Journal Home > Volume 16 , Issue 11

Due to unique and excellent properties, carbon nanotubes (CNTs) are expected to become the next-generation critical engineering mechanical and energy storage materials, which will play a key role as building blocks in aerospace, military equipment, communication sensing, and other cutting-edge fields. For practical application, the assembled macrostructures from individual CNTs are the common paradigms such as fibers or films. As the main representative, CNT films can not only retain the unique properties of their CNTs components, but also are more likely for mass-production than other macrostructures. Therefore, in this review, we focus on preparation of CNT films and discuss their emerging applications in the field of mechanical and electrochemical energy storage/conversion. Firstly, different preparation processes are systematically summarized. Then we introduce some typical strategies to improve their mechanical performances besides strengthening mechanism. Based on the progress of mass-production and performance optimization, we further discuss their potential utilization in mechanical and electrochemical energy storage/conversion devices. Finally, future perspectives for the development of CNT films in both production and application are proposed. We hope that this review will shed light on the preparation/assembly of CNT films and integrated application of excellent properties from individual to macroscopic dimensions. Moreover, the preparation and cross-scale application paradigms of CNT films also offer a good model for other macroscopic ordered assemblies of one-dimensional nanomaterials.


menu
Abstract
Full text
Outline
About this article

Preparation of carbon nanotube films towards mechanical and electrochemical energy storage

Show Author's information Yukang Zhu1,§Yanbin Wei1,§Zhenxing Zhu1( )Hongjie Yue1Ziying He1Qi Zhang2Shijun Zhang2Fei Wei1( )
Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
Beijing Research Institute of Chemical Industry, SINOPEC, Beijing 100013, China

§ Yukang Zhu and Yanbin Wei contributed equally to this work.

Abstract

Due to unique and excellent properties, carbon nanotubes (CNTs) are expected to become the next-generation critical engineering mechanical and energy storage materials, which will play a key role as building blocks in aerospace, military equipment, communication sensing, and other cutting-edge fields. For practical application, the assembled macrostructures from individual CNTs are the common paradigms such as fibers or films. As the main representative, CNT films can not only retain the unique properties of their CNTs components, but also are more likely for mass-production than other macrostructures. Therefore, in this review, we focus on preparation of CNT films and discuss their emerging applications in the field of mechanical and electrochemical energy storage/conversion. Firstly, different preparation processes are systematically summarized. Then we introduce some typical strategies to improve their mechanical performances besides strengthening mechanism. Based on the progress of mass-production and performance optimization, we further discuss their potential utilization in mechanical and electrochemical energy storage/conversion devices. Finally, future perspectives for the development of CNT films in both production and application are proposed. We hope that this review will shed light on the preparation/assembly of CNT films and integrated application of excellent properties from individual to macroscopic dimensions. Moreover, the preparation and cross-scale application paradigms of CNT films also offer a good model for other macroscopic ordered assemblies of one-dimensional nanomaterials.

Keywords: carbon nanotubes, energy storage, preparation, carbon nanotube film, mechanical strengthening

References(179)

[1]

Liu, L. Q.; Ma, W. J.; Zhang, Z. Macroscopic carbon nanotube assemblies: Preparation, properties, and potential applications. Small 2011, 7, 1504–1520.

[2]

Xu, M.; Futaba, D. N.; Yamada, T.; Yumura, M.; Hata, K. Carbon nanotubes with temperature-invariant viscoelasticity from −196 to 1000 C. Science 2010, 330, 1364–1368.

[3]

Bogdanova, A. R.; Krasnikov, D. V.; Khabushev, E. M.; Ramirez, B. J. A.; Nasibulin, A. G. Bithiophene as a sulfur-based promotor for the synthesis of carbon nanotubes and carbon-carbon composites. Int. J. Mol. Sci. 2023, 24, 6686.

[4]

Kothandam, G.; Singh, G.; Guan, X. W.; Lee, J. M.; Ramadass, K.; Joseph, S.; Benzigar, M.; Karakoti, A.; Yi, J. B.; Kumar, P. et al. Recent advances in carbon-based electrodes for energy storage and conversion. Adv. Sci. (Weinh.) 2023, 10, e2301045.

[5]

Treacy, M. M. J.; Ebbesen, T. W.; Gibson, J. M. Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 1996, 381, 678–680.

[6]

Kweon, D. H.; Okyay, M. S.; Kim, S. J.; Jeon, J. P.; Noh, H. J.; Park, N.; Mahmood, J.; Baek, J. B. Ruthenium anchored on carbon nanotube electrocatalyst for hydrogen production with enhanced Faradaic efficiency. Nat. Commun. 2020, 11, 1278.

[7]

Lee, S. C.; Jeong, J.; Park, H. G.; Min, B. C.; Jun, S. C.; Chung, K. Y. Binder-assisted electrostatic spray deposition of LiCoO2 and graphite films on coplanar interdigitated electrodes for flexible/wearable lithium-ion batteries. J. Power Sources 2020, 472, 228573.

[8]

Liu, R. P.; Shen, C.; Dong, Y.; Qin, J. L.; Wang, Q.; Iocozzia, J.; Zhao, S. Q.; Yuan, K. J.; Han, C. P.; Li, B. H. et al. Sandwich-like CNTs/Si/C nanotubes as high performance anode materials for lithium-ion batteries. J. Mater. Chem. A 2018, 6, 14797–14804.

[9]

Wang, D. H.; Chen, Y.; Wang, H. Q.; Zhao, P. H.; Liu, W.; Wang, Y. Z.; Yang, J. L. N-doped porous carbon anchoring on carbon nanotubes derived from ZIF-8/polypyrrole nanotubes for superior supercapacitor electrodes. Appl. Surf. Sci. 2018, 457, 1018–1024.

[10]

Wu, K. J.; Niu, Y. T.; Zhang, Y. Y.; Yong, Z. Z.; Li, Q. W. Continuous growth of carbon nanotube films: From controllable synthesis to real applications. Compos. Part A: Appl. Sci. Manuf. 2021, 144, 106359.

[11]

Xu, W.; Chen, Y.; Zhan, H.; Wang, J. N. High-strength carbon nanotube film from improving alignment and densification. Nano Lett. 2016, 16, 946–952.

[12]

Qu, S. X.; Dai, Y. G.; Zhang, D. X.; Li, Q. W.; Chou, T. W.; Lyu, W. Carbon nanotube film based multifunctional composite materials: An overview. Funct. Compos. Struct. 2020, 2, 022002.

[13]

Yu, B.; Xu, X. D.; Cong, H. L.; Peng, Q. H.; Yang, Z.; Yang, S. J. The fabrication and application of carbon nanotube films. Curr. Org. Chem. 2016, 20, 984–993.

[14]

Yoon, S.; Lee, S.; Kim, S.; Park, K. W.; Cho, D.; Jeong, Y. Carbon nanotube film anodes for flexible lithium ion batteries. J. Power Sources 2015, 279, 495–501.

