guo, S.; Zhang, M. J.; Hussain, A. et al. Core role of hydrophobic core of polymeric nanomicelle in endosomal escape of siRNA. Nano Lett. 2021, 21, 3680–3689.

[45]

Juliane, N.; Szoka, F. C. Nucleic acid delivery: The missing pieces of the puzzle. Acc. Chem. Res. 2012, 45, 1153–1162.

[46]

Lu, H. T.; Zhang, Q. F.; He, S. S.; Liu, S.; Xie, Z. G.; Li, X. Y.; Huang, Y. B. Reduction-sensitive fluorinated-Pt(IV) universal transfection nanoplatform facilitating CT45-targeted CRISPR/dCas9 activation for synergistic and individualized treatment of ovarian cancer. Small 2021, 17, 2102494.

[47]

Zhou, Z. J.; Lv, J. C.; Yu, H.; Han, J.; Yang, X.; Feng, D. X.; Wu, Q. K.; Yuan, B. R.; Lu, Q.; Yang, H. W. Mechanism of RNA modification N6-methyladenosine in human cancer. Mol. Cancer 2020, 19, 104.

[48]

Chen, Z. Y.; Zhong, X. L.; Xia, M.; Zhong, J. The roles and mechanisms of the m6A reader protein YTHDF1 in tumor biology and human diseases. Mol. Ther. Nucleic Acids 2021, 26, 1270–1279.

[49]

Mosca, L.; Ilari, A.; Fazi, F.; Assaraf, Y. G.; Colotti, G. Taxanes in cancer treatment: Activity, chemoresistance and its overcoming. Drug Resist. Updat. 2021, 54, 100742.

[50]

Wanderley, C. W.; Colón, D. F.; Luiz, J. P. M.; Oliveira, F. F.; Viacava, P. R.; Leite, C. A.; Pereira, J. A.; Silva, C. M.; Silva, C. R.; Silva, R. L. et al. Paclitaxel reduces tumor growth by reprogramming tumor-associated macrophages to an M1 profile in a TLR4-dependent manner. Cancer Res. 2018, 78, 5891–5900.

[51]

Pan, X. P.; Hong, X. L.; Li, S. M.; Meng, P.; Xiao, F. METTL3 promotes adriamycin resistance in MCF-7 breast cancer cells by accelerating pri-microRNA-221-3p maturation in a m6A-dependent manner. Exp. Mol. Med. 2021, 53, 91–102.

[52]

Feng, S. T.; Qiu, G. Q.; Yang, L. H.; Feng, L. H.; Fan, X.; Ren, F.; Huang, K. D.; Chen, Y. D. Omeprazole improves chemosensitivity of gastric cancer cells by m6A demethylase FTO-mediated activation of mTORC1 and DDIT3 up-regulation. Biosci. Rep. 2021, 41, BSR20200842.

[53]

Shi, Y. L.; Fan, S. Q.; Wu, M. G.; Zuo, Z. X.; Li, X. Y.; Jiang, L. P.; Shen, Q. S.; Xu, P. F.; Zeng, L.; Zhou, Y. C. et al. YTHDF1 links hypoxia adaptation and non-small cell lung cancer progression. Nat. Commun. 2019, 10, 4892.

[54]

Xu, J. J.; Wan, Z.; Tang, M. Y.; Lin, Z. J.; Jiang, S.; Ji, L.; Gorshkov, K.; Mao, Q. J.; Xia, S. J.; Cen, D. et al. N6-methyladenosine-modified CircRNA-SORE sustains sorafenib resistance in hepatocellular carcinoma by regulating β-catenin signaling. Mol. Cancer 2020, 19, 163.

[55]

Zhang, Y.; Kang, M.; Zhang, B.; Meng, F. C.; Song, J.; Kaneko, H.; Shimamoto, F.; Tang, B. m6A modification-mediated CBX8 induction regulates stemness and chemosensitivity of colon cancer via upregulation of LGR5. Mol. Cancer 2019, 18, 185.

[56]

Zhou, T. F.; Li, S. C.; Xiang, D. M.; Liu, J. Y.; Sun, W.; Cui, X. L.; Ning, B. F.; Li, X.; Cheng, Z.; Jiang, W. Q. et al. m6A RNA methylation-mediated HNF3γ reduction renders hepatocellular carcinoma dedifferentiation and sorafenib resistance. Signal Transduct. Target. Ther. 2020, 5, 296.

