Journal Home > Volume 17 , Issue 4

Electrochromic devices (ECDs) have been extensively investigated as promising candidates in broad cutting-edge applications, such as smart windows, electronic labels, adaptive camouflage, etc. However, they have suffered from either inadequate color variations or poor cycling stability for a long time. Herein, we developed a general strategy to boost the cyclic stability and enrich the color variations of ECDs by scrupulous design of the composition and nanostructure of electrodes, in which porous tin oxide (SnO2) nanosheets serve as the scaffold and typical metal oxides or conducting polymers as the active electrochromic materials. Various electrochromic composite materials, including polyaniline (PANI)@SnO2, V2O5@SnO2, and WO3@SnO2 heterostructured nanoarrays were prepared by the facile wet-chemical method. These composite electrodes exhibit remarkable electrochromic performances, e.g., superior cycling stability (more than 2000 cycles), rich color variations (more than 5 colors for PANI@SnO2), and enlarged optical modulation. These excellent performances account for the heterogenous porous nanoarrays, which not only facilitate the intercalation/extraction of ions but also relieve the stress generated during the electrochemical process. In addition, diverse prototypes of complementary multicolor ECD with excellent cycling stability (over thousands of cycles) and rich color variations (8 colors) were realized for the first time. We believe that our work put forward a general strategy for developing high-quality multicolor complementary electrochromic devices.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Complementary multicolor electrochromic devices with excellent stability based on porous tin oxide nanosheet scaffold

Show Author's information Chenchen BianJinhui WangHuanhuan LiuYin YanPing ZhangWeilong YangSensen JiaXiaodan GuoGuofa Cai( )
Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China

Abstract

Electrochromic devices (ECDs) have been extensively investigated as promising candidates in broad cutting-edge applications, such as smart windows, electronic labels, adaptive camouflage, etc. However, they have suffered from either inadequate color variations or poor cycling stability for a long time. Herein, we developed a general strategy to boost the cyclic stability and enrich the color variations of ECDs by scrupulous design of the composition and nanostructure of electrodes, in which porous tin oxide (SnO2) nanosheets serve as the scaffold and typical metal oxides or conducting polymers as the active electrochromic materials. Various electrochromic composite materials, including polyaniline (PANI)@SnO2, V2O5@SnO2, and WO3@SnO2 heterostructured nanoarrays were prepared by the facile wet-chemical method. These composite electrodes exhibit remarkable electrochromic performances, e.g., superior cycling stability (more than 2000 cycles), rich color variations (more than 5 colors for PANI@SnO2), and enlarged optical modulation. These excellent performances account for the heterogenous porous nanoarrays, which not only facilitate the intercalation/extraction of ions but also relieve the stress generated during the electrochemical process. In addition, diverse prototypes of complementary multicolor ECD with excellent cycling stability (over thousands of cycles) and rich color variations (8 colors) were realized for the first time. We believe that our work put forward a general strategy for developing high-quality multicolor complementary electrochromic devices.

Keywords: tin oxide, cycling stability, metal oxide, electrochromism, multicolor complementary device

References(60)

[1]

Wang, Y. Y.; Wang, S.; Wang, X. J.; Zhang, W. R.; Zheng, W. X.; Zhang, Y. M.; Zhang, S. X. A. A multicolour bistable electronic shelf label based on intramolecular proton-coupled electron transfer. Nat. Mater. 2019, 18, 1335–1342.

[2]

Sui, C.; Pu, J. K.; Chen, T. H.; Liang, J. W.; Lai, Y. T.; Rao, Y. F.; Wu, R. H.; Han, Y.; Wang, K. Y.; Li, X. Q. et al. Dynamic electrochromism for all-season radiative thermoregulation. Nat. Sustain. 2023, 6, 428–437.

[3]

Jiang, J. X.; Qin, L. Q.; Halim, J.; Persson, P. O. Å.; Hou, L. T.; Rosen, J. Colorless-to-colorful switching of electrochromic MXene by reversible ion insertion. Nano Res. 2022, 15, 3587–3593.

[4]
Huang, Y.; Wang, B. S.; Lyu, P.; Zhao, S. M.; Wu, X. K.; Zhang, S. L.; Li, R.; Jiang, Q. Y.; Wang, F.; Zhao, Y. L. et al. Oxygen-deficient tungsten oxide nanoflowers for dynamically tunable near-infrared light transmittance of smart windows. Nano Res., in press, DOI: 10.1007/s12274-023-5600-7.
[5]

Chen, M. J.; Zhang, X.; Yan, D. K.; Deng, J. B.; Sun, W. H.; Li, Z. T.; Xiao, Y. J.; Ding, Z. M.; Zhao, J. P.; Li, Y. Oxygen vacancy modulated amorphous tungsten oxide films for fast-switching and ultra-stable dual-band electrochromic energy storage smart windows. Mater. Horiz. 2023, 10, 2191–2203.

