Journal Home > Volume 17 , Issue 2

Active metal-based batteries are drawing increased attention because of their inherent high energy density and specific capacity. Some grand challenges, such as dendrite growth, electrode degradation, rapid performance fading, etc., have limited their practical application. Bioinspiration, which involves taking cues from the structures and functions of the natural world, can lead to a wealth of conceptually fresh approaches to regulator the metal ion transportation to achieve a dendrite-free metal plating, thwart the side-reaction reactions, and retard the structural distortions, for a more reliable and secure operation of active metal-based batteries. In this review, we concentrate on the fabrication and application of bioinspired designs in active metal-based batteries with enhanced performance, along with discussion on the challenges and opportunities associated with this promising topic. We anticipate that this review can offer some insights into the development of functional materials by learning from nature and provide some approaches for the innovations of either the battery structures or the energy materials for metal-based batteries.


menu
Abstract
Full text
Outline
About this article

Bioinspired designs in active metal-based batteries

Show Author's information Fan Zhang1,3Ting Liao2,3( )Cheng Yan2,3Ziqi Sun1,3( )
School of Chemistry and Physics, Queensland University of Technology, George Street, Brisbane, QLD 4000, Australia
School of Mechanical Medical and Process Engineering, Queensland University of Technology, George Street, Brisbane, QLD 4000, Australia
QUT Centre for Materials Science, Queensland University of Technology, George Street, Brisbane, QLD 4000, Australia

Abstract

Active metal-based batteries are drawing increased attention because of their inherent high energy density and specific capacity. Some grand challenges, such as dendrite growth, electrode degradation, rapid performance fading, etc., have limited their practical application. Bioinspiration, which involves taking cues from the structures and functions of the natural world, can lead to a wealth of conceptually fresh approaches to regulator the metal ion transportation to achieve a dendrite-free metal plating, thwart the side-reaction reactions, and retard the structural distortions, for a more reliable and secure operation of active metal-based batteries. In this review, we concentrate on the fabrication and application of bioinspired designs in active metal-based batteries with enhanced performance, along with discussion on the challenges and opportunities associated with this promising topic. We anticipate that this review can offer some insights into the development of functional materials by learning from nature and provide some approaches for the innovations of either the battery structures or the energy materials for metal-based batteries.

Keywords: bioinspired materials, energy storage devices, metal-based batteries

References(116)

[1]

Das, I.; Klug, T.; Krishnapriya, P. P.; Plutshack, V.; Saparapa, R.; Scott, S.; Sills, E.; Kara, N.; Pattanayak, S. K.; Jeuland, M. Frameworks, methods and evidence connecting modern domestic energy services and gender empowerment. Nat. Energy 2023, 8, 435–449.

[2]

Duffner, F.; Kronemeyer, N.; Tübke, J.; Leker, J.; Winter, M.; Schmuch, R. Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure. Nat. Energy 2021, 6, 123–134.

[3]

Goikolea, E.; Palomares, V.; Wang, S. J.; de Larramendi, I. R.; Guo, X.; Wang, G. X.; Rojo, T. Na-ion batteries-approaching old and new challenges. Adv. Energy Mater. 2020, 10, 2002055.

[4]

Hosaka, T.; Kubota, K.; Hameed, A. S.; Komaba, S. Research development on K-ion batteries. Chem. Rev. 2020, 120, 6358–6466.

[5]

Hong, X. D.; Mei, J.; Wen, L.; Tong, Y. Y.; Vasileff, A. J.; Wang, L. Q.; Liang, J.; Sun, Z. Q.; Dou, S. X. Nonlithium metal-sulfur batteries: Steps toward a leap. Adv. Mater. 2019, 31, 1802822.

[6]

Mei, J.; Liao, T.; Liang, J.; Qiao, Y. X.; Dou, S. X.; Sun, Z. Q. Toward promising cathode catalysts for nonlithium metal-oxygen batteries. Adv. Energy Mater. 2020, 10, 1901997.

[7]

Mei, J.; Liao, T.; Kou, L. Z.; Sun, Z. Q. Two-dimensional metal oxide nanomaterials for next-generation rechargeable batteries. Adv. Mater. 2017, 29, 1700176.

[8]

Blanc, L. E.; Kundu, D.; Nazar, L. F. Scientific challenges for the implementation of Zn-ion batteries. Joule 2020, 4, 771–799.

[9]

Wijerathne, B.; Liao, T.; Ostrikov, K.; Sun, Z. Q. Bioinspired robust mechanical properties for advanced materials. Small Struct. 2022, 3, 2100228.

