Journal Home > Volume 17 , Issue 2

Motile plant tissues can control their configurations and regulate their motion speed according to their specific requirements, which offer various protypes for biomimetic actuators with controlled motion speed. In this perspective, we focus on the speed control of plant tissues and the bioinspired strategies for speed regulation of artificial actuators. We begin with a summary to the strategies and mechanisms of motile plant tissues for controlling motion speed, ranging from ultrafast to ultraslow. We then exemplify the models for fabricating bioinspired artificial actuators and briefly discuss current application scenarios of actuators with varying speeds from ultrafast to ultraslow. Finally, we propose potential strategies for the speed regulation of actuators.


menu
Abstract
Full text
Outline
About this article

Bioinspired strategies for biomimetic actuators from ultrafast to ultraslow

Show Author's information Man Yang1Feilong Zhang1,2( )Shutao Wang1,2( )
CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Motile plant tissues can control their configurations and regulate their motion speed according to their specific requirements, which offer various protypes for biomimetic actuators with controlled motion speed. In this perspective, we focus on the speed control of plant tissues and the bioinspired strategies for speed regulation of artificial actuators. We begin with a summary to the strategies and mechanisms of motile plant tissues for controlling motion speed, ranging from ultrafast to ultraslow. We then exemplify the models for fabricating bioinspired artificial actuators and briefly discuss current application scenarios of actuators with varying speeds from ultrafast to ultraslow. Finally, we propose potential strategies for the speed regulation of actuators.

Keywords: ultrafast, biomimetic actuator, motile plant, speed regulation, ultraslow

References(196)

[1]

Zhang, F. L.; Yang, M.; Xu, X. T.; Liu, X.; Liu, H.; Jiang, L.; Wang, S. T. Unperceivable motion mimicking hygroscopic geometric reshaping of pine cones. Nat. Mater. 2022, 21, 1357–1365.

[2]

Shin, B.; Ha, J.; Lee, M.; Park, K.; Park, G. H.; Choi, T. H.; Cho, K. J.; Kim, H. Y. Hygrobot: A self-locomotive ratcheted actuator powered by environmental humidity. Sci. Robot. 2018, 3, eaar2629.

[3]

Wallin, T. J.; Pikul, J.; Shepherd, R. F. 3D printing of soft robotic systems. Nat. Rev. Mater. 2018, 3, 84–100.

[4]

Laschi, C.; Mazzolai, B. Move imperceptibly. Nat. Mater. 2022, 21, 1350–1351.

[5]

Zhao, Q.; Heyda, J.; Dzubiella, J.; Täuber, K.; Dunlop, J. W. C.; Yuan, J. Y. Sensing solvents with ultrasensitive porous poly(ionic liquid) actuators. Adv. Mater. 2015, 27, 2913–2917.

[6]

Zhang, F. L.; Fan, J. B.; Zhang, P. C.; Liu, M. J.; Meng, J. X.; Jiang, L.; Wang, S. T. A monolithic hydro/organo macro copolymer actuator synthesized via interfacial copolymerization. NPG Asia Mater. 2017, 9, e380.

[7]

Kanik, M.; Orguc, S.; Varnavides, G.; Kim, J.; Benavides, T.; Gonzalez, D.; Akintilo, T.; Tasan, C. C.; Chandrakasan, A. P.; Fink, Y. et al. Strain-programmable fiber-based artificial muscle. Science 2019, 365, 145–150.

[8]

Kameyama, K.; Kishi, Y.; Yoshimura, M.; Kanzawa, N.; Sameshima, M.; Tsuchiya, T. Tyrosine phosphorylation in plant bending. Nature 2000, 407, 37.

[9]

Forterre, Y.; Skotheim, J. M.; Dumais, J.; Mahadevan, L. How the Venus flytrap snaps. Nature 2005, 433, 421–425.

[10]

Singh, A. K.; Prabhakar, S.; Sane, S. P. The biomechanics of fast prey capture in aquatic bladderworts. Biol. Lett. 2011, 7, 547–550.