[15]

Deng, L. J.; Gu, Y. Z.; Gao, Y. H.; Ma, Z. Y.; Fan, G. Carbon nanotubes/holey graphene hybrid film as binder-free electrode for flexible supercapacitors. J. Colloid Interface Sci. 2017, 494, 355–362.

[16]

Bibi, S.; Price, G. J.; Yasin, T.; Nawaz, M. Eco-friendly synthesis and catalytic application of chitosan/gold/carbon nanotube nanocomposite films. RSC Adv. 2016, 6, 60180–60186.

[17]

Sampaio, M. J.; Silva, C. G.; Marques, R. R. N.; Silva, A. M. T.; Faria, J. L. Carbon nanotube-TiO2 thin films for photocatalytic applications. Catal. Today 2011, 161, 91–96.

[18]

Zhang, J.; Su, D. S.; Zhang, A. H.; Wang, D.; Schlögl, R.; Hébert, C. Nanocarbon as robust catalyst: Mechanistic insight into carbon-mediated catalysis. Angew. Chem., Int. Ed. 2007, 46, 7319–7323.

[19]

Zhu, Z. X.; Cui, C. J.; Bai, Y. X.; Gao, J.; Jiang, Y. X.; Li, B. F.; Wang, Y.; Zhang, Q.; Qian, W. Z.; Wei, F. Advances in precise structure control and assembly toward the carbon nanotube industry. Adv. Funct. Mater. 2022, 32, 2109401.

[20]

Liu, J.; Rinzler, A. G.; Dai, H. J.; Hafner, J. H.; Bradley, R. K.; Boul, P. J.; Lu, A.; Iverson, T.; Shelimov, K.; Huffman, C. B. et al. Fullerene pipes. Science 1998, 280, 1253–1256.

[21]

He, X. W.; Gao, W. L.; Xie, L. J.; Li, B.; Zhang, Q.; Lei, S. D.; Robinson, J. M.; Hároz, E. H.; Doorn, S. K.; Wang, W. P. et al. Wafer-scale monodomain films of spontaneously aligned single-walled carbon nanotubes. Nat. Nanotechnol. 2016, 11, 633–638.

[22]

Jia, Y.; Li, P. X.; Wei, J. Q.; Cao, A. Y.; Wang, K. L.; Li, C. L.; Zhuang, D. M.; Zhu, H. W.; Wu, D. H. Carbon nanotube films by filtration for nanotube-silicon heterojunction solar cells. Mater. Res. Bull. 2010, 45, 1401–1405.

[23]

Xu, G. H.; Zhang, Q.; Huang, J. Q.; Zhao, M. Q.; Zhou, W. P.; Wei, F. A two-step shearing strategy to disperse long carbon nanotubes from vertically aligned multiwalled carbon nanotube arrays for transparent conductive films. Langmuir 2010, 26, 2798–2804.

[24]
Liang, Z.; Wang, B.; Zhang, C.; Ugarte, J. T.; Lin, C.; Thagard, J. Continuous production of network of nanotubes or nanoscale fibers involves filtering suspension of nanoscale fibers dispersed in liquid, by moving filter membrane through suspension to form continuous membrane of fibers on filter membrane. US2006207931-A1, US7459121-B2, September 21, 2006.
[25]

Fan, Z. J.; Wei, T.; Luo, G. H.; Wei, F. Fabrication and characterization of multi-walled carbon nanotubes-based ink. J. Mater. Sci. 2005, 40, 5075–5077.

[26]

Artukovic, E.; Kaempgen, M.; Hecht, D. S.; Roth, S.; Grüner, G. Transparent and flexible carbon nanotube transistors. Nano Lett. 2005, 5, 757–760.

[27]

Geng, H. Z.; Kim, K. K.; So, K. P.; Lee, Y. S.; Chang, Y.; Lee, Y. H. Effect of acid treatment on carbon nanotube-based flexible transparent conducting films. J. Am. Chem. Soc. 2007, 129, 7758–7759.

[28]

Lee, Y. D.; Lee, K. S.; Lee, Y. H.; Ju, B. K. Field emission properties of carbon nanotube film using a spray method. Appl. Surf. Sci. 2007, 254, 513–516.

[29]

Preston, C.; Song, D.; Dai, J. Q.; Tsinas, Z.; Bavier, J.; Cumings, J.; Ballarotto, V.; Hu, L. B. Scalable nanomanufacturing of surfactant-free carbon nanotube inks for spray coatings with high conductivity. Nano Res. 2015, 8, 2242–2250.

[30]

Yu, W.; Zhou, H.; Li, B. Q.; Ding, S. J. 3D printing of carbon nanotubes-based microsupercapacitors. ACS Appl. Mater. Interfaces 2017, 9, 4597–4604.

[31]

Goh, G. L.; Agarwala, S.; Yeong, W. Y. Directed and on-demand alignment of carbon nanotube: A review toward 3D printing of electronics. Adv. Mater. Interfaces 2019, 6, 1801318.

[32]

Zhao, B. H.; Sivasankar, V. S.; Subudhi, S. K.; Sinha, S.; Dasgupta, A.; Das, S. Applications, fluid mechanics, and colloidal science of carbon-nanotube-based 3D printable inks. Nanoscale 2022, 14, 14858–14894.

[33]

Zeng, Z. H.; Wang, G.; Wolan, B. F.; Wu, N.; Wang, C. X.; Zhao, S. Y.; Yue, S. Y.; Li, B.; He, W. D.; Liu, J. R. et al. Printable aligned single-walled carbon nanotube film with outstanding thermal conductivity and electromagnetic interference shielding performance. Nano-Micro Lett. 2022, 14, 179.

[34]

Trottier, C. M.; Glatkowski, P.; Wallis, P.; Luo, J. Properties and characterization of carbon-nanotube-based transparent conductive coating. J. Soc. Inf. Disp. 2005, 13, 759–763.

[35]

Contreras, M. A.; Barnes, T.; Van De Lagemaat, J.; Rumbles, G.; Coutts, T. J.; Weeks, C.; Glatkowski, P.; Levitsky, I.; Peltola, J.; Britz, D. A. Replacement of transparent conductive oxides by single-wall carbon nanotubes in Cu(In, Ga)Se2-based solar cells. J. Phys. Chem. C 2007, 111, 14045–14048.

[36]

De Andrade, M. J.; Lima, M. D.; Skákalová, V.; Bergmann, C. P.; Roth, S. Electrical properties of transparent carbon nanotube networks prepared through different techniques. Phys. Status Solidi (RRL) Rap. Res. Lett. 2007, 1, 178–180.

[37]

Ng, M. H. A.; Hartadi, L. T.; Tan, H. W.; Poa, C. H. P. Efficient coating of transparent and conductive carbon nanotube thin films on plastic substrates. Nanotechnology 2008, 19, 205703.