[10]

Mei, J.; Liao, T.; Peng, H.; Sun, Z. Q. Bioinspired materials for energy storage. Small Methods 2022, 6, 2101076.

[11]

Mei, J.; Liao, T.; Sun, Z. Q. Crystal channel engineering for rapid ion transport: From nature to batteries. Chem.—Eur. J. 2022, 28, e202103938.

[12]

Dou, Y. H.; Tian, D. L.; Sun, Z. Q.; Liu, Q. N.; Zhang, N.; Kim, J. H.; Jiang, L.; Dou, S. X. Fish gill inspired crossflow for efficient and continuous collection of spilled oil. ACS Nano 2017, 11, 2477–2485.

[13]

Deneka, D.; Sawicka, M.; Lam, A. K. M.; Paulino, C.; Dutzler, R. Structure of a volume-regulated anion channel of the LRRC8 family. Nature 2018, 558, 254–259.

[14]

Zhang, Y. W.; Mei, J.; Yan, C.; Liao, T.; Bell, J.; Sun, Z. Q. Bioinspired 2D nanomaterials for sustainable applications. Adv. Mater. 2020, 32, 1902806.

[15]

Xin, W. W.; Jiang, L.; Wen, L. P. Engineering bio-inspired self-assembled nanochannels for smart ion transport. Angew. Chem., Int. Ed. 2022, 61, e202207369.

[16]

Sakamoto, J.; Ishikawa, H. Cover feature: Bioinspired transformations using strictosidine aglycones: Divergent total syntheses of monoterpenoid indole alkaloids in the early stage of biosynthesis. Chem.—Eur. J. 2022, 28, e202200315.

[17]

Sun, T. L.; Feng, L.; Gao, X. F.; Jiang, L. Bioinspired surfaces with special wettability. Acc. Chem. Res. 2005, 38, 644–652.

[18]

Zhang, J. H.; Sheng, X. L.; Jiang, L. The dewetting properties of lotus leaves. Langmuir 2009, 25, 1371–1376.

[19]

Sharma, V.; Singh, S. K.; Mobin, S. M. Bioinspired carbon dots: From rose petals to tunable emissive nanodots. Nanoscale Adv. 2019, 1, 1290–1296.

[20]

Osotsi, M. I.; Zhang, W.; Zada, I.; Gu, J. J.; Liu, Q. L.; Zhang, D. Butterfly wing architectures inspire sensor and energy applications. Natl. Sci. Rev. 2021, 8, nwaa107.

[21]

Deng, X. Y.; Zhu, S.; Li, J. J.; He, F.; Liu, E. Z.; He, C. N.; Shi, C. S.; Li, Q. Y.; Ma, L. Y.; Zhao, N. Q. Bio-inspired three-dimensional carbon network with enhanced mass-transfer ability for supercapacitors. Carbon 2019, 143, 728–735.

[22]

Hsieh, Y. Y.; Fang, Y. B.; Daum, J.; Kanakaraj, S. N.; Zhang, G. Q.; Mishra, S.; Gbordzoe, S.; Shanov, V. Bio-inspired, nitrogen doped CNT-graphene hybrid with amphiphilic properties as a porous current collector for lithium-ion batteries. Carbon 2019, 145, 677–689.

[23]

Mei, J.; Liao, T.; Spratt, H.; Ayoko, G. A.; Zhao, X. S.; Sun, Z. Q. Honeycomb-inspired heterogeneous bimetallic Co-Mo oxide nanoarchitectures for high-rate electrochemical lithium storage. Small Methods 2019, 3, 1900055.

[24]
Sun, Z. Q.; Liao, T.; Sheng, L. Y.; Kim, J. H.; Dou, S. X.; Bell, J. Fly compound-eye inspired inorganic nanostructures with extraordinary visible-light responses. Mater. Today Chem. 2016, 1–2, 84–89.
DOI
[25]

Sun, Z. Q.; Liao, T.; Li, W. X.; Dou, Y. H.; Liu, K. S.; Jiang, L.; Kim, S. W.; Kim, J. H.; Dou, S. X. Fish-scale bio-inspired multifunctional ZnO nanostructures. NPG Asia Mater. 2015, 7, e232.

[26]

Zhou, H.; Xu, J.; Liu, X. H.; Zhang, H. W.; Wang, D. T.; Chen, Z. H.; Zhang, D.; Fan, T. X. Bio-inspired photonic materials: Prototypes and structural effect designs for applications in solar energy manipulation. Adv. Funct. Mater. 2018, 28, 1705309.

[27]

Sun, Z. Q.; Liao, T.; Li, W. X.; Qiao, Y. X.; Ostrikov, K. Beyond seashells: Bioinspired 2D photonic and photoelectronic devices. Adv. Funct. Mater. 2019, 29, 1901460.

