Journal Home > Volume 17 , Issue 4

The electrocatalytic nitrate reduction reaction (NitRR) represents a promising approach toward achieving economically and environmentally sustainable ammonia. However, it remains a challenge to regulate the size effect of electrocatalysts to optimize the catalytic activity and ammonia selectivity. Herein, the Cu-based catalysts were tailored at the atomic level to exhibit a size gradient ranging from single-atom catalysts (SACs, 0.15–0.35 nm) to single-cluster catalysts (SCCs, 1.0–2.8 nm) and nanoparticles (NPs, 20–30 nm), with the aim of studying the size effect for the NO3-to-NH3 reduction reaction. Especially, the Cu SCCs exhibit enhanced metal–substrate and metal–metal interactions by taking advantageous features of Cu SACs and Cu NPs. Thus, Cu SCCs achieve exceptional electrocatalytic performance for the NitRR with a maximum Faradaic efficiency of ca. 96% and the largest yield rate of ca. 1.99 mg NH3·h−1·cm−2 at −0.5 V vs. reversible hydrogen electrode (RHE). The theoretical calculation further reveals the size effect and coordination environment on the high catalytic activity and selectivity for the NitRR. This work provides a promising various size-controlled design strategy for aerogel-based catalysts effectively applied in various electrocatalytic reactions.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Unveiling the size effect of nitrogen-doped carbon-supported copper-based catalysts on nitrate-to-ammonia electroreduction

Show Author's information Ran Li1,2Taotao Gao2( )Wenxi Qiu1Minghao Xie3Zhaoyu Jin4Panpan Li1( )
College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
Institute for Advanced Study, Chengdu University, Chengdu 610106, China
Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China

Abstract

The electrocatalytic nitrate reduction reaction (NitRR) represents a promising approach toward achieving economically and environmentally sustainable ammonia. However, it remains a challenge to regulate the size effect of electrocatalysts to optimize the catalytic activity and ammonia selectivity. Herein, the Cu-based catalysts were tailored at the atomic level to exhibit a size gradient ranging from single-atom catalysts (SACs, 0.15–0.35 nm) to single-cluster catalysts (SCCs, 1.0–2.8 nm) and nanoparticles (NPs, 20–30 nm), with the aim of studying the size effect for the NO3-to-NH3 reduction reaction. Especially, the Cu SCCs exhibit enhanced metal–substrate and metal–metal interactions by taking advantageous features of Cu SACs and Cu NPs. Thus, Cu SCCs achieve exceptional electrocatalytic performance for the NitRR with a maximum Faradaic efficiency of ca. 96% and the largest yield rate of ca. 1.99 mg NH3·h−1·cm−2 at −0.5 V vs. reversible hydrogen electrode (RHE). The theoretical calculation further reveals the size effect and coordination environment on the high catalytic activity and selectivity for the NitRR. This work provides a promising various size-controlled design strategy for aerogel-based catalysts effectively applied in various electrocatalytic reactions.

Keywords: size effect, ammonia electrosynthesis, nitrate electroreduction, single-cluster catalyst

References(50)

[1]

Jung, W.; Hwang, Y. J. Material strategies in the electrochemical nitrate reduction reaction to ammonia production. Mater. Chem. Front. 2021, 5, 6803–6823.

[2]

Liang, J.; Liu, Q.; Alshehri, A. A.; Sun, X. P. Recent advances in nanostructured heterogeneous catalysts for N-cycle electrocatalysis. Nano Res. Energy 2022, 1, e9120010.

[3]

Canfield, D. E.; Glazer, A. N.; Falkowski, P. G. The evolution and future of earth’s nitrogen cycle. Science 2010, 330, 192–196.

[4]

Erisman, J. W.; Sutton, M. A.; Galloway, J.; Klimont, Z.; Winiwarter, W. How a century of ammonia synthesis changed the world. Nat. Geosci. 2008, 1, 636–639.

[5]

Zhang, G. K.; Li, X. T.; Chen, K.; Guo, Y. L.; Ma, D. W.; Chu, K. Tandem electrocatalytic nitrate reduction to ammonia on MBenes. Angew. Chem., Int. Ed. 2023, 62, e202300054.

[6]

Zhang, N. N.; Zhang, G. K.; Shen, P.; Zhang, H.; Ma, D. W.; Chu, K. Lewis acid Fe–V pairs promote nitrate electroreduction to ammonia. Adv. Funct. Mater. 2023, 33, 2211537.

[7]

Duca, M.; Koper, M. T. M. Powering denitrification: The perspectives of electrocatalytic nitrate reduction. Energy Environ. Sci. 2012, 5, 9726–9742.

[8]

Stein, L. Y.; Klotz, M. G. The nitrogen cycle. Curr. Biol. 2016, 26, R94–R98.