[38]

Mirri, F.; Ma, A. W. K.; Hsu, T. T.; Behabtu, N.; Eichmann, S. L.; Young, C. C.; Tsentalovich, D. E.; Pasquali, M. High-performance carbon nanotube transparent conductive films by scalable dip coating. ACS Nano 2012, 6, 9737–9744.

[39]

Zhang, J. Z.; Yang, L. H.; Xu, H.; Zhou, J.; Sang, Y. X.; Cui, Z. Z.; Liu, C. L.; Liu, J. J.; Guo, T. L.; Wang, X. J. et al. Dip-coating self-assembly fabrication and polarization sensitive photoresponse of aligned single-walled carbon nanotube film. Sensors 2022, 22, 490.

[40]

Meitl, M. A.; Zhou, Y. X.; Gaur, A.; Jeon, S.; Usrey, M. L.; Strano, M. S.; Rogers, J. A. Solution casting and transfer printing single-walled carbon nanotube films. Nano Lett. 2004, 4, 1643–1647.

[41]

Jo, J. W.; Jung, J. W.; Lee, J. U.; Jo, W. H. Fabrication of highly conductive and transparent thin films from single-walled carbon nanotubes using a new non-ionic surfactant via spin coating. ACS Nano 2010, 4, 5382–5388.

[42]

Huang, J.; Somu, S.; Busnaina, A. Spin coating fabrication of thin film transistors using enriched semiconducting SWNT solution. Electron. Mater. Lett. 2013, 9, 505–507.

[43]

Krstic, V.; Duesberg, G. S.; Muster, J.; Burghard, M.; Roth, S. Langmuir-blodgett films of matrix-diluted single-walled carbon nanotubes. Chem. Mater. 1998, 10, 2338–2340.

[44]

Guo, Y. Z.; Wu, J. S.; Zhang, Y. F. Manipulation of single-wall carbon nanotubes into aligned molecular layers. Chem. Phys. Lett. 2002, 362, 314–318.

[45]

Kim, Y.; Minami, N.; Zhu, W.; Kazaoui, S.; Azumi, R.; Matsumoto, M. Homogeneous and structurally controlled thin films of single-wall carbon nanotubes by the Langmuir–Blodgett technique. Synth. Met. 2003, 135–136, 747–748.

[46]

Armitage, N. P.; Gabriel, J. C. P.; Grüner, G. Quasi-Langmuir–Blodgett thin film deposition of carbon nanotubes. J. Appl. Phys. 2004, 95, 3228–3230.

[47]
Sadovoy, A.; Dubovik, Y.; Nazvanov, V. Carbon nanotubes aligning by Langmuir Quasi-Langmuir–Blodgett thin film deposition of carbon nanotubes Blodgett technique and visualizing by nematic liquid crystals. In Proceedings of SPIE 6536, Saratov Fall Meeting 2006: Coherent Optics of Ordered and Random Media VII, Saratov, Russia Federation, 2006.
[48]

Jia, L.; Zhang, Y. F.; Li, J. Y.; You, C.; Xie, E. Q. Aligned single-walled carbon nanotubes by Langmuir Quasi-Langmuir–Blodgett thin film deposition of carbon nanotubes Blodgett technique. J. Appl. Phys. 2008, 104, 074318.

[49]

Zheng, Q. B.; Zhang, B.; Lin, X. Y.; Shen, X.; Yousefi, N.; Huang, Z. D.; Li, Z. G.; Kim, J. K. Highly transparent and conducting ultralarge graphene oxide/single-walled carbon nanotube hybrid films produced by Langmuir Quasi-Langmuir–Blodgett thin film deposition of carbon nanotubes Blodgett assembly. J. Mater. Chem. 2012, 22, 25072–25082.

[50]

Joo, Y.; Brady, G. J.; Arnold, M. S.; Gopalan, P. Dose-controlled, floating evaporative self-assembly and alignment of semiconducting carbon nanotubes from organic solvents. Langmuir 2014, 30, 3460–3466.

[51]

Ariga, K.; Ito, M.; Mori, T.; Watanabe, S.; Takeya, J. Atom/molecular nanoarchitectonics for devices and related applications. Nano Today 2019, 28, 100762.

[52]

Poonia, M.; Manjuladevi, V.; Gupta, R. K. Ultrathin films of functionalised single-walled carbon nanotubes: A potential bio-sensing platform. Liq. Cryst. 2020, 47, 1204–1213.

[53]

Zhang, J. L.; Wang, M.; Yang, Z. H.; Zhang, X. H. Highly flexible and stretchable strain sensors based on conductive whisker carbon nanotube films. Carbon 2021, 176, 139–147.

[54]

Kim, M. S.; Ma, L.; Choudhury, S.; Moganty, S. S.; Wei, S.; Archer, L. A. Fabricating multifunctional nanoparticle membranes by a fast layer-by-layer Langmuir–Blodgett process: Application in lithium-sulfur batteries. J. Mater. Chem. A 2016, 4, 14709–14719.

[55]

Chen, Z.; Yang, Y. L.; Wu, Z. Y.; Luo, G.; Xie, L. M.; Liu, Z. F.; Ma, S. J.; Guo, W. L. Electric-field-enhanced assembly of single-walled carbon nanotubes on a solid surface. J. Phys. Chem. B 2005, 109, 5473–5477.

[56]

Pei, S. F.; Du, J. H.; Zeng, Y.; Liu, C.; Cheng, H. M. The fabrication of a carbon nanotube transparent conductive film by electrophoretic deposition and hot-pressing transfer. Nanotechnology 2009, 20, 235707.

[57]

An, Q.; Rider, A. N.; Thostenson, E. T. Hierarchical composite structures prepared by electrophoretic deposition of carbon nanotubes onto glass fibers. ACS Appl. Mater. Interfaces 2013, 5, 2022–2032.

[58]

Cha, J. E.; Kim, S. Y.; Lee, S. H. Effect of continuous multi-walled carbon nanotubes on thermal and mechanical properties of flexible composite film. Nanomaterials (Basel) 2016, 6, 182.

[59]

Jiang, K. L.; Li, Q. Q.; Fan, S. S. Spinning continuous carbon nanotube yarns. Nature 2002, 419, 801.

[60]

Zhang, M.; Fang, S. L.; Zakhidov, A. A.; Lee, S. B.; Aliev, A. E.; Williams, C. D.; Atkinson, K. R.; Baughman, R. H. Strong, transparent, multifunctional, carbon nanotube sheets. Science 2005, 309, 1215–1219.

[61]

Zhang, X.; Jiang, K.; Feng, C.; Liu, P.; Zhang, L.; Kong, J.; Zhang, T.; Li, Q.; Fan, S. Spinning and processing continuous yarns from 4-inch wafer scale super-aligned carbon nanotube arrays. Adv. Mater. 2006, 18, 1505–1510.

[62]

Liu, K.; Sun, Y. H.; Liu, P.; Wang, J. P.; Li, Q. Q.; Fan, S. S.; Jiang, K. L. Periodically striped films produced from super-aligned carbon nanotube arrays. Nanotechnology 2009, 20, 335705.