[28]

Li, Y.; Meng, Q.; Ma, J.; Zhu, C. L.; Cui, J. R.; Chen, Z. X.; Guo, Z. P.; Zhang, T.; Zhu, S. M.; Zhang, D. Bioinspired carbon/SnO2 composite anodes prepared from a photonic hierarchical structure for lithium batteries. ACS Appl. Mater. Interfaces 2015, 7, 11146–11154.

[29]

Kim, M. H.; Nam, S.; Oh, M.; Lee, H. J.; Jang, B.; Hyun, S. Bioinspired, shape-morphing scale battery for untethered soft robots. Soft Robotics 2022, 9, 486–496.

[30]

Kong, L.; Peng, H. J.; Huang, J. Q.; Zhu, W. C.; Zhang, G.; Zhang, Z. W.; Zhai, P. Y.; Sun, P. P.; Xie, J.; Zhang, Q. Beaver-dam-like membrane: A robust and sulphifilic MgBO2(OH)/CNT/PP nest separator in Li-S batteries. Energy Storage Mater. 2017, 8, 153–160.

[31]

Cheng, M. Y.; Liu, J. Y.; Zhang, H. K.; Han, T. L.; Zhang, M.; Cheng, D.; Zhai, M. H.; Zhou, P.; Li, J. J. A bio-inspired structurally-responsive and polysulfides-mobilizable carbon/sulfur composite as long-cycling life Li-S battery cathode. ChemElectroChem 2019, 6, 3966–3975.

[32]

Liu, K. S.; Du, J. X.; Wu, J. T.; Jiang, L. Superhydrophobic gecko feet with high adhesive forces towards water and their bio-inspired materials. Nanoscale 2012, 4, 768–772.

[33]

Zheng, Y. M.; Gao, X. F.; Jiang, L. Directional adhesion of superhydrophobic butterfly wings. Soft Matter 2007, 3, 178–182.

[34]

Barthlott, W.; Schimmel, T.; Wiersch, S.; Koch, K.; Brede, M.; Barczewski, M.; Walheim, S.; Weis, A.; Kaltenmaier, A.; Leder, A. et al. The Salvinia paradox: Superhydrophobic surfaces with hydrophilic pins for air retention under water. Adv. Mater. 2010, 22, 2325–2328.

[35]

Ju, J.; Yao, X.; Yang, S.; Wang, L.; Sun, R. Z.; He, Y. X.; Jiang, L. Cactus stem inspired cone-arrayed surfaces for efficient fog collection. Adv. Funct. Mater. 2014, 24, 6933–6938.

[36]

Ye, C. Q.; Li, M. Z.; Hu, J. P.; Cheng, Q. F.; Jiang, L.; Song, Y. L. Highly reflective superhydrophobic white coating inspired by poplar leaf hairs toward an effective “cool roof”. Energy Environ. Sci. 2011, 4, 3364–3367.

[37]

Sun, Z. Q.; Liao, T.; Liu, K. S.; Jiang, L.; Kim, J. H.; Dou, S. X. Fly-eye inspired superhydrophobic anti-fogging inorganic nanostructures. Small 2014, 10, 3001–3006.

[38]

Liu, X. L.; Zhou, J.; Xue, Z. X.; Gao, J.; Meng, J. X.; Wang, S. T.; Jiang, L. Clam’s shell inspired high-energy inorganic coatings with underwater low adhesive superoleophobicity. Adv. Mater. 2012, 24, 3401–3405.

[39]

Feng, L.; Li, S.; Li, Y.; Li, H.; Zhang, L.; Zhai, J.; Song, Y.; Liu, B.; Jiang, L.; Zhu, D. Super-hydrophobic surfaces: From natural to artificial. Adv. Mater. 2002, 14, 1857–1860.

[40]

Feng, L.; Zhang, Y. N.; Xi, J. M.; Zhu, Y.; Wang, N.; Xia, F.; Jiang, L. Petal effect: A superhydrophobic state with high adhesive force. Langmuir 2008, 24, 4114–4119.

[41]

Gao, X. F.; Jiang, L. Water-repellent legs of water striders. Nature 2004, 432, 36.

[42]

Kang, H.; Lee, J. S.; Chang, W. S.; Kim, S. H. Liquid-impermeable inverse opals with invariant photonic bandgap. Adv. Mater. 2015, 27, 1282–1287.

[43]

Zheng, Y. M.; Bai, H.; Huang, Z. B.; Tian, X. L.; Nie, F. Q.; Zhao, Y.; Zhai, J.; Jiang, L. Directional water collection on wetted spider silk. Nature 2010, 463, 640–643.