[57]

Sun, Y.; Dong, D.; Xia, Y. H.; Hao, L. Y.; Wang, W.; Zhao, C. H. YTHDF1 promotes breast cancer cell growth, DNA damage repair and chemoresistance. Cell Death Dis. 2022, 13, 230.

[58]

Tang, B.; Yang, Y. H.; Kang, M.; Wang, Y. S.; Wang, Y.; Bi, Y.; He, S. Q.; Shimamoto, F. m6A demethylase ALKBH5 inhibits pancreatic cancer tumorigenesis by decreasing WIF-1 RNA methylation and mediating Wnt signaling. Mol. Cancer 2020, 19, 3.

[59]

Naseri, Z.; Oskuee, R. K.; Jaafari, M. R.; Forouzandeh Moghadam, M. Exosome-mediated delivery of functionally active miRNA-142-3p inhibitor reduces tumorigenicity of breast cancer in vitro and in vivo. Int. J. Nanomedicine 2018, 13, 7727–7747.

[60]

Jarad, G.; Miner, J. H. Update on the glomerular filtration barrier. Curr. Opin. Nephrol. Hypertens. 2009, 18, 226–232.

[61]

Deleavey, G. F.; Damha, M. J. Designing chemically modified oligonucleotides for targeted gene silencing. Chem. Biol. 2012, 19, 937–954.

[62]

Wei, H. X.; Chen, F.; Chen, J. Y.; Lin, H. F.; Wang, S. L.; Wang, Y. Q.; Wu, C. Y.; Lin, J. H.; Zhong, G. X. Mesenchymal stem cell derived exosomes as nanodrug carrier of doxorubicin for targeted osteosarcoma therapy via SDF1-CXCR4 axis. Int. J. Nanomedicine 2022, 17, 3483–3495.

[63]

Sun, D. M.; Zhuang, X. Y.; Zhang, S. Q.; Deng, Z. B.; Grizzle, W.; Miller, D.; Zhang, H. G. Exosomes are endogenous nanoparticles that can deliver biological information between cells. Adv. Drug Deliv. Rev. 2013, 65, 342–347.

[64]

Kamerkar, S.; LeBleu, V. S.; Sugimoto, H.; Yang, S. J.; Ruivo, C. F.; Melo, S. A.; Lee, J. J.; Kalluri, R. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature 2017, 546, 498–503.

[65]

Zhu, Y. N.; Li, J.; Yang, H.; Yang, X. Y.; Zhang, Y.; Yu, X. C.; Li, Y.; Chen, G. X.; Yang, Z. Z. The potential role of m6A reader YTHDF1 as diagnostic biomarker and the signaling pathways in tumorigenesis and metastasis in pan-cancer. Cell Death Discov. 2023, 9, 34.

[66]

Lin, W. Z.; Chen, L.; Zhang, H. J.; Qiu, X. X.; Huang, Q. T.; Wan, F. Z.; Le, Z. Y.; Geng, S. K.; Zhang, A. L.; Qiu, S. F. et al. Tumor-intrinsic YTHDF1 drives immune evasion and resistance to immune checkpoint inhibitors via promoting MHC-I degradation. Nat. Commun. 2023, 14, 265.

[67]

You, Q.; Wang, F.; Du, R.; Pi, J. N.; Wang, H. Y.; Huo, Y.; Liu, J. Y.; Wang, C.; Yu, J.; Yang, Y. L. et al. m6A reader YTHDF1-targeting engineered small extracellular vesicles for gastric cancer therapy via epigenetic and immune regulation. Adv. Mater. 2023, 35, 2204910.

File
12274_2023_6105_MOESM1_ESM.pdf (1.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 03 April 2023
Revised: 09 August 2023
Accepted: 17 August 2023
Published: 13 October 2023
Issue date: December 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This study was supported by the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB36000000), the National Key Research and Development Program of China (No. 2021YFA1201504), and the National Natural Science Foundation of China (Nos. 21721002 and 31971295). The animal study protocol was approved by the Ethics Committee of the National Center for Nanoscience and Technology of China.

Return