[9]

Garcia-Segura, S.; Lanzarini-Lopes, M.; Hristovski, K.; Westerhoff, P. Electrocatalytic reduction of nitrate: Fundamentals to full-scale water treatment applications. Appl. Catal. B: Environ. 2018, 236, 546–568.

[10]

Gruber, N.; Galloway, J. N. An earth-system perspective of the global nitrogen cycle. Nature 2008, 451, 293–296.

[11]

Xu, H.; Ma, Y. Y.; Chen, J.; Zhang, W. X.; Yang, J. P. Electrocatalytic reduction of nitrate-a step towards—A sustainable nitrogen cycle. Chem. Soc. Rev. 2022, 51, 2710–2758.

[12]

Xie, M. H.; Zhang, B. W.; Jin, Z. Y.; Li, P. P.; Yu, G. H. Atomically reconstructed palladium metallene by intercalation-induced lattice expansion and amorphization for highly efficient electrocatalysis. ACS Nano 2022, 16, 13715–13727.

[13]

Li, X. T.; Shen, P.; Li, X. C.; Ma, D. W.; Chu, K. Sub-nm RuOx clusters on Pd metallene for synergistically enhanced nitrate electroreduction to ammonia. ACS Nano 2023, 17, 1081–1090.

[14]

Liu, Y. T.; Liu, K.; Wang, P. F.; Jin, Z. Y.; Li, P. P. Electrocatalytic upcycling of nitrogenous wastes into green ammonia: Advances and perspectives on materials innovation. Carb. Neutrality 2023, 2, 14.

[15]

Li, R.; Gao, T. T.; Wang, P. F.; Qiu, W. X.; Liu, K.; Liu, Y. T.; Jin, Z. Y.; Li, P. P. The origin of selective nitrate-to-ammonia electroreduction on metal-free nitrogen-doped carbon aerogel catalysts. Appl. Catal. B: Environ. 2023, 331, 122677.

[16]

Li, P. P.; Li, R.; Liu, Y. T.; Xie, M. H.; Jin, Z. Y.; Yu, G. H. Pulsed nitrate-to-ammonia electroreduction facilitated by tandem catalysis of nitrite intermediates. J. Am. Chem. Soc. 2023, 145, 6471–6479.

[17]

Li, P. P.; Jin, Z. Y.; Fang, Z. W.; Yu, G. H. A surface-strained and geometry-tailored nanoreactor that promotes ammonia electrosynthesis. Angew. Chem., Int. Ed. 2020, 59, 22610–22616.

[18]

Gao, T. T.; Yu, S. M.; Chen, Y. T.; Li, X. Q.; Tang, X. M.; Wu, S. W.; He, B.; Lan, H.; Li, S. L.; Yue, Q. et al. Regulating the thickness of the carbon coating layer in iron/carbon heterostructures to enhance the catalytic performance for oxygen evolution reaction. J. Colloid Interface Sci. 2023, 642, 120–128.

[19]

Gao, T. T.; Tang, X. M.; Li, X. Q.; Lan, H.; Yu, S. M.; Wu, S. W.; Yue, Q.; Xiao, D. Surface reconstructing hierarchical structures as robust sulfion oxidation catalysts to produce hydrogen with ultralow energy consumption. Inorg. Chem. Front. 2023, 10, 1447–1456.

[20]

Qiu, W. X.; Chen, X. J.; Liu, Y. T.; Xiao, D.; Wang, P. F.; Li, R.; Liu, K.; Jin, Z. Y.; Li, P. P. Confining intermediates within a catalytic nanoreactor facilitates nitrate-to-ammonia electrosynthesis. Appl. Catal. B: Environ. 2022, 315, 121548.

[21]

Mi, L. R.; Huo, Q. H.; Cao, J. Y.; Chen, X. B.; Yang, H. P.; Hu, Q.; He, C. X. Achieving synchronization of electrochemical production of ammonia from nitrate and ammonia capture by constructing a “two-in-one” flow cell electrolyzer. Adv. Energy Mater. 2022, 12, 2202247.

[22]

Li, L. L.; Hasan, I. M. U.; Farwa; He, R. N.; Peng, L. W.; Xu, N. N.; Niazi, N. K.; Zhang, J. N.; Qiao, J. L. Copper as a single metal atom based photo-, electro-, and photoelectrochemical catalyst decorated on carbon nitride surface for efficient CO2 reduction: A review. Nano Res. Energy 2022, 1, e9120015.

[23]

Liu, Y. T.; Qiu, W. X.; Wang, P. F.; Li, R.; Liu, K.; Omer, K. M.; Jin, Z. Y.; Li, P. P. Pyridine-N-rich Cu single-atom catalyst boosts nitrate electroreduction to ammonia. Appl. Catal. B: Environ 2024, 340, 123228.