[44]

Wu, D.; Wang, J. N.; Wu, S. Z.; Chen, Q. D.; Zhao, S.; Zhang, H.; Sun, H. B.; Jiang, L. Three-level biomimetic rice-leaf surfaces with controllable anisotropic sliding. Adv. Funct. Mater. 2011, 21, 2927–2932.

[45]

Cai, Y.; Lin, L.; Xue, Z. X.; Liu, M. J.; Wang, S. T.; Jiang, L. Filefish-inspired surface design for anisotropic underwater oleophobicity. Adv. Funct. Mater. 2014, 24, 809–816.

[46]

Chen, H. W.; Zhang, P. F.; Zhang, L. W.; Liu, H. L.; Jiang, Y.; Zhang, D. Y.; Han, Z. W.; Jiang, L. Continuous directional water transport on the peristome surface of Nepenthes alata. Nature 2016, 532, 85–90.

[47]

Basu, S.; Suresh, S.; Ghatak, K.; Bartolucci, S. F.; Gupta, T.; Hundekar, P.; Kumar, R.; Lu, T. M.; Datta, D.; Shi, Y. F. et al. Utilizing van der waals slippery interfaces to enhance the electrochemical stability of silicon film anodes in lithium-ion batteries. ACS Appl. Mater. Interfaces 2018, 10, 13442–13451.

[48]

Zan, G. T.; Wu, Q. S. Biomimetic and bioinspired synthesis of nanomaterials/nanostructures. Adv. Mater. 2016, 28, 2099–2147.

[49]

Sun, Z. Q.; Liao, T.; Kou, L. Z. Strategies for designing metal oxide nanostructures. Sci. China Mater. 2017, 60, 1–24.

[50]

Pavlenko, V.; Khosravi, S.; Żółtowska, S.; Haruna, A. B.; Zahid, M.; Mansurov, Z.; Supiyeva, Z.; Galal, A.; Ozoemena, K. I.; Abbas, Q.; Jesionowski, T. A comprehensive review of template-assisted porous carbons: Modern preparation methods and advanced applications. Mater. Sci. Eng. R:Rep. 2022, 149, 100682.

[51]

Lu, L. L.; Lu, Y. Y.; Xiao, Z. J.; Zhang, T. W.; Zhou, F.; Ma, T.; Ni, Y.; Yao, H. B.; Yu, S. H.; Cui, Y. Wood-inspired high-performance ultrathick bulk battery electrodes. Adv. Mater. 2018, 30, 1706745.

[52]
Valtchev, V. P.; Smaihi, M.; Faust, A. C.; Vidal, L. Equisetum arvense templating of zeolite beta macrostructures with hierarchical porosity. Chem. Mater. 2004, 16, 1350–1355.
DOI
[53]

Valtchev, V.; Smaihi, M.; Faust, A. C.; Vidal, L. Biomineral-silica-induced zeolitization of Equisetum arvense. Angew. Chem., Int. Ed. 2003, 42, 2782–2785.

[54]

Schnepp, Z.; Yang, W.; Antonietti, M.; Giordano, C. Biotemplating of metal carbide microstructures: The magnetic leaf. Angew. Chem., Int. Ed. 2010, 49, 6564–6566.

[55]

Kostova, M. H.; Zollfrank, C.; Batentschuk, M.; Goetz-Neunhoeffer, F.; Winnacker, A.; Greil, P. Bioinspired design of SrAl2O4: Eu2+ phosphor. Adv. Funct. Mater. 2009, 19, 599–603.

[56]

Gao, W.; Feng, X. M.; Pei, A.; Kane, C. R.; Tam, R.; Hennessy, C.; Wang, J. Bioinspired helical microswimmers based on vascular plants. Nano Lett. 2014, 14, 305–310.

[57]

Kamata, K.; Suzuki, S.; Ohtsuka, M.; Nakagawa, M.; Iyoda, T.; Yamada, A. Fabrication of left-handed metal microcoil from spiral vessel of vascular plant. Adv. Mater. 2011, 23, 5509–5513.

[58]

Han, Z. W.; Niu, S. C.; Li, W.; Ren, L. Q. Preparation of bionic nanostructures from butterfly wings and their low reflectivity of ultraviolet. Appl. Phys. Lett. 2013, 102, 233702.

[59]

Huang, L. M.; Wang, H. T.; Hayashi, C. Y.; Tian, B. Z.; Zhao, D. Y.; Yan, Y. S. Single-strand spider silk templating for the formation of hierarchically ordered hollow mesoporous silica fibers. J. Mater. Chem. 2003, 13, 666–668.

