Journal Home > Volume 17 , Issue 2

Thermally conductive polymer nanocomposites integrated with lightweight, excellent flexural strength, and high fracture toughness (KIc) would be of great use in many fields. However, achieving all of these properties simultaneously remains a great challenge. Inspired by natural nacre, here we demonstrate a lightweight, strong, tough, and thermally conductive boron nitride nanosheet/epoxy layered (BNNEL) nanocomposite. Because of the layered structure and enhancing the interfacial interactions through hydrogen bonding and Si–O–B covalent bonding, the resulting nacre-inspired BNNEL nanocomposites show high fracture toughness of ~ 4.22 MPa·m1/2, which is 7 folds as high as pure epoxy. Moreover, the BNNEL nanocomposites demonstrate sufficient flexural strength (~ 168.90 MPa, comparable to epoxy resin), while also being lightweight (~ 1.23 g/cm3). Additionally, the BNNEL nanocomposites display a thermal conductivity (κ) of ~ 0.47 W/(m·K) at low boron nitride nanosheet loading of 2.08 vol.%, which is 2.7 times higher than that of pure epoxy resin. The developed nacre-inspired strategy of layered structure design and interfacial enhancement provides an avenue for fabricating high mechanical properties and thermally conductive polymer nanocomposites.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Strong, tough, and thermally conductive nacre-inspired boron nitride nanosheet/epoxy layered nanocomposites

Show Author's information Huagao Wang1,2,3,§Rongjian Lu4,§Lei Li1Cheng Liang1Jia Yan1,2,3Rui Liang5Guoxing Sun6Lei Jiang1,2,3Qunfeng Cheng1,2,3,7( )
School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing 100191, China
School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
Department of Stomatology, Fifth Medical Center, Chinese PLA General Hospital, Beijing 100039, China
Department of Engineering Science, Faculty of Innovation Engineering, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078 China
Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
Institute of Energy Materials Science (IEMS), University of Shanghai for Science and Technology, Shanghai 200093, China

§ Huagao Wang and Rongjian Lu contributed equally to this work.

Abstract

Thermally conductive polymer nanocomposites integrated with lightweight, excellent flexural strength, and high fracture toughness (KIc) would be of great use in many fields. However, achieving all of these properties simultaneously remains a great challenge. Inspired by natural nacre, here we demonstrate a lightweight, strong, tough, and thermally conductive boron nitride nanosheet/epoxy layered (BNNEL) nanocomposite. Because of the layered structure and enhancing the interfacial interactions through hydrogen bonding and Si–O–B covalent bonding, the resulting nacre-inspired BNNEL nanocomposites show high fracture toughness of ~ 4.22 MPa·m1/2, which is 7 folds as high as pure epoxy. Moreover, the BNNEL nanocomposites demonstrate sufficient flexural strength (~ 168.90 MPa, comparable to epoxy resin), while also being lightweight (~ 1.23 g/cm3). Additionally, the BNNEL nanocomposites display a thermal conductivity (κ) of ~ 0.47 W/(m·K) at low boron nitride nanosheet loading of 2.08 vol.%, which is 2.7 times higher than that of pure epoxy resin. The developed nacre-inspired strategy of layered structure design and interfacial enhancement provides an avenue for fabricating high mechanical properties and thermally conductive polymer nanocomposites.

Keywords: flexural strength, thermal conductivity, nanocomposites, fracture toughness (KIc), nacre-inspiration

References(57)

[1]

Zhang, Z. B.; Gao, H. L.; Wen, S. M.; Pang, J.; Zhang, S. C.; Cui, C.; Wang, Z. Y.; Yu, S. H. Scalable manufacturing of mechanical robust bioinspired ceramic-resin composites with locally tunable heterogeneous structures. Adv. Mater. 2023, 35, 2209510.

[2]

Pan, X. F.; Wu, B.; Gao, H. L.; Chen, S. M.; Zhu, Y. B.; Zhou, L. C.; Wu, H. A.; Yu, S. H. Double-layer nacre-inspired polyimide-mica nanocomposite films with excellent mechanical stability for LEO environmental conditions. Adv. Mater. 2022, 34, 2105299.

[3]

Lv, G. X.; Shen, C. T.; Shan, N. S.; Jensen, E.; Li, X. R.; Evans, C. M.; Cahill, D. G. Odd-even effect on the thermal conductivity of liquid crystalline epoxy resins. Proc. Natl. Acad. Sci. USA 2022, 119, e2211151119.

