Journal Home > Volume 17 , Issue 4

All-solid-state lithium batteries (ASSLBs) have attracted great interest due to their promising energy density and strong safety. However, the interface issues, including large interfacial resistance between electrode and electrolyte and low electrochemical stability of solid-state electrolytes against high-voltage cathodes, have restricted the development of high-voltage ASSLBs. Herein, we report an ASSLB with stable cycling by adopting a conformal polymer interlayer in-situ formed at the Li6.4La3Zr1.4Ta0.6O12 (LLZTO)–cathode interfaces. The polymer can perfectly fill the voids and create a stable interface contact between LLZTO and cathodes. In addition, the electric field across the polymer interlayer is reduced compared with pure solid polymer electrolyte (SPE), which facilitates the electrochemical stability with high-voltage cathode. The all-solid-state Li|LLZTO-SPE|LiFe0.4Mn0.6PO4 (LMFP) cells achieve a low interface impedance, high specific capacity, and excellent cycling performance. This work presents an effective and practical strategy to rationally design the electrode–electrolyte interface for the application of high-voltage ASSLBs.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

An in-situ polymerized interphase engineering for high-voltage all-solid-state lithium-metal batteries

Show Author's information Lu Nie1,§Shaojie Chen1,§Mengtian Zhang2Tianyi Gao1Yuyao Zhang1Ran Wei1Yining Zhang1Wei Liu1( )
School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China

§ Lu Nie and Shaojie Chen contributed equally to this work.

Abstract

All-solid-state lithium batteries (ASSLBs) have attracted great interest due to their promising energy density and strong safety. However, the interface issues, including large interfacial resistance between electrode and electrolyte and low electrochemical stability of solid-state electrolytes against high-voltage cathodes, have restricted the development of high-voltage ASSLBs. Herein, we report an ASSLB with stable cycling by adopting a conformal polymer interlayer in-situ formed at the Li6.4La3Zr1.4Ta0.6O12 (LLZTO)–cathode interfaces. The polymer can perfectly fill the voids and create a stable interface contact between LLZTO and cathodes. In addition, the electric field across the polymer interlayer is reduced compared with pure solid polymer electrolyte (SPE), which facilitates the electrochemical stability with high-voltage cathode. The all-solid-state Li|LLZTO-SPE|LiFe0.4Mn0.6PO4 (LMFP) cells achieve a low interface impedance, high specific capacity, and excellent cycling performance. This work presents an effective and practical strategy to rationally design the electrode–electrolyte interface for the application of high-voltage ASSLBs.

Keywords: electric field, electrochemical stability, all-solid-state lithium batteries, interface contact

References(41)

[1]

He, F.; Tang, W. J.; Zhang, X. Y.; Deng, L. J.; Luo, J. Y. High energy density solid state lithium metal batteries enabled by sub-5 µm solid polymer electrolytes. Adv. Mater. 2021, 33, 2105329.

[2]

Lee, M. J.; Han, J.; Lee, K.; Lee, Y. J.; Kim, B. G.; Jung, K. N.; Kim, B. J.; Lee, S. W. Elastomeric electrolytes for high-energy solid-state lithium batteries. Nature 2022, 601, 217–222.

[3]

Zhang, X.; Liu, T.; Zhang, S. F.; Huang, X.; Xu, B. Q.; Lin, Y. H.; Xu, B.; Li, L. L.; Nan, C. W.; Shen, Y. Synergistic coupling between Li6.75La3Zr1.75Ta0.25O12 and poly(vinylidene fluoride) induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes. J. Am. Chem. Soc. 2017, 139, 13779–13785.

[4]

Hu, Q. L.; Sun, Z. T.; Nie, L.; Chen, S. J.; Yu, J. M.; Liu, W. High-safety composite solid electrolyte based on inorganic matrix for solid-state lithium-metal batteries. Mater. Today Energy 2022, 27, 101052.

[5]

Ye, L. H.; Fitzhugh, W.; Gil-González, E.; Wang, Y. C.; Su, Y. B.; Su, H. Q.; Qiao, T. Y.; Ma, L.; Zhou, H.; Hu, E. Y. et al. Toward higher voltage solid-state batteries by metastability and kinetic stability design. Adv. Energy Mater. 2020, 10, 2001569.