[6]

Runnerstrom, E. L.; Llordés, A.; Lounis, S. D.; Milliron, D. J. Nanostructured electrochromic smart windows: Traditional materials and NIR-selective plasmonic nanocrystals. Chem. Commun. 2014, 50, 10555–10572.

[7]

Gu, C.; Jia, A. B.; Zhang, Y. M.; Zhang, S. X. A. Emerging electrochromic materials and devices for future displays. Chem. Rev. 2022, 122, 14679–14721.

[8]

Rao, T. K.; Zhou, Y. L.; Jiang, J.; Yang, P.; Liao, W. G. Low dimensional transition metal oxide towards advanced electrochromic devices. Nano Energy 2022, 100, 107479.

[9]

Xia, X. H.; Tu, J. P.; Zhang, Y. Q.; Wang, X. L.; Gu, C. D.; Zhao, X. B.; Fan, H. J. High-quality metal oxide core/shell nanowire arrays on conductive substrates for electrochemical energy storage. ACS Nano 2012, 6, 5531–5538.

[10]

Koo, B. R.; Jo, M. H.; Kim, K. H.; Ahn, H. J. Multifunctional electrochromic energy storage devices by chemical cross-linking: Impact of a WO3·H2O nanoparticle-embedded chitosan thin film on amorphous WO3 films. NPG Asia Mater. 2020, 12, 10.

[11]
Wu, X. L.; Fan, Q. C.; Bai, Z. Y.; Zhang, Q. H.; Jiang, W. Z.; Li, Y. G.; Hou, C. Y.; Li, K. R.; Wang, H. Z. Synergistic interaction of dual-polymer networks containing viologens-anchored poly(ionic liquid)s enabling long-life and large-area electrochromic organogels. Small, in press, DOI: 10.1002/smll.202301742.
[12]

Vergaz, R.; Barrios, D.; Sánchez-Pena, J. M.; Pozo-Gonzalo, C.; Salsamendi, M. Relating cyclic voltammetry and impedance analysis in a viologen electrochromic device. Sol. Energy Mater. Sol. Cells 2009, 93, 2125–2132.

[13]

Singh, S. B.; Tran, D. T.; Jeong, K. U.; Kim, N. H.; Lee, J. H. A flexible and transparent zinc-nanofiber network electrode for wearable electrochromic, rechargeable Zn-ion battery. Small 2022, 18, 2104462.

[14]

Cho, S. I.; Kwon, W. J.; Choi, S. J.; Kim, P.; Park, S. A.; Kim, J.; Son, S. J.; Xiao, R.; Kim, S. H.; Lee, S. B. Nanotube-based ultrafast electrochromic display. Adv. Mater. 2005, 17, 171–175.

[15]

Zhang, D. S.; Wang, J. X.; Tong, Z. F.; Ji, H. B.; Qu, H. Y. Bioinspired dynamically switchable PANI/PS-b-P2VP thin films for multicolored electrochromic displays with long-term durability. Adv. Funct. Mater. 2021, 31, 2106577.

[16]

Liu, Y. W.; Cao, S.; Liang, Y.; Han, X. X.; Yang, T.; Zeng, R. S.; Zhao, J. L.; Zou, B. S. Robust and swiftly multicolor Zn2+-electrochromic devices based on polyaniline cathode. Sol. Energy Mater. Sol. Cells 2022, 238, 111616.

[17]

Zhou, K. L.; Wang, H.; Jiu, J. T.; Liu, J. B.; Yan, H.; Suganuma, K. Polyaniline films with modified nanostructure for bifunctional flexible multicolor electrochromic and supercapacitor applications. Chem. Eng. J. 2018, 345, 290–299.

[18]

Zhao, W. X.; Wang, J. Y.; Tam, B.; Pei, P.; Li, F. Z.; Xie, A.; Cheng, W. Macroporous vanadium oxide ion storage films enable fast switching speed and high cycling stability of electrochromic devices. ACS Appl. Mater. Interfaces 2022, 14, 30021–30028.