[60]

Bermejo, R. “Toward seashells under stress”:Bioinspired concepts to design tough layered ceramic composites. J. Eur. Ceram. Soc. 2017, 37, 3823–3839.

[61]

Park, R. J.; Meldrum, F. C. Synthesis of single crystals of calcite with complex morphologies. 3.0.CO;2-X">Adv. Mater. 2002, 14, 1167–1169.

[62]

Yao, H. B.; Zheng, G. Y.; Li, W. Y.; McDowell, M. T.; Seh, Z.; Liu, N.; Lu, Z. D.; Cui, Y. Crab shells as sustainable templates from nature for nanostructured battery electrodes. Nano Lett. 2013, 13, 3385–3390.

[63]

Chen, Y.; Gu, J. J.; Zhu, S. M.; Fan, T. X.; Zhang, D.; Guo, Q. X. Iridescent large-area ZrO2 photonic crystals using butterfly as templates. Appl. Phys. Lett. 2009, 94, 053901.

[64]

Peng, W. H.; Zhu, S. M.; Wang, W. L.; Zhang, W.; Gu, J. J.; Hu, X. B.; Zhang, D.; Chen, Z. X. 3D network magnetophotonic crystals fabricated on Morpho butterfly wing templates. Adv. Funct. Mater. 2012, 22, 2072–2080.

[65]

Ma, M.; You, S. J.; Qu, J. H.; Ren, N. Q. Natural eggshell membrane as separator for improved coulombic efficiency in air-cathode microbial fuel cells. RSC Adv. 2016, 6, 66147–66151.

[66]

Dong, D. H.; Wu, Y. Z.; Zhang, X. Y.; Yao, J. F.; Huang, Y.; Li, D.; Li, C. Z.; Wang, H. T. Eggshell membrane-templated synthesis of highly crystalline perovskite ceramics for solid oxidefuelcells. J. Mater. Chem. 2011, 21, 1028–1032.

[67]

Liu, J. K.; Wu, Q. S.; Ding, Y. P.; Yi, Y. Assembling synthesis of barium chromate nano-superstructures using eggshell membrane as template. Bull. Kor. Chem. Soc. 2004, 25, 1775–1778.

[68]

Yang, X. H.; Wu, Q. S.; Liu, J. K. Controlled synthesis of SrCrO4 crystals with different morphologies. Cryst. Res. Technol. 2007, 42, 211–215.

[69]

Liu, J. K.; Wu, Q. S.; Ding, Y. P. Controlled synthesis of different morphologies of BaWO4 crystals through biomembrane/organic-addition supramolecule templates. Cryst. Growth Des. 2005, 5, 445–449.

[70]

Yin, L. X.; Xu, G. Y.; Nie, P.; Dou, H.; Zhang, X. G. MXene debris modified eggshell membrane as separator for high-performance lithium-sulfur batteries. Chem. Eng. J. 2018, 352, 695–703.

[71]

Yamauchi, A.; Shin, Y.; Shinozaki, M.; Kawabe, M. Membrane characteristics of composite collodion membrane: IV. Transport properties across blended collodion/nafion membrane. J. Membrane Sci. 2000, 170, 1–7.

[72]

Yan, B. Q.; Nan, Z. D.; Liu, Y. Fabrication of tubular structure agglomerates of calcium carbonate by using collodion film. Chin. J. Chem. 2008, 26, 2302–2306.

[73]

Wen, M.; Wang, Y. F.; Wu, Q. S.; Jin, Y.; Cheng, M. Z. Controlled fabrication of 0 & 2D NiCu amorphous nanoalloys by the cooperation of hard-soft interfacial templates. J. Colloid Interface Sci. 2010, 342, 229–235.

[74]

Wen, M.; Wang, Y. F.; Zhang, F.; Wu, Q. S. Nanostructures of Ni and NiCo amorphous alloys synthesized by a double composite template approach. J. Phys. Chem. C 2009, 113, 5960–5966.

[75]

Shao, M. W.; Wu, Z. C.; Gao, F.; Ye, Y.; Wei, X. W. Surfactant-free route to hexagonal CdS nanotubes under ultrasonic irradiation in aqueous solution at room temperature. J. Cryst. Growth 2004, 260, 63–66.

[76]

Liu, J. K.; Wu, Q. S.; Ding, Y. P.; Wang, B. Controlled synthesis of HgS nanocrystals with artificial active membrane as template. Chem. J. Chin. Univ. 2003, 24, 2147–2150.