[6]

Ran, L. B.; Li, M.; Cooper, E.; Luo, B.; Gentle, I.; Wang, L. Z.; Knibbe, R. Enhanced safety and performance of high-voltage solid-state sodium battery through trilayer, multifunctional electrolyte design. Energy Storage Mater. 2021, 41, 8–13.

[7]

Liu, J.; Wang, S.; Qie, Y.; Sun, Q. Identifying lithium fluorides for promising solid-state electrolyte and coating material of high-voltage cathode. Mater. Today Energy 2021, 21, 100719.

[8]

Nie, L.; Chen, S. J.; Zhang, C.; Dong, L.; He, Y. J.; Gao, T. Y.; Yu, J. M.; Liu, W. Integration of a low-tortuous electrode and an in-situ-polymerized electrolyte for all-solid-state lithium-metal batteries. Cell Rep. Phys. Sci. 2022, 3, 100851.

[9]

Deng, T.; Ji, X.; Zhao, Y.; Cao, L. S.; Li, S.; Hwang, S.; Luo, C.; Wang, P. F.; Jia, H. P.; Fan, X. L. et al. Tuning the anode–electrolyte interface chemistry for garnet-based solid-state Li metal batteries. Adv. Mater. 2020, 32, 2000030.

[10]

Zhang, C.; Hu, X. C.; Nie, Z. W.; Wu, C.; Zheng, N.; Chen, S. J.; Yang, Y. H.; Wei, R.; Yu, J. M.; Yang, N. et al. High-performance Ta-doped Li7La3Zr2O12 garnet oxides with AlN additive. J. Adv. Ceram. 2022, 11, 1530–1541.

[11]

Gonzalez Puente, P. M.; Song, S. B.; Cao, S. Y.; Rannalter, L. Z.; Pan, Z. W.; Xiang, X.; Shen, Q.; Chen, F. Garnet-type solid electrolyte: Advances of ionic transport performance and its application in all-solid-state batteries. J. Adv. Ceram. 2021, 10, 933–972.

[12]

Kim, K. J.; Rupp, J. L. M. All ceramic cathode composite design and manufacturing towards low interfacial resistance for garnet-based solid-state lithium batteries. Energy Environ. Sci. 2020, 13, 4930–4945.

[13]

Qin, Z. W.; Meng, X. C.; Xie, Y. M.; Qian, D. L.; Deng, H. K.; Mao, D. X.; Wan, L.; Huang, Y. X. Fast Li-ion transport pathways via 3D continuous networks in homogeneous garnet-type electrolyte for solid-state lithium batteries. Energy Storage Mater. 2021, 43, 190–201.

[14]

Lu, Y. R.; Zhang, X.; Xue, C. J.; Xin, C. Z.; Li, M.; Nan, C. W.; Shen, Y. Three-dimensional structured asymmetric electrolytes for high interface stability and fast Li-ion transport in solid-state Li-metal batteries. Mater. Today Energy 2020, 18, 100522.

[15]

Zhong, G.; Wang, C. W.; Wang, R. L.; Ping, W. W.; Xu, S. M.; Qiao, H. Y.; Cui, M. J.; Wang, X. Z.; Zhou, Y. B.; Kline, D. J. et al. Rapid, high-temperature microwave soldering toward a high-performance cathode/electrolyte interface. Energy Storage Mater. 2020, 30, 385–391.

[16]

Han, F. D.; Yue, J.; Chen, C.; Zhao, N.; Fan, X. L.; Ma, Z. H.; Gao, T.; Wang, F.; Guo, X. X.; Wang, C. S. Interphase engineering enabled all-ceramic lithium battery. Joule 2018, 2, 497–508.

[17]

Indu, M. S.; Alexander, G. V.; Sreejith, O. V.; Abraham, S. E.; Murugan, R. Lithium garnet-cathode interfacial chemistry: Inclusive insights and outlook toward practical solid-state lithium metal batteries. Mater. Today Energy 2021, 21, 100804.