[63]

Feng, C.; Liu, K.; Wu, J. S.; Liu, L.; Cheng, J. S.; Zhang, Y. Y.; Sun, Y. H.; Li, Q. Q.; Fan, S. S.; Jiang, K. L. Flexible, stretchable, transparent conducting films made from superaligned carbon nanotubes. Adv. Funct. Mater. 2010, 20, 885–891.

[64]

Dai, H. J.; Rinzler, A. G.; Nikolaev, P.; Thess, A.; Colbert, D. T.; Smalley, R. E. Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide. Chem. Phys. Lett. 1996, 260, 471–475.

[65]

Hafner, J. H.; Bronikowski, M. J.; Azamian, B. R.; Nikolaev, P.; Rinzler, A. G.; Colbert, D. T.; Smith, K. A.; Smalley, R. E. Catalytic growth of single-wall carbon nanotubes from metal particles. Chem. Phys. Lett. 1998, 296, 195–202.

[66]

Cassell, A. M.; Raymakers, J. A.; Kong, J.; Dai, H. J. Large scale CVD synthesis of single-walled carbon nanotubes. J. Phys. Chem. B 1999, 103, 6484–6492.

[67]

Huang, S. M.; Maynor, B.; Cai, X. Y.; Liu, J. Ultralong, well-aligned single-walled carbon nanotube architectures on surfaces. Adv. Mater. 2003, 15, 1651–1655.

[68]

Cheng, H. M.; Li, F.; Su, G.; Pan, H. Y.; He, L. L.; Sun, X.; Dresselhaus, M. S. Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons. Appl. Phys. Lett. 1998, 72, 3282–3284.

[69]

Zhu, H. W.; Xu, C. L.; Wu, D. H.; Wei, B. Q.; Vajtai, R.; Ajayan, P. M. Direct synthesis of long single-walled carbon nanotube strands. Science 2002, 296, 884–886.

[70]

Song, L. Y.; Ci, L. J.; Lv, L.; Zhou, Z. P.; Yan, X. Q.; Liu, D. F.; Yuan, H. J.; Gao, Y. N.; Wang, J. X.; Liu, L. F. et al. Direct synthesis of a macroscale single-walled carbon nanotube non-woven material. Adv. Mater. 2004, 16, 1529–1534.

[71]

Ma, W. J.; Song, L.; Yang, R.; Zhang, T. H.; Zhao, Y. C.; Sun, L. F.; Ren, Y.; Liu, D. F.; Liu, L.; Shen, J. et al. Directly synthesized strong, highly conducting, transparent single-walled carbon nanotube films. Nano Lett. 2007, 7, 2307–2311.

[72]

Liao, Y. P.; Jiang, H.; Wei, N.; Laiho, P.; Zhang, Q.; Khan, S. A.; Kauppinen, E. I. Direct synthesis of colorful single-walled carbon nanotube thin films. J. Am. Chem. Soc. 2018, 140, 9797–9800.

[73]

Zhou, W. B.; Fan, Q. X.; Zhang, Q.; Cai, L.; Li, K. W.; Gu, X. G.; Yang, F.; Zhang, N.; Wang, Y. C.; Liu, H. P. et al. High-performance and compact-designed flexible thermoelectric modules enabled by a reticulate carbon nanotube architecture. Nat. Commun. 2017, 8, 14886.

[74]

Niu, Z. Q.; Zhou, W. Y.; Chen, J.; Feng, G. X.; Li, H.; Hu, Y. S.; Ma, W. J.; Dong, H. B.; Li, J. Z.; Xie, S. S. A repeated halving approach to fabricate ultrathin single-walled carbon nanotube films for transparent supercapacitors. Small 2013, 9, 518–524.

[75]

Zhou, W. B.; Fan, Q. X.; Zhang, Q.; Li, K. W.; Cai, L.; Gu, X. G.; Yang, F.; Zhang, N.; Xiao, Z. J.; Chen, H. L. et al. Ultrahigh-power-factor carbon nanotubes and an ingenious strategy for thermoelectric performance evaluation. Small 2016, 12, 3407–3414.

[76]

Wang, J. N.; Luo, X. G.; Wu, T.; Chen, Y. High-strength carbon nanotube fibre-like ribbon with high ductility and high electrical conductivity. Nat. Commun. 2014, 5, 3848.

[77]

Wang, B. W.; Jiang, S.; Zhu, Q. B.; Sun, Y.; Luan, J.; Hou, P. X.; Qiu, S.; Li, Q. W.; Liu, C.; Sun, D. M. et al. Continuous fabrication of meter-scale single-wall carbon nanotube films and their use in flexible and transparent integrated circuits. Adv. Mater. 2018, 30, 1802057.

[78]

Zhang, Z. C.; Gu, Y. Z.; Wang, S. K.; Li, Q. W.; Li, M.; Zhang, Z. G. Enhanced dielectric and mechanical properties in chlorine-doped continuous CNT sheet reinforced sandwich polyvinylidene fluoride film. Carbon 2016, 107, 405–414.

[79]

Zhou, T.; Niu, Y. T.; Li, Z.; Li, H. F.; Yong, Z. Z.; Wu, K. J.; Zhang, Y. Y.; Li, Q. W. The synergetic relationship between the length and orientation of carbon nanotubes in direct spinning of high-strength carbon nanotube fibers. Mater. Des. 2021, 203, 109557.

[80]

Di, J. T.; Zhang, X. H.; Yong, Z. Z.; Zhang, Y. Y.; Li, D.; Li, R.; Li, Q. W. Carbon-nanotube fibers for wearable devices and smart textiles. Adv. Mater. 2016, 28, 10529–10538.

[81]

Di, J. T.; Hu, D. M.; Chen, H. Y.; Yong, Z. Z.; Chen, M. H.; Feng, Z. H.; Zhu, Y. T.; Li, Q. W. Ultrastrong, foldable, and highly conductive carbon nanotube film. ACS Nano 2012, 6, 5457–5464.

[82]

Liu, Q. L.; Li, M.; Gu, Y. Z.; Zhang, Y. Y.; Wang, S. K.; Li, Q. W.; Zhang, Z. G. Highly aligned dense carbon nanotube sheets induced by multiple stretching and pressing. Nanoscale 2014, 6, 4338–4344.

[83]

Wu, Y. Z.; Zhao, X. W.; Shang, Y. Y.; Chang, S. L.; Dai, L. X.; Cao, A. Y. Application-driven carbon nanotube functional materials. ACS Nano 2021, 15, 7946–7974.

[84]

Rdest, M.; Janas, D. Carbon nanotube films for energy applications. Energies 2021, 14, 1890.

[85]

Li, S.; Park, J. G.; Liang, Z. Y.; Siegrist, T.; Liu, T.; Zhang, M.; Cheng, Q. F.; Wang, B.; Zhang, C. In situ characterization of structural changes and the fraction of aligned carbon nanotube networks produced by stretching. Carbon 2012, 50, 3859–3867.