[19]

Wang, B. S.; Huang, Y.; Han, Y.; Zhang, W. S.; Zhou, C. H.; Jiang, Q. Y.; Chen, F. X.; Wu, X. K.; Li, R.; Lyu, P. et al. A facile strategy to construct Au@VxO2x+1 nanoflowers as a multicolor electrochromic material for adaptive camouflage. Nano Lett. 2022, 22, 3713–3720.

[20]

Tong, Z. Q.; Liu, S. K.; Li, X. G.; Ding, Y. B.; Zhao, J. P.; Li, Y. Facile and controllable construction of vanadium pentoxide@conducting polymer core/shell nanostructures and their thickness-dependent synergistic energy storage properties. Electrochim. Acta 2016, 222, 194–202.

[21]

Scherer, M. R. J.; Li, L.; Cunha, P. M. S.; Scherman, O. A.; Steiner, U. Enhanced electrochromism in gyroid-structured vanadium pentoxide. Adv. Mater. 2012, 24, 1217–1221.

[22]

Xia, X. H.; Chao, D. L.; Qi, X. Y.; Xiong, Q. Q.; Zhang, Y. Q.; Tu, J. P.; Zhang, H.; Fan, H. J. Controllable growth of conducting polymers shell for constructing high-quality organic/inorganic core/shell nanostructures and their optical-electrochemical properties. Nano Lett. 2013, 13, 4562–4568.

[23]

Ma, D. Y.; Shi, G. Y.; Wang, H. Z.; Zhang, Q. H.; Li, Y. G. Controllable growth of high-quality metal oxide/conducting polymer hierarchical nanoarrays with outstanding electrochromic properties and solar-heat shielding ability. J. Mater. Chem. A 2014, 2, 13541–13549.

[24]

Zhang, S. L.; Peng, Y. T.; Zhao, J.; Fan, Z. J.; Ding, B.; Lee, J. Y.; Zhang, X. G.; Xuan, Y. M. Amorphous and porous tungsten oxide films for fast-switching dual-band electrochromic smart windows. Adv. Opt. Mater. 2023, 11, 2202115.

[25]

Klein, J.; Hein, A.; Bold, E.; Alarslan, F.; Oesterschulze, E.; Haase, M. Intercalation-free, fast switching of mesoporous antimony doped tin oxide with cathodically coloring electrochromic dyes. Nanoscale Adv. 2022, 4, 2144–2152.

[26]

Cai, G. F.; Cui, M. Q.; Kumar, V.; Darmawan, P.; Wang, J. X.; Wang, X.; Eh, A. L. S.; Qian, K.; Lee, P. S. Ultra-large optical modulation of electrochromic porous WO3 film and the local monitoring of redox activity. Chem. Sci. 2016, 7, 1373–1382.

[27]

Wei, D.; Scherer, M. R. J.; Bower, C.; Andrew, P.; Ryhänen, T.; Steiner, U. A nanostructured electrochromic supercapacitor. Nano Lett. 2012, 12, 1857–1862.

[28]

Tong, Z. Q.; Li, N.; Lv, H. M.; Tian, Y. L.; Qu, H. Y.; Zhang, X.; Zhao, J. P.; Li, Y. Annealing synthesis of coralline V2O5 nanorod architecture for multicolor energy-efficient electrochromic device. Sol. Energy Mater. Sol. Cells 2016, 146, 135–143.

[29]

Tong, Z. Q.; Hao, J.; Zhang, K.; Zhao, J. P.; Su, B. L.; Li, Y. Improved electrochromic performance and lithium diffusion coefficient in three-dimensionally ordered macroporous V2O5 films. J. Mater. Chem. C 2014, 2, 3651–3658.

[30]

Liu, B. J. W.; Zheng, J.; Wang, J. L.; Xu, J.; Li, H. H.; Yu, S. H. Ultrathin W18O49 nanowire assemblies for electrochromic devices. Nano Lett. 2013, 13, 3589–3593.

[31]

Ariga, K. Nanoarchitectonics: What's coming next after nanotechnology. Nanoscale Horiz. 2021, 6, 364–378.

[32]

Chen, Z.; Augustyn, V.; Wen, J.; Zhang, Y. W.; Shen, M. Q.; Dunn, B.; Lu, Y. F. High-performance supercapacitors based on intertwined CNT/V2O5 nanowire nanocomposites. Adv. Mater. 2011, 23, 791–795.

[33]

Liu, Y. N.; Jia, C. Y.; Wan, Z. Q.; Weng, X. L.; Xie, J. L.; Deng, L. J. Electrochemical and electrochromic properties of novel nanoporous NiO/V2O5 hybrid film. Sol. Energy Mater. Sol. Cells 2015, 132, 467–475.