[18]

Liu, C. Y.; Qiu, Y.; Liu, Y. L.; Xu, K.; Zhao, N.; Lao, C. S.; Shen, J.; Chen, Z. W. Novel 3D grid porous Li4Ti5O12 thick electrodes fabricated by 3D printing for high performance lithium-ion batteries. J. Adv. Ceram. 2022, 11, 295–307.

[19]

Feng, X. Y.; Fang, H.; Wu, N.; Liu, P. C.; Jena, P.; Nanda, J.; Mitlin, D. Review of modification strategies in emerging inorganic solid-state electrolytes for lithium, sodium, and potassium batteries. Joule 2022, 6, 543–587.

[20]

Wang, X.; Huang, S. P.; Guo, K.; Min, Y. L.; Xu, Q. J. Directed and continuous interfacial channels for optimized ion transport in solid-state electrolytes. Adv. Funct. Mater. 2022, 32, 2206976.

[21]

Tsai, C. L.; Roddatis, V.; Chandran, C. V.; Ma, Q. L.; Uhlenbruck, S.; Bram, M.; Heitjans, P.; Guillon, O. Li7La3Zr2O12 interface modification for Li dendrite prevention. ACS Appl. Mater. Interfaces 2016, 8, 10617–10626.

[22]

Xu, H. H.; Li, Y. T.; Zhou, A. J.; Wu, N.; Xin, S.; Li, Z. Y.; Goodenough, J. B. Li3N-modified garnet electrolyte for all-solid-state lithium metal batteries operated at 40 °C. Nano Lett. 2018, 18, 7414–7418.

[23]

Chen, S. J.; Nie, L.; Hu, X. C.; Zhang, Y. N.; Zhang, Y.; Yu, Y.; Liu, W. Ultrafast sintering for ceramic-based all-solid-state lithium-metal batteries. Adv. Mater. 2022, 34, 2200430.

[24]

Wang, M. J.; Choudhury, R.; Sakamoto, J. Characterizing the Li-solid-electrolyte interface dynamics as a function of stack pressure and current density. Joule 2019, 3, 2165–2178.

[25]

Ruan, Y. D.; Lu, Y.; Li, Y. P.; Zheng, C. J.; Su, J. M.; Jin, J.; Xiu, T. P.; Song, Z.; Badding, M. E.; Wen, Z. Y. A 3D cross-linking lithiophilic and electronically insulating interfacial engineering for garnet-type solid-state lithium batteries. Adv. Funct. Mater. 2020, 31, 2007815.

[26]

Huo, H. Y.; Gao, J.; Zhao, N.; Zhang, D. X.; Holmes, N. G.; Li, X. N.; Sun, Y. P.; Fu, J. M.; Li, R. Y.; Guo, X. X. et al. A flexible electron-blocking interfacial shield for dendrite-free solid lithium metal batteries. Nat. Commun. 2021, 12, 176.

[27]

Cui, G. L. Reasonable design of high-energy-density solid-state lithium-metal batteries. Matter 2020, 2, 805–815.

[28]

Xiao, Y. R.; Turcheniuk, K.; Narla, A.; Song, A. Y.; Ren, X. L.; Magasinski, A.; Jain, A.; Huang, S.; Lee, H.; Yushin, G. Electrolyte melt infiltration for scalable manufacturing of inorganic all-solid-state lithium-ion batteries. Nat. Mater. 2021, 20, 984–990.

[29]

Chen, K.; Shen, Y.; Jiang, J. Y.; Zhang, Y. B.; Lin, Y. H.; Nan, C. W. High capacity and rate performance of LiNi0.5Co0.2Mn0.3O2 composite cathode for bulk-type all-solid-state lithium battery. J. Mater. Chem. A 2014, 2, 13332–13337.

[30]

Zhou, W. D.; Wang, S. F.; Li, Y. T.; Xin, S.; Manthiram, A.; Goodenough, J. B. Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte. J. Am. Chem. Soc. 2016, 138, 9385–9388.