[24]

Liu, H. M.; Lang, X. Y.; Zhu, C.; Timoshenko, J.; Rüscher, M.; Bai, L. C.; Guijarro, N.; Yin, H. B.; Peng, Y.; Li, J. H. et al. Efficient electrochemical nitrate reduction to ammonia with copper-supported rhodium cluster and single-atom catalysts. Angew. Chem., Int. Ed. 2022, 61, e202202556.

[25]

Qiu, W. X.; Xie, M. H.; Wang, P. F.; Gao, T. T.; Li, R.; Xiao, D.; Jin, Z. Y.; Li, P. P. Size-defined Ru nanoclusters supported by TiO2 nanotubes enable low-concentration nitrate electroreduction to ammonia with suppressed hydrogen evolution. Small 2023, 19, 2300437.

[26]

Niu, H.; Zhang, Z. F.; Wang, X. T.; Wan, X. H.; Shao, C.; Guo, Y. Z. Theoretical insights into the mechanism of selective nitrate-to-ammonia electroreduction on single-atom catalysts. Adv. Funct. Mater. 2021, 31, 2008533.

[27]

Wu, Z. Y.; Karamad, M.; Yong, X.; Huang, Q. Z.; Cullen, D. A.; Zhu, P.; Xia, C.; Xiao, Q. F.; Shakouri, M.; Chen, F. Y. et al. Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst. Nat. Commun. 2021, 12, 2870.

[28]

Cai, J. M.; Wei, Y. Y.; Cao, A.; Huang, J. J.; Jiang, Z.; Lu, S. Y.; Zang, S. Q. Electrocatalytic nitrate-to-ammonia conversion with ~ 100% Faradaic efficiency via single-atom alloying. Appl. Catal. B: Environ. 2022, 316, 121683.

[29]

Li, P. P.; Jin, Z. Y.; Fang, Z. W.; Yu, G. H. A single-site iron catalyst with preoccupied active centers that achieves selective ammonia electrosynthesis from nitrate. Energy Environ. Sci. 2021, 14, 3522–3531.

[30]

Jin, Z. Y.; Li, P. P.; Fang, Z. W.; Yu, G. H. Emerging electrochemical techniques for probing site behavior in single-atom electrocatalysts. Acc. Chem. Res. 2022, 55, 759–769.

[31]

Chen, K.; Ma, Z. Y.; Li, X. C.; Kang, J. L.; Ma, D. W.; Chu, K. Single-atom Bi alloyed Pd metallene for nitrate electroreduction to ammonia. Adv. Funct. Mater. 2023, 33, 2209890.

[32]

Chen, K.; Zhang, G. K.; Li, X. T.; Zhao, X. L.; Chu, K. Electrochemical NO reduction to NH3 on Cu single atom catalyst. Nano Res. 2023, 16, 5857–5863.

[33]
Gao, T. T.; Qiu, L.; Xie, M. H.; Jin, Z. Y.; Li, P. P.; Yu, G. H. Defect-stabilized and oxygen-coordinated iron single-atom sites facilitate hydrogen peroxide electrosynthesis. Mater. Horiz., in press, https://doi.org/10.1039/D3MH00882G.
[34]

Yang, J.; Qi, H. F.; Li, A. Q.; Liu, X. Y.; Yang, X. F.; Zhang, S. X.; Zhao, Q.; Jiang, Q. K.; Su, Y.; Zhang, L. L. et al. Potential-driven restructuring of Cu single atoms to nanoparticles for boosting the electrochemical reduction of nitrate to ammonia. J. Am. Chem. Soc. 2022, 144, 12062–12071.

[35]

Xu, Y. T.; Xie, M. Y.; Zhong, H. Q.; Cao, Y. In situ clustering of single-atom copper precatalysts in a metal-organic framework for efficient electrocatalytic nitrate-to-ammonia reduction. ACS Catal. 2022, 12, 8698–8706.

[36]

Gao, T. T.; Tang, X. M.; Li, X. Q.; Wu, S. W.; Yu, S. M.; Li, P. P.; Xiao, D.; Jin, Z. Y. Understanding the atomic and defective interface effect on ruthenium clusters for the hydrogen evolution reaction. ACS Catal. 2023, 13, 49–59.

[37]

Qi, Y. Y.; Fenes, E.; Ma, H. F.; Wang, Y. L.; Rout, K. R.; Fuglerud, T.; Piccinini, M.; Chen, D. Cluster-size-dependent interaction between ethylene and CuCl2 clusters supported via γ-alumina. J. Phys. Chem. C 2020, 124, 10430–10440.

[38]

Xing, D. H.; Xu, C. Q.; Wang, Y. G.; Li, J. Heterogeneous single-cluster catalysts for selective semihydrogenation of acetylene with graphdiyne-supported triatomic clusters. J. Phys. Chem. C 2019, 123, 10494–10500.