[77]

Wang, Y.; Wu, Q. S.; Ding, Y. P. Preparation of group IIB selenide nanoparticles using soft-hard dual template method. J. Nanopart. Res. 2004, 6, 253–257.

[78]

Liu, J. K.; Wu, Q. S.; Ding, Y. P. Synthesis and properties of ZnS quasi-nanorods by celloidin membrane template. Chin. J. Inorg. Chem. 2003, 19, 1322–1326.

[79]

Tao, F. J.; Zhang, Y. L.; Cao, S. J.; Yin, K.; Chang, X. T.; Lei, Y. H.; Fan, R. H.; Dong, L. H.; Yin, Y. S.; Chen, X. B. CuS nanoflowers/semipermeable collodion membrane composite for high-efficiency solar vapor generation. Mater. Today Energy 2018, 9, 285–294.

[80]

Duan, H. H.; Yan, N.; Yu, R.; Chang, C. R.; Zhou, G.; Hu, H. S.; Rong, H. P.; Niu, Z. Q.; Mao, J. J.; Asakura, H. et al. Ultrathin rhodium nanosheets. Nat. Commun. 2014, 5, 3093.

[81]

Zhao, J.; Deng, Q. M.; Bachmatiuk, A.; Sandeep, G.; Popov, A.; Eckert, J.; Rümmeli, M. H. Free-standing single-atom-thick iron membranes suspended in graphene pores. Science 2014, 343, 1228–1232.

[82]

Yin, S. Y.; Zhang, Y. Y.; Kong, J. H.; Zou, C. J.; Li, C. M.; Lu, X. H.; Ma, J.; Boey, F. Y. C.; Chen, X. D. Assembly of graphene sheets into hierarchical structures for high-performance energy storage. ACS Nano 2011, 5, 3831–3838.

[83]

Pan, H.; Wang, D. W.; Peng, Q. F.; Ma, J.; Meng, X.; Zhang, Y. P.; Ma, Y. N.; Zhu, S. M.; Zhang, D. High-performance microsupercapacitors based on bioinspired graphene microfibers. ACS Appl. Mater. Interfaces 2018, 10, 10157–10164.

[84]

Wu, J. R.; Yin, K.; Xiao, S.; Wu, Z. P.; Zhu, Z.; Duan, J. A.; He, J. Laser fabrication of bioinspired gradient surfaces for wettability applications. Adv. Mater. Interfaces 2021, 8, 2001610.

[85]

Ji, J. W.; Jiao, Y. L.; Song, Q. R.; Zhang, Y.; Liu, X. J.; Liu, K. Bioinspired geometry-gradient metal slippery surface by one-step laser ablation for continuous liquid directional self-transport. Langmuir 2021, 37, 5436–5444.

[86]

Song, Y. Y.; Liu, Y.; Jiang, H. B.; Li, S. Y.; Kaya, C.; Stegmaier, T.; Han, Z. W.; Ren, L. Q. A bioinspired structured graphene surface with tunable wetting and high wearable properties for efficient fog collection. Nanoscale 2018, 10, 16127–16137.

[87]

Zhang, Q. C.; Dong, J. J.; Peng, M. X.; Yang, Z. W.; Wan, Y. Z.; Yao, F. L.; Zhou, J. Y.; Ouyang, C. X.; Deng, X. Y.; Luo, H. L. Laser-induced wettability gradient surface on NiTi alloy for improved hemocompatibility and flow resistance. Mater. Sci. Eng.: C 2020, 111, 110847.

[88]

Wei, J. J.; Pan, F.; Ping, H.; Yang, K.; Wang, Y. Q.; Wang, Q. Y.; Fu, Z. Y. Bioinspired additive manufacturing of hierarchical materials: From biostructures to functions. Research 2023, 6, 0164.

[89]
Men, X.; Li, Z. Y.; Yang, W.; Wang, M.; Liang, S.; Sun, H.; Liu, Z. N.; Lu, G. L. 3D-printed bio-inspired multi-channel cathodes for zinc-air battery applications. J. Bionic Eng. 2022, 19, 1014–1023.
DOI
[90]
Wei, T. S.; Ahn, B. Y.; Grotto, J.; Lewis, J. A. 3D printing of customized Li-ion batteries with thick electrodes. Adv. Mater. 2018, 30, 1703027.
DOI
[91]

Mei, J.; Peng, X. M.; Zhang, Q.; Zhang, X. Q.; Liao, T.; Mitic, V.; Sun, Z. Q. Bamboo-membrane inspired multilevel ultrafast interlayer ion transport for superior volumetric energy storage. Adv. Funct. Mater. 2021, 31, 2100299.