[4]

Guerra, V.; Wan, C. Y.; McNally, T. Thermal conductivity of 2D nano-structured boron nitride (BN) and its composites with polymers. Prog. Mater. Sci. 2019, 100, 170–186.

[5]

Cao, M.; Li, Z.; Lu, J. H.; Wang, B.; Lai, H. W.; Li, Z. S.; Gao, Y.; Ming, X.; Luo, S. Y.; Peng, L. et al. Vertical array of graphite oxide liquid crystal by microwire shearing for highly thermally conductive composites. Adv. Mater. 2023, 35, 2300077.

[6]

Yao, Y. M.; Zhu, X. D.; Zeng, X. L.; Sun, R.; Xu, J. B.; Wong, C. P. Vertically aligned and interconnected SiC nanowire networks leading to significantly enhanced thermal conductivity of polymer composites. ACS Appl. Mater. Interfaces 2018, 10, 9669–9678.

[7]

Huang, X. W.; Wu, P. Y. A small amount of delaminated Ti3C2 flakes to greatly enhance the thermal conductivity of boron nitride papers by assembling a well-designed interface. Mater. Chem. Front. 2020, 4, 292–301.

[8]

Zhang, F.; Feng, Y. Y.; Feng, W. Three-dimensional interconnected networks for thermally conductive polymer composites: Design, preparation, properties, and mechanisms. Mater. Sci. Eng. R:Rep. 2020, 142, 100580.

[9]

Li, J. L.; Liu, X. X.; Feng, Y.; Yin, J. H. Recent progress in polymer/two-dimensional nanosheets composites with novel performances. Prog. Polym. Sci. 2022, 126, 101505.

[10]

Cai, Q. R.; Scullion, D.; Gan, W.; Falin, A.; Zhang, S. Y.; Watanabe, K.; Taniguchi, T.; Chen, Y.; Santos, E. J. G.; Li, L. H. High thermal conductivity of high-quality monolayer boron nitride and its thermal expansion. Sci. Adv. 2019, 5, eaav0129.

[11]

Falin, A.; Cai, Q. R.; Santos, E. J. G.; Scullion, D.; Qian, D.; Zhang, R.; Yang, Z.; Huang, S. M.; Watanabe, K.; Taniguchi, T. et al. Mechanical properties of atomically thin boron nitride and the role of interlayer interactions. Nat. Commun. 2017, 8, 15815.

[12]

Luo, J. M.; Yang, X. Q.; Xue, Y.; Yang, C. X.; Yang, Z. H.; Tusiime, R.; Liu, Y.; Zhang, H.; Yu, J. Y. Simultaneous optimization of the thermal conductivity and mechanical properties of epoxy resin composites through PES and AgNP functionalized BNs. Compos. Part B:Eng. 2023, 248, 110373.

[13]

Liu, Z.; Li, J. H.; Liu, X. H. Novel functionalized BN nanosheets/epoxy composites with advanced thermal conductivity and mechanical properties. ACS Appl. Mater. Interfaces 2020, 12, 6503–6515.

[14]

Yaraghi, N. A.; Kisailus, D. Biomimetic structural materials: Inspiration from design and assembly. Annu. Rev. Phys. Chem. 2018, 69, 23–57.

[15]

Nepal, D.; Kang, S.; Adstedt, K. M.; Kanhaiya, K.; Bockstaller, M. R.; Brinson, L. C.; Buehler, M. J.; Coveney, P. V.; Dayal, K.; El-Awady, J. A. et al. Hierarchically structured bioinspired nanocomposites. Nat. Mater. 2023, 22, 18–35.

[16]

Snow, M. R.; Pring, A. The mineralogical microstructure of shells: PART 2. The iridescence colors of abalone shells. Am. Mineral. 2005, 90, 1705–1711.

[17]

Hu, J. T.; Huang, Y.; Yao, Y. M.; Pan, G. R.; Sun, J. J.; Zeng, X. L.; Sun, R.; Xu, J. B.; Song, B.; Wong, C. P. Polymer composite with improved thermal conductivity by constructing a hierarchically ordered three-dimensional interconnected network of BN. ACS Appl. Mater. Interfaces 2017, 9, 13544–13553.

[18]

Zhao, N. F.; Li, J. T.; Wang, W. J.; Gao, W. W.; Bai, H. Isotropically ultrahigh thermal conductive polymer composites by assembling anisotropic boron nitride nanosheets into a biaxially oriented network. ACS Nano 2022, 16, 18959–18967.