[34]

Zhu, J. H.; Wei, S. Y.; Alexander, M. Jr.; Dang, T. D.; Ho, T. C.; Guo, Z. Enhanced electrical switching and electrochromic properties of poly(p-phenylenebenzobisthiazole) thin films embedded with nano-WO3. Adv. Funct. Mater. 2010, 20, 3076–3084.

[35]

Reddy, G. V. A.; Naveen Kumar, K.; Shaik, H.; Shetty, H. D.; Imran Jafri, R.; Abdul Sattar, S.; Kamath, K.; Doreswamy, B. H. Growth of cerium oxide nanorods by hydrothermal method and electrochromic properties of CeO2/WO3 hybrid thin films for smart window applications. Mater. Today Proc. 2023, 80, 833–839.

[36]

Chen, Z. W.; Pan, D. Y.; Li, Z.; Jiao, Z.; Wu, M. H.; Shek, C. H.; Wu, C. M. L.; Lai, J. K. L. Recent advances in tin dioxide materials: Some developments in thin films, nanowires, and nanorods. Chem. Rev. 2014, 114, 7442–7486.

[37]

Wang, H. K.; Rogach, A. L. Hierarchical SnO2 nanostructures: Recent advances in design, synthesis, and applications. Chem. Mater. 2014, 26, 123–133.

[38]

Sun, Y. Q.; Chemelewski, W. D.; Berglund, S. P.; Li, C.; He, H. C.; Shi, G. Q.; Mullins, C. B. Antimony-doped tin oxide nanorods as a transparent conducting electrode for enhancing photoelectrochemical oxidation of water by hematite. ACS Appl. Mater. Interfaces 2014, 6, 5494–5499.

[39]

Klein, J.; Alarslan, F.; Steinhart, M.; Haase, M. Cerium-modified mesoporous antimony doped tin oxide as intercalation-free charge storage layers for electrochromic devices. Adv. Funct. Mater. 2023, 33, 2210167.

[40]

Zhang, L.; Wu, H. B.; Lou, X. W. Growth of SnO2 nanosheet arrays on various conductive substrates as integrated electrodes for lithium-ion batteries. Mater. Horiz. 2014, 1, 133–138.

[41]

Dong, W. J.; Xu, J. J.; Wang, C.; Lu, Y.; Liu, X. Y.; Wang, X.; Yuan, X. T.; Wang, Z.; Lin, T. Q.; Sui, M. L. et al. A robust and conductive black tin oxide nanostructure makes efficient lithium-ion batteries possible. Adv. Mater. 2017, 29, 1700136.

[42]

Wu, H. B.; Chen, J. S.; Lou, X. W.; Hng, H. H. Synthesis of SnO2 hierarchical structures assembled from nanosheets and their lithium storage properties. J. Phys. Chem. C 2011, 115, 24605–24610.

[43]

Song, J. S.; Liu, H. P.; Pu, W. H.; Lu, Y.; Si, Z. X.; Zhang, Z. Y.; Ge, Y.; Li, N. X.; Zhou, H. P.; Xiao, W. et al. Thermal instability originating from the interface between organic-inorganic hybrid perovskites and oxide electron transport layers. Energy Environ. Sci. 2022, 15, 4836–4849.

[44]

Liu, Q.; Qin, M. C.; Ke, W. J.; Zheng, X. L.; Chen, Z.; Qin, P. L.; Xiong, L. B.; Lei, H. W.; Wan, J. W.; Wen, J. et al. Enhanced stability of perovskite solar cells with low-temperature hydrothermally grown SnO2 electron transport layers. Adv. Funct. Mater. 2016, 26, 6069–6075.

[45]

Li, Z. P.; Wang, L.; Liu, R. R.; Fan, Y. P.; Meng, H. G.; Shao, Z. P.; Cui, G. L.; Pang, S. P. Spontaneous interface ion exchange: Passivating surface defects of perovskite solar cells with enhanced photovoltage. Adv. Energy Mater. 2019, 9, 1902142.

[46]

Wu, X. Y.; Zheng, Y. T.; Liang, J. H.; Zhang, Z. F.; Tian, C. C.; Zhang, Z. A.; Hu, Y. X.; Sun, A. X.; Wang, C. Y.; Wang, J. L. et al. Green-solvent-processed formamidinium-based perovskite solar cells with uniform grain growth and strengthened interfacial contact via a nanostructured tin oxide layer. Mater. Horiz. 2023, 10, 122–135.