[31]

Cheng, Z.; Pan, H.; Li, C.; Mu, X. W.; Du, Y. M.; Zhang, F.; Zhang, X. P.; He, P.; Zhou, H. S. An in situ solidifying strategy enabling high-voltage all-solid-state Li-metal batteries operating at room temperature. J. Mater. Chem. A 2020, 8, 25217–25225.

[32]

Chen, S. J.; Hu, X. C.; Bao, W. D.; Wang, Z. Y.; Yang, Q.; Nie, L.; Zhang, X.; Zhang, J. X.; Jiang, Y. L.; Han, Y. et al. Low-sintering-temperature garnet oxides by conformal sintering-aid coating. Cell Rep. Phys. Sci. 2021, 2, 100569.

[33]

Chen, S. J.; Nie, Z. W.; Tian, F. F.; Nie, L.; Wei, R.; Yu, J. M.; Gao, T. Y.; Sun, Z. R.; Yang, N.; Liu, W. The influence of surface chemistry on critical current density for garnet electrolyte. Adv. Funct. Mater. 2022, 32, 2113318.

[34]

He, Y. J.; Chen, S. J.; Nie, L.; Sun, Z. T.; Wu, X. S.; Liu, W. Stereolithography three-dimensional printing solid polymer electrolytes for all-solid-state lithium metal batteries. Nano Lett. 2020, 20, 7136–7143.

[35]

Yao, Y.; Wei, Z. Y.; Wang, H. Y.; Huang, H. J.; Jiang, Y.; Wu, X. J.; Yao, X. Y.; Wu, Z. S.; Yu, Y. Toward high energy density all solid-state sodium batteries with excellent flexibility. Adv. Energy Mater. 2020, 10, 1903698.

[36]

Wei, Z. Y.; Chen, S. J.; Wang, J. Y.; Wang, Z. H.; Zhang, Z. H.; Yao, X. Y.; Deng, Y. H.; Xu, X. X. A large-size, bipolar-stacked and high-safety solid-state lithium battery with integrated electrolyte and cathode. J. Power Sources 2018, 394, 57–66.

[37]

Wei, Z. Y.; Chen, S. J.; Wang, J. Y.; Wang, Z. H.; Zhang, Z. H.; Yao, X. Y.; Deng, Y. H.; Xu, X. X. Superior lithium ion conduction of polymer electrolyte with comb-like structure via solvent-free copolymerization for bipolar all-solid-state lithium battery. J. Mater. Chem. A 2018, 6, 13438–13447.

[38]

Wei, Z. Y.; Zhang, Z. H.; Chen, S. J.; Wang, Z. H.; Yao, X. Y.; Deng, Y. H.; Xu, X. X. UV-cured polymer electrolyte for LiNi0.85Co0.05Al0.1O2||Li solid state battery working at ambient temperature. Energy Storage Mater. 2019, 22, 337–345.

[39]

Lin, D. C.; Yuen, P. Y.; Liu, Y. Y.; Liu, W.; Liu, N.; Dauskardt, R. H.; Cui, Y. A silica-aerogel-reinforced composite polymer electrolyte with high ionic conductivity and high modulus. Adv. Mater. 2018, 30, 1802661.

[40]

Chen, S. J.; Zhang, J. X.; Nie, L.; Hu, X. C.; Huang, Y. Q.; Yu, Y.; Liu, W. All-solid-state batteries with a limited lithium metal anode at room temperature using a garnet-based electrolyte. Adv. Mater. 2021, 33, 2002325.

[41]

Busche, M. R.; Drossel, T.; Leichtweiss, T.; Weber, D. A.; Falk, M.; Schneider, M.; Reich, M. L.; Sommer, H.; Adelhelm, P.; Janek, J. Dynamic formation of a solid–liquid electrolyte interphase and its consequences for hybrid-battery concepts. Nat. Chem. 2016, 8, 426–434.

File
12274_2023_6096_MOESM1_ESM.pdf (374.2 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 13 July 2023
Revised: 07 August 2023
Accepted: 14 August 2023
Published: 07 September 2023
Issue date: April 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

The authors gratefully acknowledge financial support from National Key Research and Development Program of China (No. 2019YFA0210600). We also acknowledge the Double First-Class Initiative Fund of ShanghaiTech University for support.

Return