[11]

Vincent, O.; Weißkopf, C.; Poppinga, S.; Masselter, T.; Speck, T.; Joyeux, M.; Quilliet, C.; Marmottant, P. Ultra-fast underwater suction traps. Proc. Roy. Soc. B 2011, 278, 2909–2914.

[12]

Poppinga, S.; Hartmeyer, S. R. H.; Seidel, R.; Masselter, T.; Hartmeyer, I.; Speck, T. Catapulting tentacles in a sticky carnivorous plant. PLoS One 2012, 7, e45735.

[13]

Armon, S.; Efrati, E.; Kupferman, R.; Sharon, E. Geometry and mechanics in the opening of chiral seed pods. Science 2011, 333, 1726–1730.

[14]

Hofhuis, H.; Hay, A. Explosive seed dispersal. New Phytol. 2017, 216, 339–342.

[15]

Li, X. R.; Deb, J.; Kumar, S. V.; Ostergaard, L. Temperature modulates tissue-specification program to control fruit dehiscence in brassicaceae. Mol. Plant 2018, 11, 598–606.

[16]

Evangelista, D.; Hotton, S.; Dumais, J. The mechanics of explosive dispersal and self-burial in the seeds of the filaree, Erodium cicutarium (Geraniaceae). J. Exp. Biol. 2011, 214, 521–529.

[17]

Cooper, E. S.; Mosher, M. A.; Cross, C. M.; Whitaker, D. L. Gyroscopic stabilization minimizes drag on Ruellia ciliatiflora seeds. J. R. Soc. Interface 2018, 15, 20170901.

[18]

Zhang, Y.; Luo, W.; Wu, M.; Jiang, X. D.; Yu, X. B. The seeds elastic mechanism of mature capsules in Impatiens balsamina L. Bot. Res. 2021, 10, 658–663.

[19]

Zhang, P. L.; Chen, P. Y.; Wang, B. F.; Yu, R. T.; Pan, H. B.; Wang, B. Evaluating the hierarchical, hygroscopic deformation of the Daucus carota umbel through structural characterization and mechanical analysis. Acta Biomater. 2019, 99, 457–468.

[20]

Meng, Q. A.; Wang, Q. B.; Zhao, K. B.; Wang, P. W.; Liu, P. Q.; Liu, H.; Jiang, L. Hydroactuated configuration alteration of fibrous dandelion pappi: Toward self-controllable transport behavior. Adv. Funct. Mater. 2016, 26, 7378–7385.

[21]

Harrington, M. J.; Razghandi, K.; Ditsch, F.; Guiducci, L.; Rueggeberg, M.; Dunlop, J. W. C.; Fratzl, P.; Neinhuis, C.; Burgert, I. Origami-like unfolding of hydro-actuated ice plant seed capsules. Nat. Commun. 2011, 2, 337.

[22]

Dawson, J.; Vincent, J. F. V.; Rocca, A. M. How pine cones open. Nature 1997, 390, 668.

[23]

Elbaum, R.; Zaltzman, L.; Burgert, I.; Fratzl, P. The role of wheat awns in the seed dispersal unit. Science 2007, 316, 884–886.

[24]

Parolin, P. Ombrohydrochory: Rain-operated seed dispersal in plants—With special regard to jet-action dispersal in Aizoaceae. Flora 2006, 201, 511–518.

[25]

Seale, M.; Kiss, A.; Bovio, S.; Viola, I. M.; Mastropaolo, E.; Boudaoud, A.; Nakayama, N. Dandelion pappus morphing is actuated by radially patterned material swelling. Nat. Commun. 2022, 13, 2498.

[26]

Huss, J. C.; Schoeppler, V.; Merritt, D. J.; Best, C.; Maire, E.; Adrien, J.; Spaeker, O.; Janssen, N.; Gladisch, J.; Gierlinger, N. et al. Climate-dependent heat-triggered opening mechanism of Banksia seed pods. Adv. Sci. 2018, 5, 1700572.

[27]

Rafsanjani, A.; Brulé, V.; Western, T. L.; Pasini, D. Hydro-responsive curling of the resurrection plant Selaginella lepidophylla. Sci. Rep. 2015, 5, 8064.