[19]

Wang, X. W.; Wu, P. Y. 3D vertically aligned BNNS network with long-range continuous channels for achieving a highly thermally conductive composite. ACS Appl. Mater. Interfaces 2019, 11, 28943–28952.

[20]

Ji, C.; Wang, Y.; Ye, Z. Q.; Tan, L. Y.; Mao, D. S.; Zhao, W. G.; Zeng, X. L.; Yan, C. Z.; Sun, R.; Kang, D. J. et al. Ice-templated MXene/Ag-epoxy nanocomposites as high-performance thermal management materials. ACS Appl. Mater. Interfaces 2020, 12, 24298–24307.

[21]

Han, J. K.; Du, G. L.; Gao, W. W.; Bai, H. An anisotropically high thermal conductive boron nitride/epoxy composite based on nacre-mimetic 3D network. Adv. Funct. Mater. 2019, 29, 1900412.

[22]

Zhou, C. Y.; Wang, X. Y.; Wang, J. J.; Pan, Z. Q.; Zhou, H. Epoxy resin modified with chitosan derivatives and DOPO: Improved flame retardancy, mechanical properties and transparency. Polym. Degrad. Stab. 2022, 199, 109931.

[23]

Huang, T. Q.; Li, Y. W.; Chen, M.; Wu, L. M. Bi-directional high thermal conductive epoxy composites with radially aligned boron nitride nanosheets lamellae. Compos. Sci. Technol. 2020, 198, 108322.

[24]

Jabeen, S.; Saeed, S.; Kausar, A.; Muhammad, B.; Gul, S.; Farooq, M. Influence of chitosan and epoxy cross-linking on physical properties of binary blends. Int. J. Polym. Anal. Charact. 2016, 21, 163–174.

[25]

Cestari, A. R.; Vieira, E. F. S.; Alves, F. J.; Silva, E. C. S.; Andrade, M. A. S. Jr. A novel and efficient epoxy/chitosan cement slurry for use in severe acidic environments of oil wells-structural characterization and kinetic modeling. J. Hazard. Mater. 2012, 213–214, 109–116.

[26]

Wang, H. G.; Lu, R. J.; Yan, J.; Peng, J. S.; Tomsia, A. P.; Liang, R.; Sun, G. X.; Liu, M. J.; Jiang, L.; Cheng, Q. F. Tough and conductive nacre-inspired MXene/epoxy layered bulk nanocomposites. Angew. Chem., Int. Ed. 2023, 62, e202216874.

[27]

Yu, B.; Xing, W. Y.; Guo, W. W.; Qiu, S. L.; Wang, X.; Lo, S.; Hu, Y. Thermal exfoliation of hexagonal boron nitride for effective enhancements on thermal stability, flame retardancy and smoke suppression of epoxy resin nanocomposites via sol-gel process. J. Mater. Chem. A 2016, 4, 7330–7340.

[28]

Tian, R.; Jia, X. H.; Lan, M.; Yang, J.; Wang, S. Z.; Li, Y.; Shao, D.; Feng, L.; Song, H. J. Efficient exfoliation and functionalization of hexagonal boron nitride using recyclable ionic liquid crystal for thermal management applications. Chem. Eng. J. 2022, 446, 137255.

[29]

Cui, Z. H.; Oyer, A. J.; Glover, A. J.; Schniepp, H. C.; Adamson, D. H. Large scale thermal exfoliation and functionalization of boron nitride. Small 2014, 10, 2352–2355.

[30]

Park, Y. T.; Qian, Y. Q.; Chan, C.; Suh, T.; Nejhad, M. G.; Macosko, C. W.; Stein, A. Epoxy toughening with low graphene loading. Adv. Funct. Mater. 2015, 25, 575–585.

[31]

Wan, Y. J.; Gong, L. X.; Tang, L. C.; Wu, L. B.; Jiang, J. X. Mechanical properties of epoxy composites filled with silane-functionalized graphene oxide. Compos. Part A:Appl. Sci. Manuf. 2014, 64, 79–89.

[32]

Chen, K.; Tang, X. K.; Jia, B. B.; Chao, C. Z.; Wei, Y.; Hou, J. Y.; Dong, L. T.; Deng, X. L.; Xiao, T. H.; Goda, K. et al. Graphene oxide bulk material reinforced by heterophase platelets with multiscale interface crosslinking. Nat. Mater. 2022, 21, 1121–1129.