[92]

Yin, Y. C.; Yu, Z. L.; Ma, Z. Y.; Zhang, T. W.; Lu, Y. Y.; Ma, T.; Zhou, F.; Yao, H. B.; Yu, S. H. Bio-inspired low-tortuosity carbon host for high-performance lithium-metal anode. Natl. Sci. Rev. 2019, 6, 247–256.

[93]

Yu, L. T.; Su, Q. M.; Li, B. Y.; Liu, W. Y.; Zhang, M.; Ding, S. K.; Du, G. H.; Xu, B. S. Bio-inspired lotus root-like 3D multichannel carbon hosts for stable lithium metal anodes. Electrochim. Acta 2020, 362, 137130.

[94]

He, G. W.; Xu, M. Z.; Zhao, J.; Jiang, S. T.; Wang, S. F.; Li, Z.; He, X. Y.; Huang, T.; Cao, M. Y.; Wu, H. et al. Bioinspired ultrastrong solid electrolytes with fast proton conduction along 2D channels. Adv. Mater. 2017, 29, 1605898.

[95]

Qian, G. Y.; Zhu, B.; Liao, X. B.; Zhai, H. W.; Srinivasan, A.; Fritz, N. J.; Cheng, Q.; Ning, M. Q.; Qie, B. Y.; Li, Y. et al. Bioinspired, spine-like, flexible, rechargeable lithium-ion batteries with high energy density. Adv. Mater. 2018, 30, 1704947.

[96]

Li, A. J.; Liao, X. B.; Zhang, H. R.; Shi, L.; Wang, P. Y.; Cheng, Q.; Borovilas, J.; Li, Z. Y.; Huang, W. L.; Fu, Z. X. et al. Nacre-inspired composite electrolytes for load-bearing solid-state lithium-metal batteries. Adv. Mater. 2020, 32, 1905517.

[97]

Dai, J. Q.; Fu, K.; Gong, Y. H.; Song, J. W.; Chen, C. J.; Yao, Y. G.; Pastel, G.; Zhang, L.; Wachsman, E.; Hu, L. B. Flexible solid-state electrolyte with aligned nanostructures derived from wood. ACS Materials Lett. 2019, 1, 354–361.

[98]

Raulo, A.; Bandyopadhyay, S.; Ahamad, S.; Gupta, A.; Srivastava, R.; Formanek, P.; Nandan, B. Bio-inspired poly(3, 4-ethylenedioxythiophene): Poly(styrene sulfonate)-sulfur@polyacrylonitrile electrospun nanofibers for lithium-sulfur batteries. J. Power Sources 2019, 431, 250–258.

[99]

Zhao, T.; Ye, Y. S.; Peng, X. Y.; Divitini, G.; Kim, H. K.; Lao, C. Y.; Coxon, P. R.; Xi, K.; Liu, Y. J.; Ducati, C. et al. Advanced lithium-sulfur batteries enabled by a bio-inspired polysulfide adsorptive brush. Adv. Funct. Mater. 2016, 26, 8418–8426.

[100]
Tao, X. Y.; Dong, L. X.; Wang, X. N.; Zhang, W. K.; Nelson, B. J.; Li, X. D. B4C-nanowires/carbon-microfiber hybrid structures and composites from cotton T-shirts. Adv. Mater. 2010, 22, 2055–2059.
DOI
[101]

Tao, X. Y.; Du, J.; Li, Y. P.; Yang, Y. C.; Fan, Z.; Gan, Y. P.; Huang, H.; Zhang, W. K.; Dong, L. X.; Li, X. D. TaC nanowire/activated carbon microfiber hybrid structures from bamboo fibers. Adv. Energy Mater. 2011, 1, 534–539.

[102]

Xia, Y.; Xiao, Z.; Dou, X.; Huang, H.; Lu, X. H.; Yan, R. J.; Gan, Y. P.; Zhu, W. J.; Tu, J. P.; Zhang, W. K. et al. Green and facile fabrication of hollow porous MnO/C microspheres from microalgaes for lithium-ion batteries. ACS Nano 2013, 7, 7083–7092.

[103]

Xia, Y.; Zhang, W. K.; Xiao, Z.; Huang, H.; Zeng, H. J.; Chen, X. R.; Chen, F.; Gan, Y. P.; Tao, X. Y. Biotemplated fabrication of hierarchically porous NiO/C composite from lotus pollen grains for lithium-ion batteries. J. Mater. Chem. 2012, 22, 9209–9215.

[104]

Tao, X. Y.; Zhang, J. T.; Xia, Y.; Huang, H.; Du, J.; Xiao, H.; Zhang, W. K.; Gan, Y. P. Bio-inspired fabrication of carbon nanotiles for high performance cathode of Li-S batteries. J. Mater. Chem. A 2014, 2, 2290–2296.