[86]

Cheng, Q. F.; Bao, J. W.; Park, J.; Liang, Z. Y.; Zhang, C.; Wang, B. High mechanical performance composite conductor: Multi-walled carbon nanotube sheet/bismaleimide nanocomposites. Adv. Funct. Mater. 2009, 19, 3219–3225.

[87]

Wang, Y. J.; Li, M.; Gu, Y. Z.; Zhang, X. H.; Wang, S. K.; Li, Q. W.; Zhang, Z. G. Tuning carbon nanotube assembly for flexible, strong and conductive films. Nanoscale 2015, 7, 3060–3066.

[88]

Wen, Y. Y.; Jian, M. Q.; Huang, J. K.; Luo, J. J.; Qian, L.; Zhang, J. Carbonene fibers: Toward next-generation fiber materials. Nano Lett. 2022, 22, 6035–6047.

[89]

Wu, K. J.; Zhang, Y. Y.; Yong, Z. Z.; Li, Q. W. Continuous preparation and performance enhancement techniques of carbon nanotube fibers. Acta Phys. Chim. Sin. 2022, 38, 2106034.

[90]

Tran, T. Q.; Fan, Z.; Liu, P.; Myint, S. M.; Duong, H. M. Super-strong and highly conductive carbon nanotube ribbons from post-treatment methods. Carbon 2016, 99, 407–415.

[91]

Shang, Y. Y.; Wang, Y.; Li, S. H.; Hua, C. F.; Zou, M. C.; Cao, A. Y. High-strength carbon nanotube fibers by twist-induced self-strengthening. Carbon 2017, 119, 47–55.

[92]

Bai, Y. X.; Zhang, R. F.; Ye, X.; Zhu, Z. X.; Xie, H. H.; Shen, B. Y.; Cai, D. L.; Liu, B. F.; Zhang, C. X.; Jia, Z. et al. Carbon nanotube bundles with tensile strength over 80 GPa. Nat. Nanotechnol. 2018, 13, 589–595.

[93]

Vilatela, J. J.; Elliott, J. A.; Windle, A. H. A model for the strength of yarn-like carbon nanotube fibers. ACS Nano 2011, 5, 1921–1927.

[94]

Tersoff, J.; Ruoff, R. S. Structural properties of a carbon-nanotube crystal. Phys. Rev. Lett. 1994, 73, 676–679.

[95]

Oh, J. Y.; Jung, Y.; Cho, Y. S.; Choi, J.; Youk, J. H.; Fechler, N.; Yang, S. J.; Park, C. R. Metal-phenolic carbon nanocomposites for robust and flexible energy-storage devices. ChemSusChem 2017, 10, 1675–1682.

[96]

Zhang, X. F.; Liu, T.; Sreekumar, T. V.; Kumar, S.; Moore, V. C.; Hauge, R. H.; Smalley, R. E. Poly(vinyl alcohol)/SWNT composite film. Nano Lett. 2003, 3, 1285–1288.

[97]

Zhang, L. W.; Wang, X.; Li, R.; Li, Q. W.; Bradford, P. D.; Zhu, Y. T. Microcombing enables high-performance carbon nanotube composites. Compos. Sci. Technol. 2016, 123, 92–98.

[98]

Long, J. C.; Zhan, H.; Wu, G.; Zhang, Y.; Wang, J. N. High-strength carbon nanotube/epoxy resin composite film from a controllable cross-linking reaction. Compos. Part A: Appl. Sci. Manuf. 2021, 146, 106409.

[99]

Shi, Q. Q.; Zhan, H.; Mo, R. W.; Wang, J. N. High-strength and toughness carbon nanotube fiber/resin composites by controllable wet-stretching and stepped pressing. Carbon 2022, 189, 1–9.

[100]

Tan, W.; Stallard, J. C.; Smail, F. R.; Boies, A. M.; Fleck, N. A. The mechanical and electrical properties of direct-spun carbon nanotube mat-epoxy composites. Carbon 2019, 150, 489–504.

[101]

Guo, H. N.; Minus, M. L.; Jagannathan, S.; Kumar, S. Polyacrylonitrile/carbon nanotube composite films. ACS Appl. Mater. Interfaces 2010, 2, 1331–1342.

[102]

Guo, H. N.; Sreekumar, T. V.; Liu, T.; Minus, M.; Kumar, S. Structure and properties of polyacrylonitrile/single wall carbon nanotube composite films. Polymer 2005, 46, 3001–3005.

[103]

Hao, L. D.; Hurlock, M. J.; Ding, G. D.; Zhang, Q. Metal-organic frameworks towards desulfurization of fuels. Top. Curr. Chem. 2020, 378, 17.

[104]

Wang, Y. Y.; Zhou, Z. H.; Zhou, C. G.; Sun, W. J.; Gao, J. F.; Dai, K.; Yan, D. X.; Li, Z. M. Lightweight and robust carbon nanotube/polyimide foam for efficient and heat-resistant electromagnetic interference shielding and microwave absorption. ACS Appl. Mater. Interfaces 2020, 12, 8704–8712.

[105]

Wang, X.; Jiang, Q.; Xu, W. Z.; Cai, W.; Inoue, Y.; Zhu, Y. T. Effect of carbon nanotube length on thermal, electrical and mechanical properties of CNT/bismaleimide composites. Carbon 2013, 53, 145–152.

[106]

Kim, J. W.; Sauti, G.; Siochi, E. J.; Smith, J. G.; Wincheski, R. A.; Cano, R. J.; Connell, J. W.; Wise, K. E. Toward high performance thermoset/carbon nanotube sheet nanocomposites via resistive heating assisted infiltration and cure. ACS Appl. Mater. Interfaces 2014, 6, 18832–18843.

[107]

Cheng, Q. F.; Li, M. Z.; Jiang, L.; Tang, Z. Y. Bioinspired layered composites based on flattened double-walled carbon nanotubes. Adv. Mater. 2012, 24, 1838–1843.

[108]

Han, Y.; Zhang, X. H.; Yu, X. P.; Zhao, J. N.; Li, S.; Liu, F.; Gao, P.; Zhang, Y. Y.; Zhao, T.; Li, Q. W. Bio-inspired aggregation control of carbon nanotubes for ultra-strong composites. Sci. Rep. 2015, 5, 11533.

[109]

Zhan, H.; Lin, J. H.; Shi, H. L.; Wang, J. N. Construction of carbon nanotubes/bismaleimide composite films with superior tensile strength and toughness. Compos. Sci. Technol. 2021, 214, 108975.

[110]

Song, Y. H.; Di, J. T.; Zhang, C.; Zhao, J. N.; Zhang, Y. Y.; Hu, D. M.; Li, M.; Zhang, Z. G.; Wei, H. Z.; Li, Q. W. Millisecond tension-annealing for enhancing carbon nanotube fibers. Nanoscale 2019, 11, 13909–13916.