[47]

Lv, Y. H.; Wang, P.; Cai, B.; Ma, Q. S.; Zheng, X. J.; Wu, Y. H.; Jiang, Q. K.; Liu, J. Y.; Zhang, W. H. Facile fabrication of SnO2 nanorod arrays films as electron transporting layer for perovskite solar cells. Sol. RRL 2018, 2, 1800133.

[48]

Nguyen, T. D.; Yeo, L. P.; Kei, T. C.; Mandler, D.; Magdassi, S.; Tok, A. I. Y. Efficient near infrared modulation with high visible transparency using SnO2-WO3 nanostructure for advanced smart windows. Adv. Opt. Mater. 2019, 7, 1801389.

[49]

Cai, G. F.; Tu, J. P.; Zhou, D.; Zhang, J. H.; Xiong, Q. Q.; Zhao, X. Y.; Wang, X. L.; Gu, C. D. Multicolor electrochromic film based on TiO2@Polyaniline core/shell nanorod array. J. Phys. Chem. C 2013, 117, 15967–15975.

[50]

Vujković, M. J.; Etinski, M.; Vasić, B.; Kuzmanović, B.; Bajuk-Bogdanović, D.; Dominko, R.; Mentus, S. Polyaniline as a charge storage material in an aqueous aluminum-based electrolyte: Can aluminum ions play the role of protons. J. Power Sources 2021, 482, 228937.

[51]

Dewan, A.; Narayanan, R.; Thotiyl, M. O. A multi-chromic supercapacitor of high coloration efficiency integrating a MOF-derived V2O5 electrode. Nanoscale 2022, 14, 17372–17384.

[52]

Zhang, J.; Tu, J. P.; Zhang, D.; Qiao, Y. Q.; Xia, X. H.; Wang, X. L.; Gu, C. D. Multicolor electrochromic polyaniline-WO3 hybrid thin films: One-pot molecular assembling synthesis. J. Mater. Chem. 2011, 21, 17316–17324.

[53]

Wang, Q. K.; Cao, S.; Meng, Q. C.; Wang, K.; Yang, T.; Zhao, J. L.; Zou, B. S. Robust and stable dual-band electrochromic smart window with multicolor tunability. Mater. Horiz. 2023, 10, 960–966.

[54]

Fang, W. C. Synthesis and electrochemical characterization of vanadium oxide/carbon nanotube composites for supercapacitors. J. Phys. Chem. C 2008, 112, 11552–11555.

[55]

Hu, C. L.; Li, L.; Zhou, J.; Li, B. W.; Zhao, S. G.; Zou, C. W. Enhanced contrast of WO3-based smart windows by continuous Li-ion insertion and metal electroplating. ACS Appl. Mater. Interfaces 2022, 14, 32253–32260.

[56]

Wei, W.; Li, Z. Y.; Guo, Z. P.; Li, Y. H.; Hou, F. M.; Guo, W.; Wei, A. An electrochromic window based on hierarchical amorphous WO3/SnO2 nanoflake arrays with boosted NIR modulation. Appl. Surf. Sci. 2022, 571, 151277.

[57]

Zhang, W.; Li, H. Z.; Yu, W. W.; Elezzabi, A. Y. Transparent inorganic multicolour displays enabled by zinc-based electrochromic devices. Light Sci. Appl. 2020, 9, 121.

[58]

Tong, Z. Q.; Kang, T. X.; Wan, Y. P.; Yang, R.; Wu, Y.; Shen, D.; Liu, S. H.; Tang, Y. B.; Lee, C. S. A Ca-ion electrochromic battery via a water-in-salt electrolyte. Adv. Funct. Mater. 2021, 31, 2104639.

[59]

Zhang, J. H.; Tu, J. P.; Zhou, D.; Tang, H.; Li, L.; Wang, X. L.; Gu, C. D. Hierarchical SnO2@NiO core/shell nanoflake arrays as energy-saving electrochromic materials. J. Mater. Chem. C 2014, 2, 10409–10417.

[60]

Chiou, N. R.; Lu, C. M.; Guan, J. J.; Lee, L. J.; Epstein, A. J. Growth and alignment of polyaniline nanofibres with superhydrophobic, superhydrophilic and other properties. Nat. Nanotechnol. 2007, 2, 354–357.

File
12274_2023_6103_MOESM1_ESM.pdf (989.2 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 07 July 2023
Revised: 01 August 2023
Accepted: 16 August 2023
Published: 13 September 2023
Issue date: April 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 62222402, U2004175, and 51902086). The authors would like to acknowledge R. Xiao, R. Xu, and the Analysis and Testing Center of School of Life Sciences, Henan University for the microscopy work.

Return