[105]

Zhao, Y.; Ouyang, M. Z.; Wang, Y. T.; Qin, R. Z.; Zhang, H.; Pan, W. D.; Leung, D. Y. C.; Wu, B.; Liu, X. H.; Brandon, N. P. et al. Biomimetic lipid-bilayer anode protection for long lifetime aqueous zinc-metal batteries. Adv. Funct. Mater. 2022, 32, 2203019.

[106]

Wang, M. Q.; Emre, A.; Tung, S.; Gerber, A.; Wang, D. D.; Huang, Y. D.; Cecen, V.; Kotov, N. A. Biomimetic solid-state Zn2+ electrolyte for corrugated structural batteries. ACS Nano 2019, 13, 1107–1115.

[107]

Dou, H. Z.; Xu, M.; Zheng, Y.; Li, Z. Q.; Wen, G. B.; Zhang, Z.; Yang, L. X.; Ma, Q. Y.; Yu, A. P.; Luo, D. et al. Bioinspired tough solid-state electrolyte for flexible ultralong-life zinc-air battery. Adv. Mater. 2022, 34, 2110585.

[108]

Tang, K.; Hu, H. B.; Xiong, Y.; Chen, L.; Zhang, J. Y.; Yuan, C. Z.; Wu, M. Z. Hydrophobization engineering of the air-cathode catalyst for improved oxygen diffusion towards efficient zinc-air batteries. Angew. Chem., Int. Ed. 2022, 61, e202202671.

[109]

Krichevski, O.; Singh, R. K.; Bormashenko, E.; Bormashenko, Y.; Multanen, V.; Schechter, A. Bioinspired oxygen selective membrane for Zn-air batteries. J. Mater. Sci. 2021, 56, 9382–9394.

[110]

Zhang, F.; Liao, T.; Liu, C.; Peng, H.; Luo, W.; Yang, H. Y.; Yan, C.; Sun, Z. Q. Biomineralization-inspired dendrite-free Zn-electrode for long-term stable aqueous Zn-ion battery. Nano Energy 2022, 103, 107830.

[111]

Wang, C. F.; He, T.; Cheng, J. L.; Guan, Q.; Wang, B. Bioinspired interface design of sewable, weavable, and washable fiber zinc batteries for wearable power textiles. Adv. Funct. Mater. 2020, 30, 2004430.

[112]

Zhou, G. Y.; Mo, L. L.; Zhou, C. Y.; Wu, Y.; Lai, F. L.; Lv, Y.; Ma, J. M.; Miao, Y. E.; Liu, T. X. Ultra-strong capillarity of bioinspired micro/nanotunnels in organic cathodes enabled high-performance all-organic sodium-ion full batteries. Chem. Eng. J. 2021, 420, 127597.

[113]

Jo, C. H.; Jo, J. H.; Yashiro, H.; Kim, S. J.; Sun, Y. K.; Myung, S. T. Bioinspired surface layer for the cathode material of high-energy-density sodium-ion batteries. Adv. Energy Mater. 2018, 8, 1702942.

[114]

Yan, Y. C.; Liu, Z.; Wan, T.; Li, W. N.; Qiu, Z. P.; Chi, C. L.; Huangfu, C.; Wang, G. W.; Qi, B.; Yan, Y. G. et al. Bioinspired design of Na-ion conduction channels in covalent organic frameworks for quasi-solid-state sodium batteries. Nat. Commun. 2023, 14, 3066.

[115]

Cui, Y. P.; Liu, W.; Wang, X.; Li, J. J.; Zhang, Y.; Du, Y. X.; Liu, S.; Wang, H. L.; Feng, W. T.; Chen, M. Bioinspired mineralization under freezing conditions: An approach to fabricate porous carbons with complicated architecture and superior K+ storage performance. ACS Nano 2019, 13, 11582–11592.

[116]

Zhang, X. X.; Wu, F.; Lv, X. W.; Xu, L. Q. Y.; Huang, R. L.; Chen, R. J.; Li, L. Achieving sustainable and stable potassium-ion batteries by leaf-bioinspired nanofluidic flow. Adv. Mater. 2022, 34, 2204370.

Publication history
Copyright
Acknowledgements

Publication history

Received: 01 July 2023
Revised: 10 August 2023
Accepted: 16 August 2023
Published: 26 September 2023
Issue date: February 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the Australian Research Council through ARC Discovery Projects (DP200103568 and DP230101625) and ARC Future Fellowship projects (FT180100387 and FT160100281).

Return