[111]

Filleter, T.; Bernal, R.; Li, S.; Espinosa, H. D. Ultrahigh strength and stiffness in cross-linked hierarchical carbon nanotube bundles. Adv. Mater. 2011, 23, 2855–2860.

[112]

Chen, C. X.; Lin, Y.; Zhou, W.; Gong, M.; He, Z. Y.; Shi, F. Y.; Li, X. Y.; Wu, J. Z.; Lam, K. T.; Wang, J. N. et al. Sub-10-nm graphene nanoribbons with atomically smooth edges from squashed carbon nanotubes. Nat. Electron. 2021, 4, 653–663.

[113]

Lee, D.; Kim, S. G.; Hong, S.; Madrona, C.; Oh, Y.; Park, M.; Komatsu, N.; Taylor, L. W.; Chung, B.; Kim, J. et al. Ultrahigh strength, modulus, and conductivity of graphitic fibers by macromolecular coalescence. Sci. Adv. 2022, 8, eabn0939.

[114]

Bai, Y. X.; Yue, H. J.; Wang, J.; Shen, B. Y.; Sun, S. L.; Wang, S. J.; Wang, H. D.; Li, X. D.; Xu, Z. P.; Zhang, R. F. et al. Super-durable ultralong carbon nanotubes. Science 2020, 369, 1104–1106.

[115]

Falvo, M. R.; Clary, G. J.; Taylor, R. M.; Chi, V.; Brooks, F. P.; Washburn, S.; Superfine, R. Bending and buckling of carbon nanotubes under large strain. Nature 1997, 389, 582–584.

[116]

Bai, Y. X.; Shen, B. Y.; Zhang, S. L.; Zhu, Z. X.; Sun, S. L.; Gao, J.; Li, B. H.; Wang, Y.; Zhang, R. F.; Wei, F. Storage of mechanical energy based on carbon nanotubes with high energy density and power density. Adv. Mater. 2019, 31, 1800680.

[117]

Cao, A. Y.; Dickrell, P. L.; Sawyer, W. G.; Ghasemi-Nejhad, M. N.; Ajayan, P. M. Super-compressible foamlike carbon nanotube films. Science 2005, 310, 1307–1310.

[118]

Suhr, J.; Victor, P.; Ci, L.; Sreekala, S.; Zhang, X.; Nalamasu, O.; Ajayan, P. M. Fatigue resistance of aligned carbon nanotube arrays under cyclic compression. Nat. Nanotechnol. 2007, 2, 417–421.

[119]

Li, H. F.; Zhang, X. H.; Zhu, Y. Q.; Li, R.; Chen, H. Y.; Gao, P.; Zhang, Y. Y.; Li, T. T.; Liu, Y. N.; Li, Q. W. Hydrothermal deposition of a zinc oxide nanorod array on a carbon nanotube film as a piezoelectric generator. RSC Adv. 2014, 4, 43772–43777.

[120]

Wu, C. M.; Chou, M. H.; Zeng, W. Y. Piezoelectric response of aligned electrospun polyvinylidene fluoride/carbon nanotube nanofibrous membranes. Nanomaterials (Basel) 2018, 8, 420.

[121]

Chen, S. C.; Luo, J. L.; Wang, X. L.; Li, Q. Y.; Zhou, L. C.; Liu, C.; Feng, C. Fabrication and piezoresistive/piezoelectric sensing characteristics of carbon nanotube/PVA/nano-ZnO flexible composite. Sci. Rep. 2020, 10, 8895.

[122]

Al-Furjan, M. S. H.; Farrokhian, A.; Keshtegar, B.; Kolahchi, R.; Trung, N. T. Dynamic stability control of viscoelastic nanocomposite piezoelectric sandwich beams resting on Kerr foundation based on exponential piezoelasticity theory. Euro. J. Mechan. A/Solids 2021, 86, 104169.

[123]

Moradi-Dastjerdi, R.; Behdinan, K. Free vibration response of smart sandwich plates with porous CNT-reinforced and piezoelectric layers. Appl. Math. Modell. 2021, 96, 66–79.

[124]

Mirvakili, S. M.; Hunter, I. W. Artificial muscles: Mechanisms, applications, and challenges. Adv. Mater. 2018, 30, 1704407.

[125]

Duduta, M.; Hajiesmaili, E.; Zhao, H. C.; Wood, R. J.; Clarke, D. R. Realizing the potential of dielectric elastomer artificial muscles. Proc. Natl. Acad. Sci. USA 2019, 116, 2476–2481.

[126]

Chu, H. T.; Hu, X. H.; Wang, Z.; Mu, J. K.; Li, N.; Zhou, X. S.; Fang, S. L.; Haines, C. S.; Park, J. W.; Qin, S. et al. Unipolar stroke, electroosmotic pump carbon nanotube yarn muscles. Science 2021, 371, 494–498.

[127]

Lima, M. D.; Li, N.; De Andrade, M. J.; Fang, S. L.; Oh, J.; Spinks, G. M.; Kozlov, M. E.; Haines, C. S.; Suh, D.; Foroughi, J. et al. Electrically, chemically, and photonically powered torsional and tensile actuation of hybrid carbon nanotube yarn muscles. Science 2012, 338, 928–932.

[128]

Liu, Z. F.; Fang, S.; Moura, F. A.; Ding, J. N.; Jiang, N.; Di, J.; Zhang, M.; Lepró, X.; Galvão, D. S.; Haines, C. S. et al. Hierarchically buckled sheath-core fibers for superelastic electronics, sensors, and muscles. Science 2015, 349, 400–404.

[129]

Aliev, A. E.; Oh, J.; Kozlov, M. E.; Kuznetsov, A. A.; Fang, S. L.; Fonseca, A. F.; Ovalle, R.; Lima, M. D.; Haque, M. H.; Gartstein, Y. N. et al. Giant-stroke, superelastic carbon nanotube aerogel muscles. Science 2009, 323, 1575–1578.

[130]

Baughman, R. H.; Cui, C. X.; Zakhidov, A. A.; Iqbal, Z.; Barisci, J. N.; Spinks, G. M.; Wallace, G. G.; Mazzoldi, A.; De Rossi, D.; Rinzler, A. G. et al. Carbon nanotube actuators. Science 1999, 284, 1340–1344.

[131]

Ning, W.; Wang, Z. H.; Liu, P.; Zhou, D. L.; Yang, S. Y.; Wang, J. P.; Li, Q. Q.; Fan, S. S.; Jiang, K. L. Multifunctional super-aligned carbon nanotube/polyimide composite film heaters and actuators. Carbon 2018, 139, 1136–1143.

[132]

Hebner, R.; Beno, J.; Walls, A. Flywheel batteries come around again. IEEE Spectr. 2002, 39, 46–51.

[133]

Sebastián, R.; Alzola, R. P. Flywheel energy storage systems: Review and simulation for an isolated wind power system. Renew. Sustainable Energy Rev. 2012, 16, 6803–6813.