[33]

Huang, C. J.; Peng, J. S.; Wan, S. J.; Du, Y.; Dou, S. X.; Wagner, H. D.; Tomsia, A. P.; Jiang, L.; Cheng, Q. F. Ultra-tough inverse artificial nacre based on epoxy-graphene by freeze-casting. Angew. Chem., Int. Ed. 2019, 58, 7636–7640.

[34]

Mao, L. B.; Gao, H. L.; Yao, H. B.; Liu, L.; Cölfen, H.; Liu, G.; Chen, S. M.; Li, S. K.; Yan, Y. X.; Liu, Y. Y. et al. Synthetic nacre by predesigned matrix-directed mineralization. Science 2016, 354, 107–110.

[35]

Li, H. T.; Fu, C. J.; Chen, N.; Zhang, T.; Liu, J. M.; Du, G. P.; Ren, L. L.; Zeng, X. L.; Sun, R. Ice-templated assembly strategy to construct three-dimensional thermally conductive networks of BN nanosheets and silver nanowires in polymer composites. Compos. Commun. 2021, 25, 100601.

[36]

Zou, D. X.; Huang, X. Y.; Zhu, Y. K.; Chen, J.; Jiang, P. K. Boron nitride nanosheets endow the traditional dielectric polymer composites with advanced thermal management capability. Compos. Sci. Technol. 2019, 177, 88–95.

[37]

Liu, Y. C.; Wu, K.; Lu, M. P.; Shi, J.; Liang, L. Y.; Lu, M. G. Enhanced thermal conductivity of bio-based epoxy-graphite nanocomposites with degradability by facile in-situ construction of microcapsules. Compos. Part B:Eng. 2021, 218, 108936.

[38]

Lee, W.; Kim, J. Highly thermal conductive and electrical insulating epoxy composites with a three-dimensional filler network by sintering silver nanowires on aluminum nitride surface. Polymers 2021, 13, 694.

[39]

Han, Y. X.; Shi, X. T.; Yang, X. T.; Guo, Y. Q.; Zhang, J. L.; Kong, J.; Gu, J. W. Enhanced thermal conductivities of epoxy nanocomposites via incorporating in-situ fabricated hetero-structured SiC-BNNS fillers. Compos. Sci. Technol. 2020, 187, 107944.

[40]

Lin, Z. Y.; Liu, Y.; Raghavan, S.; Moon, K. S.; Sitaraman, S. K.; Wong, C. P. Magnetic alignment of hexagonal boron nitride platelets in polymer matrix: Toward high performance anisotropic polymer composites for electronic encapsulation. ACS Appl. Mater. Interfaces 2013, 5, 7633–7640.

[41]

Kuang, Z. Q.; Chen, Y. L.; Lu, Y. L.; Liu, L.; Hu, S.; Wen, S. P.; Mao, Y. Y.; Zhang, L. Q. Fabrication of highly oriented hexagonal boron nitride nanosheet/elastomer nanocomposites with high thermal conductivity. Small 2015, 11, 1655–1659.

[42]

Chen, C.; Xue, Y.; Li, Z.; Wen, Y. F.; Li, X. W.; Wu, F.; Li, X. J.; Shi, D. A.; Xue, Z. G.; Xie, X. L. Construction of 3D boron nitride nanosheets/silver networks in epoxy-based composites with high thermal conductivity via in-situ sintering of silver nanoparticles. Chem. Eng. J. 2019, 369, 1150–1160.

[43]

He, S.; Zhang, Y. S.; Zhang, N.; Huang, T.; Qi, X. D.; Yang, J. H.; Wang, Y. Multi-directionally thermal conductive epoxy/boron nitride composites based on circinate vane type network. Compos. Commun. 2021, 25, 100744.

[44]

Zhao, L. H.; Yan, L.; Wei, C. M.; Li, Q. H.; Huang, X. L.; Wang, Z. L.; Fu, M. L.; Ren, J. W. Synergistic enhanced thermal conductivity of epoxy composites with boron nitride nanosheets and microspheres. J. Phys. Chem. C 2020, 124, 12723–12733.

[45]

Han, Y. X.; Shi, X. T.; Wang, S. S.; Ruan, K. P.; Lu, C. Y.; Guo, Y. Q.; Gu, J. W. Nest-like hetero-structured BNNS@SiCNWs fillers and significant improvement on thermal conductivities of epoxy composites. Compos. Part B:Eng. 2021, 210, 108666.