[39]

Liu, J. C.; Xiao, H.; Zhao, X. K.; Zhang, N. N.; Liu, Y.; Xing, D. H.; Yu, X. H.; Hu, H. S.; Li, J. Computational prediction of graphdiyne-supported three-atom single-cluster catalysts. CCS Chem. 2023, 5, 152–163.

[40]

Jin, Z. Y.; Bard, A. J. Surface interrogation of electrodeposited MnOx and CaMnO3 perovskites by scanning electrochemical microscopy: Probing active sites and kinetics for the oxygen evolution reaction. Angew. Chem. 2021, 133, 807–812.

[41]

Li, P. P.; Jin, Z. Y.; Qian, Y. M.; Fang, Z. W.; Xiao, D.; Yu, G. H. Supramolecular confinement of single Cu atoms in hydrogel frameworks for oxygen reduction electrocatalysis with high atom utilization. Mater. Today 2020, 35, 78–86.

[42]

Li, P. P.; Jin, Z. Y.; Qian, Y. M.; Fang, Z. W.; Xiao, D.; Yu, G. H. Probing enhanced site activity of Co-Fe bimetallic subnanoclusters derived from dual cross-linked hydrogels for oxygen electrocatalysis. ACS Energy Lett. 2019, 4, 1793–1802.

[43]

Xu, H.; Chen, J. L.; Zhang, Z. H.; Hung, C. T.; Yang, J. P.; Li, W. In situ confinement of ultrasmall metal nanoparticles in short mesochannels for durable electrocatalytic nitrate reduction with high efficiency and selectivity. Adv. Mater. 2023, 35, 2207522.

[44]

Guan, A. X.; Chen, Z.; Quan, Y. L.; Peng, C.; Wang, Z. Q.; Sham, T. K.; Yang, C.; Ji, Y. L.; Qian, L. P.; Xu, X. et al. Boosting CO2 electroreduction to CH4 via tuning neighboring single-copper sites. ACS Energy Lett. 2020, 5, 1044–1053.

[45]

Groothaert, M. H.; van Bokhoven, J. A.; Battiston, A. A.; Weckhuysen, B. M.; Schoonheydt, R. A. Bis(μ-oxo) dicopper in Cu-ZSM-5 and its role in the decomposition of NO: A combined in situ XAFS, UV–Vis–near-IR, and kinetic study. J. Am. Chem. Soc. 2003, 125, 7629–7640.

[46]

Meng, F. C.; Peng, M.; Chen, Y. L.; Cai, X. B.; Huang, F.; Yang, L. N.; Liu, X.; Li, T.; Wen, X. D.; Wang, N. et al. Defect-rich graphene stabilized atomically dispersed Cu3 clusters with enhanced oxidase-like activity for antibacterial applications. Appl. Catal. B: Environ. 2022, 301, 120826.

[47]

Wang, Y. T.; Zhou, W.; Jia, R. R.; Yu, Y. F.; Zhang, B. Unveiling the activity origin of a copper-based electrocatalyst for selective nitrate reduction to ammonia. Angew. Chem., Int. Ed. 2020, 59, 5350–5354.

[48]

Platzman, I.; Brener, R.; Haick, H.; Tannenbaum, R. Oxidation of polycrystalline copper thin films at ambient conditions. J. Phys. Chem. C 2008, 112, 1101–1108.

[49]

Zhai, W. J.; Huang, S. H.; Lu, C. B.; Tang, X. N.; Li, L. B.; Huang, B. Y.; Hu, T.; Yuan, K.; Zhuang, X. D.; Chen, Y. W. Simultaneously integrate iron single atom and nanocluster triggered tandem effect for boosting oxygen electroreduction. Small 2022, 18, 2107225.

[50]

Wang, Q. L.; Cheng, Y. Q.; Tao, H. B.; Liu, Y. H.; Ma, X. H.; Li, D. S.; Yang, H. B.; Liu, B. Long-term stability challenges and opportunities in acidic oxygen evolution electrocatalysis. Angew. Chem., Int. Ed. 2023, 62, e202216645.

File
12274_2023_6094_MOESM1_ESM.pdf (2.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 15 June 2023
Revised: 10 August 2023
Accepted: 14 August 2023
Published: 18 September 2023
Issue date: April 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

P. P. L. acknowledges the funding support from the National Nature Science Foundation of China (No. 52202372), the Sichuan Science and Technology Program (Nos. 2023NSFSC0436 and 2023NSFSC0089), and the Fundamental Research Funds for the Central Universities (Nos. YJ2021151 and 20826041G4185). T. T. G. acknowledges the Chengdu University new faculty start-up funding (No. 2081920074). The authors would like to thank Xie Han from Shiyanjia Lab (www.shiyanjia.com) for the XPS tests.

Return