[134]

Aanstoos, T. A.; Kajs, J. P.; Brinkman, W. G.; Liu, H. P.; Ouroua, A.; Hayes, R. J.; Hearn, C.; Sarjeant, J.; Gill, H. High voltage stator for a flywheel energy storage system. IEEE Trans. Magn. 2001, 37, 242–247.

[135]

Goodenough, J. B. Evolution of strategies for modern rechargeable batteries. Acc. Chem. Res. 2013, 46, 1053–1061.

[136]

Wei, Y. B.; Cheng, W. H.; Huang, Y. D.; Liu, Z. J.; Sheng, R.; Wang, X. C.; Jia, D. Z.; Tang, X. C. P-doped cotton stalk carbon for high-performance lithium-ion batteries and lithium-sulfur batteries. Langmuir 2022, 38, 11610–11620.

[137]

Kim, J. M.; Zhang, X. H.; Zhang, J. G.; Manthiram, A.; Meng, Y. S.; Xu, W. A review on the stability and surface modification of layered transition-metal oxide cathodes. Mater. Today 2021, 46, 155–182.

[138]

Thackeray, M. M.; Wolverton, C.; Isaacs, E. D. Electrical energy storage for transportation—Approaching the limits of, and going beyond, lithium-ion batteries. Energy Environ. Sci. 2012, 5, 7854–7863.

[139]

Wang, D. K.; Zhang, J. P.; Li, X. T.; Liu, L. T.; Yuan, M.; Cao, B.; Li, A.; Chen, X. H.; Yang, R.; Song, H. H. Woven microsphere architected by carbon nanotubes as high-performance potassium ion batteries anodes. Chem. Eng. J. 2022, 429, 132272.

[140]

Zeng, Y. X.; Zhang, X. Y.; Qin, R. F.; Liu, X. Q.; Fang, P. P.; Zheng, D. Z.; Tong, Y. X.; Lu, X. H. Dendrite-free zinc deposition induced by multifunctional CNT frameworks for stable flexible Zn-ion batteries. Adv. Mater. 2019, 31, e1903675.

[141]

Zhang, S. P.; Wang, G.; Wang, B. B.; Wang, J. M.; Bai, J. T.; Wang, H. 3D carbon nanotube network bridged hetero-structured Ni-Fe-S nanocubes toward high-performance lithium, sodium, and potassium storage. Adv. Funct. Mater. 2020, 30, 2001592.

[142]

De Las Casas, C.; Li, W. Z. A review of application of carbon nanotubes for lithium ion battery anode material. J. Power Sources 2012, 208, 74–85.

[143]

Wang, B.; Hu, C. G.; Dai, L. M. Functionalized carbon nanotubes and graphene-based materials for energy storage. Chem. Commun. 2016, 52, 14350–14360.

[144]

Zhang, Y.; Jiao, Y. D.; Liao, M.; Wang, B. J.; Peng, H. S. Carbon nanomaterials for flexible lithium ion batteries. Carbon 2017, 124, 79–88.

[145]

Zhu, S.; Sheng, J.; Chen, Y.; Ni, J. F.; Li, Y. Carbon nanotubes for flexible batteries: Recent progress and future perspective. Natl. Sci. Rev. 2021, 8, nwaa261.

[146]

He, Z. Y.; Xiao, Z. X.; Yue, H. J.; Jiang, Y. X.; Zhao, M. Y.; Zhu, Y. K.; Yu, C. H.; Zhu, Z. X.; Lu, F.; Jiang, H. R. et al. Single-walled carbon nanotube film as an efficient conductive network for Si-based anodes. Adv. Funct. Mater. 2023, 33, 2300094.

[147]

Kuznetsov, O. A.; Mohanty, S.; Pigos, E.; Chen, G. G.; Cai, W.; Harutyunyan, A. R. High energy density flexible and ecofriendly lithium-ion smart battery. Energy Storage Mater. 2023, 54, 266–275.

[148]

Wang, X. W.; Wang, L. Q.; Zhang, B.; Feng, J. M.; Zhang, J. F.; Ou, X.; Hou, F.; Liang, J. A flexible carbon nanotube@V2O5 film as a high-capacity and durable cathode for zinc ion batteries. J. Energy Chem. 2021, 59, 126–133.

[149]

Guo, W. L.; Yan, X.; Hou, F.; Wen, L.; Dai, Y. J.; Yang, D. M.; Jiang, X. T.; Liu, J.; Liang, J.; Dou, S. X. Flexible and free-standing SiOx/CNT composite films for high capacity and durable lithium ion batteries. Carbon 2019, 152, 888–897.

[150]

Sun, Y.; Yang, Y. L.; Shi, X. L.; Suo, G. Q.; Chen, H. J.; Hou, X. J.; Lu, S. Y.; Chen, Z. G. Self-standing film assembled using SnS-Sn/multiwalled carbon nanotubes encapsulated carbon fibers: A potential large-scale production material for ultra-stable sodium-ion battery anodes. ACS Appl. Mater. Interfaces 2021, 13, 28359–28368.

[151]

Husmann, S.; Zarbin, A. J. G.; Dryfe, R. A. W. High-performance aqueous rechargeable potassium batteries prepared via interfacial synthesis of a Prussian blue-carbon nanotube composite. Electrochim. Acta 2020, 349, 136243.

[152]

Liu, S. L.; Wang, P. P.; Liu, C.; Deng, Y. D.; Dou, S. M.; Liu, Y. J.; Xu, J.; Wang, Y. L.; Liu, W. D.; Hu, W. B. et al. Nanomanufacturing of RGO-CNT hybrid film for flexible aqueous Al-ion batteries. Small 2020, 16, 2002856.

[153]

Miller, J. R.; Simon, P. Electrochemical capacitors for energy management. Science 2008, 321, 651–652.

[154]

Samdhyan, K.; Chand, P.; Anand, H.; Saini, S. Development of carbon-based copper sulfide nanocomposites for high energy supercapacitor applications: A comprehensive review. J. Energy Storage 2022, 46, 103886.

[155]

Sharma, S.; Chand, P. Supercapacitor and electrochemical techniques: A brief review. Results Chem. 2023, 5, 100885.

[156]

Shi, Z. Q.; Wu, Z. S.; Niu, Z. Q.; Liu, J. P.; Yang, X. W.; Lv, W. Supercapacitors. Chin. Chem. Lett. 2018, 29, 551–552.

[157]

Hou, L. Q.; Yang, W.; Jiang, B.; Wang, P.; Yan, L.; Zhang, C. X.; Huang, G. Y.; Yang, F.; Li, Y. F. Intrinsic defect-rich porous carbon nanosheets synthesized from potassium citrate toward advanced supercapacitors and microwave absorption. Carbon 2021, 183, 176–186.