[46]

Yang, T.; Jia, Z.; Wu, Z. L.; Chen, H. S.; Deng, Z. F.; Chen, L. N.; Zhu, Y. H.; Li, L. High strength and damage-tolerance in echinoderm stereom as a natural bicontinuous ceramic cellular solid. Nat. Commun. 2022, 13, 6083.

[47]
Sun, J. X.; Yu, S. X.; Wade-Zhu, J.; Wang, Y.; Qu, H. Q.; Zhao, S.; Zhang, R.; Yang, J. L.; Binner, J.; Bai, J. M. 3D printing of ceramic composite with biomimetic toughening design. Addit. Manuf. 2022, 58, 103027.
DOI
[48]

Bouville, F.; Maire, E.; Meille, S.; Van de Moortèle, B.; Stevenson, A. J.; Deville, S. Strong, tough and stiff bioinspired ceramics from brittle constituents. Nat. Mater. 2014, 13, 508–514.

[49]

Amini, A.; Khavari, A.; Barthelat, F.; Ehrlicher, A. J. Centrifugation and index matching yield a strong and transparent bioinspired nacreous composite. Science 2021, 6560, 1229–1234.

[50]
Yang, Y.; Wang, Z. Y.; He, Q. Q.; Li, X. J.; Lu, G. X.; Jiang, L. M.; Zeng, Y. S.; Bethers, B.; Jin, J.; Lin, S. et al. 3D printing of nacre-inspired structures with exceptional mechanical and flame-retardant properties. Research 2022, 2022, 9840574.
DOI
[51]

Chen, X. L.; Lim, J. S. K.; Yan, W. L.; Guo, F.; Liang, Y. N.; Chen, H.; Lambourne, A.; Hu, X. Salt template assisted BN scaffold fabrication toward highly thermally conductive epoxy composites. ACS Appl. Mater. Interfaces 2020, 12, 16987–16996.

[52]

Mi, X. Q.; Zhong, L. Y.; Wei, F.; Zeng, L.; Zhang, J. H.; Zhang, D. H.; Xu, T. W. Fabrication of halloysite nanotubes/reduced graphene oxide hybrids for epoxy composites with improved thermal and mechanical properties. Polym. Test. 2019, 76, 473–480.

[53]

Wang, S.; Cai, R.; Xue, H. Q.; Liu, T. Q.; Han, S. S.; Zhou, Z. Q.; Hu, Z. H.; Meng, Q. S. Development of high thermally conductive and electrically insulated epoxy nanocomposites with high mechanical performance. Polym. Compos. 2021, 42, 4217–4226.

[54]

Han, S. S.; Meng, Q. S.; Qiu, Z.; Osman, A.; Cai, R.; Yu, Y.; Liu, T. Q.; Araby, S. Mechanical, toughness and thermal properties of 2D material-reinforced epoxy composites. Polymer 2019, 184, 121884.

[55]

Wang, S.; Xue, H. Q.; Araby, S.; Demiral, M.; Han, S. S.; Cui, C.; Zhang, R.; Meng, Q. S. Thermal conductivity and mechanical performance of hexagonal boron nitride nanosheets-based epoxy adhesives. Nanotechnology 2021, 32, 355707.

[56]

Wang, S.; Cao, M.; Cong, F. L.; Xue, H. Q.; Li, X. D.; Zhao, C. B.; Cui, X. Mechanical and thermal properties of graphene and carbon nanotube reinforced epoxy/boron nitride adhesives. J. Adhes. Sci. Technol. 2021, 35, 2142–2158.

[57]

Wang, W. Y.; Ma, X.; Yang, J. H.; Qi, X. D.; Lei, Y. Z.; Wang, Y. Synchronously enhanced thermal properties and fracture toughness of epoxy composites through melamine foam templated dispersion of carbon nanofibers. Compos. Commun. 2021, 28, 100977.

File
12274_2023_6101_MOESM1_ESM.pdf (9.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 27 June 2023
Revised: 05 August 2023
Accepted: 16 August 2023
Published: 26 September 2023
Issue date: February 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2021YFA0715700), the National Science Fund for Distinguished Young Scholars (No. 52125302), National Natural Science Foundation of China (No. 22075009), and 111 Project (No. B14009).

Return