[158]

Kim, T.; Subedi, S.; Dahal, B.; Chhetri, K.; Mukhiya, T.; Muthurasu, A.; Gautam, J.; Lohani, P. C.; Acharya, D.; Pathak, I. et al. Homogeneous elongation of N-doped CNTs over nano-fibrillated hollow-carbon-nanofiber: Mass and charge balance in asymmetric supercapacitors is no longer problematic. Adv. Sci. 2022, 9, e2200650.

[159]

Rey-Raap, N.; Enterría, M.; Martins, J. I.; Pereira, M. F. R.; Figueiredo, J. L. Influence of multiwalled carbon nanotubes as additives in biomass-derived carbons for supercapacitor applications. ACS Appl. Mater. Interfaces 2019, 11, 6066–6077.

[160]

Han, Y.; Ha, H.; Choi, C.; Yoon, H.; Matteini, P.; Cheong, J. Y.; Hwang, B. Review of flexible supercapacitors using carbon nanotube-based electrodes. Appl. Sci. (Basel) 2023, 13, 3290.

[161]

Kim, M. G.; Lee, B.; Li, M. C.; Noda, S.; Kim, C.; Kim, J.; Song, W. J.; Lee, S. W.; Brand, O. All-soft supercapacitors based on liquid metal electrodes with integrated functionalized carbon nanotubes. ACS Nano 2020, 14, 5659–5667.

[162]

Yu, C. Y.; An, J. N.; Zhou, R. C.; Xu, H.; Zhou, J. Y.; Chen, Q.; Sun, G. Z.; Huang, W. Microstructure design of carbonaceous fibers: A promising strategy toward high-performance weaveable/wearable supercapacitors. Small 2020, 16, 2000653.

[163]

Zhong, M. Z.; Zhang, M.; Li, X. F. Carbon nanomaterials and their composites for supercapacitors. Carbon Energy 2022, 4, 950–985.

[164]

Niu, H. T.; Liu, Y.; Mao, B. D.; Xin, N.; Jia, H.; Shi, W. D. In-situ embedding MOFs-derived copper sulfide polyhedrons in carbon nanotube networks for hybrid supercapacitor with superior energy density. Electrochim. Acta 2020, 329, 135130.

[165]

Tiwari, P.; Janas, D.; Chandra, R. Self-standing MoS2/CNT and MnO2/CNT one dimensional core shell heterostructures for asymmetric supercapacitor application. Carbon 2021, 177, 291–303.

[166]

Yang, X. Y.; Li, J. H.; Hou, C. Y.; Zhang, Q. H.; Li, Y. G.; Wang, H. Z. Skeleton-structure WS2@CNT thin-film hybrid electrodes for high-performance quasi-solid-state flexible supercapacitors. Front. Chem. 2020, 8, 442.

[167]

Gao, X.; Du, X.; Mathis, T. S.; Zhang, M. M.; Wang, X. H.; Shui, J. L.; Gogotsi, Y.; Xu, M. Maximizing ion accessibility in MXene-knotted carbon nanotube composite electrodes for high-rate electrochemical energy storage. Nat. Commun. 2020, 11, 6160.

[168]

Hinnemann, B.; Moses, P. G.; Bonde, J.; Jørgensen, K. P.; Nielsen, J. H.; Horch, S.; Chorkendorff, I.; Nørskov, J. K. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 2005, 127, 5308–5309.

[169]

Ong, W. J.; Tan, L. L.; Ng, Y. H.; Yong, S. T.; Chai, S. P. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability. Chem. Rev. 2016, 116, 7159–7329.

[170]

Xie, J. F.; Zhang, J. J.; Li, S.; Grote, F.; Zhang, X. D.; Zhang, H.; Wang, R. X.; Lei, Y.; Pan, B. C.; Xie, Y. Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J. Am. Chem. Soc. 2013, 135, 17881–17888.

[171]

Jin, Q. Y.; Ren, B. W.; Cui, H.; Wang, C. X. Nitrogen and cobalt co-doped carbon nanotube films as binder-free trifunctional electrode for flexible zinc-air battery and self-powered overall water splitting. Appl. Catal. B: Environ. 2021, 283, 119643.

[172]

Shah, K. A.; Tali, B. A. Synthesis of carbon nanotubes by catalytic chemical vapour deposition: A review on carbon sources, catalysts and substrates. Mater. Sci. Semicond. Process. 2016, 41, 67–82.

[173]

Yan, Y. B.; Miao, J. W.; Yang, Z. H.; Xiao, F. X.; Yang, H. B.; Liu, B.; Yang, Y. H. Carbon nanotube catalysts: Recent advances in synthesis, characterization and applications. Chem. Soc. Rev. 2015, 44, 3295–346.

[174]

Harmon, N. J.; Rooney, C. L.; Tao, Z. X.; Shang, B.; Raychaudhuri, N.; Choi, C.; Li, H. P.; Wang, H. L. Intrinsic catalytic activity of carbon nanotubes for electrochemical nitrate reduction. ACS Catal. 2022, 12, 9135–9142.

[175]

Lin, Y. Z.; Zhu, W. J.; Li, Y. H. Hierarchical monolithic carbon with high transfer performance for hydrogen evolution reaction. J. Energy Chem. 2022, 73, 41–48.

[176]

Elias, M.; Uddin, M. N.; Hossain, M. A.; Saha, J. K.; Siddiquey, I. A.; Sarker, D. R.; Diba, Z. R.; Uddin, J.; Rashid Choudhury, M. H.; Firoz, S. H. An experimental and theoretical study of the effect of Ce doping in ZnO/CNT composite thin film with enhanced visible light photo-catalysis. Int. J. Hydrogen Energy 2019, 44, 20068–20078.

[177]

Yang, Z. K.; Zhao, C. M.; Qu, Y. T.; Zhou, H.; Zhou, F. Y.; Wang, J.; Wu, Y. E.; Li, Y. D. Trifunctional self-supporting cobalt-embedded carbon nanotube films for ORR, OER, and HER triggered by solid diffusion from bulk metal. Adv. Mater. 2019, 31, 1808043.

[178]

Xiong, C. Y.; Li, M. R.; Zhao, W.; Duan, C.; Ni, Y. H. Flexible N-doped reduced graphene oxide/carbon nanotube-MnO2 film as a multifunctional material for high-performance supercapacitors, catalysts and sensors. J. Materiomics 2020, 6, 523–531.

[179]

Li, C. Y.; Wang, Z. J.; Liu, M. D.; Wang, E. Z.; Wang, B. L.; Xu, L. L.; Jiang, K. L.; Fan, S. S.; Sun, Y. H.; Li, J. et al. Ultrafast self-heating synthesis of robust heterogeneous nanocarbides for high current density hydrogen evolution reaction. Nat. Commun. 2022, 13, 3338.

Publication history
Copyright
Acknowledgements

Publication history

Received: 11 July 2023
Revised: 13 August 2023
Accepted: 15 August 2023
Published: 23 September 2023
Issue date: November 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 22108155, LY23B060003, and T2350004) and the Ministry of Science and Technology of China (No. 2022YFA1203301).

Return