[28]

Ren, L. Q.; Li, B. Q.; Wang, K. Y.; Zhou, X. L.; Song, Z. Y.; Ren, L.; Liu, Q. P. Plant-morphing strategies and plant-inspired soft actuators fabricated by biomimetic four-dimensional printing: A review. Front. Mater. 2021, 8, 651521.

[29]

Quan, H. C.; Kisailus, D.; Meyers, M. A. Hydration-induced reversible deformation of biological materials. Nat. Rev. Mater. 2020, 6, 264–283.

[30]

Skotheim, J. M.; Mahadevan, L. Physical limits and design principles for plant and fungal movements. Science 2005, 308, 1308–1310.

[31]

Hofhuis, H.; Moulton, D.; Lessinnes, T.; Routier-Kierzkowska, A. L.; Bomphrey, R. J.; Mosca, G.; Reinhardt, H.; Sarchet, P.; Gan, X. C.; Tsiantis, M. et al. Morphomechanical innovation drives explosive seed dispersal. Cell 2016, 166, 222–233.

[32]

Vogel, S. Living in a physical world III Getting up to speed. J. Biosci. 2005, 30, 303–312.

[33]

Dumais, J.; Forterre, Y. “Vegetable dynamicks”: The role of water in plant movements. Annu. Rev. Fluid Mech. 2012, 44, 453–478.

[34]

Forterre, Y. Slow, fast and furious: Understanding the physics of plant movements. J. Exp. Bot. 2013, 64, 4745–4760.

[35]

Eder, M.; Schaffner, W.; Burgert, I.; Fratzl, P. Wood and the activity of dead tissue. Adv. Mater. 2021, 33, 2001412.

[36]

Mano, H.; Hasebe, M. Rapid movements in plants. J. Plant Res. 2021, 134, 3–17.

[37]

Timoshenko, S. Analysis of bi-metal thermostats. J. Opt. Soc. Am. 1925, 11, 233–255.

[38]

Edwards, J.; Whitaker, D.; Klionsky, S.; Laskowski, M. J. Botany—A record-breaking pollen catapult. Nature 2005, 435, 164.

[39]

Taylor, P. E.; Card, G.; House, J.; Dickinson, M. H.; Flagan, R. C. High-speed pollen release in the white mulberry tree, Morus alba L. Sex. Plant Reprod. 2006, 19, 19–24.

[40]

Noblin, X.; Rojas, N. O.; Westbrook, J.; Llorens, C.; Argentina, M.; Dumais, J. The fern sporangium: A unique catapult. Science 2012, 335, 1322.

[41]

Swaine, M. D.; Beer, T. Explosive seed dispersal in Hura crepitans L. (Euphorbiaceae). New Phytol. 1977, 78, 695–708.

[42]

Witztum, A.; Schulgasser, K. The mechanics of seed expulsion in acanthaceae. J. Theor. Biol. 1995, 176, 531–542.

[43]

Bar-On, B.; Sui, X. M.; Livanov, K.; Achrai, B.; Kalfon-Cohen, E.; Wiesel, E.; Wagner, H. D. Structural origins of morphing in plant tissues. Appl. Phys. Lett. 2014, 105, 033703.

[44]

Hayashi, M.; Feilich, K. L.; Ellerby, D. J. The mechanics of explosive seed dispersal in orange jewelweed (Impatiens capensis). J. Exp. Bot. 2009, 60, 2045–2053.

[45]

Abraham, Y.; Elbaum, R. Hygroscopic movements in Geraniaceae: The structural variations that are responsible for coiling or bending. New Phytol. 2013, 199, 584–594.

[46]

Vincent, O.; Roditchev, I.; Marmottant, P. Spontaneous firings of carnivorous aquatic Utricularia traps: Temporal patterns and mechanical oscillations. PLoS One 2011, 6, e20205.

[47]

Morris, R. J.; Blyth, M. How water flow, geometry, and material properties drive plant movements. J. Exp. Bot. 2019, 70, 3549–3560.

[48]

Correa, D.; Poppinga, S.; Mylo, M. D.; Westermeier, A. S.; Bruchmann, B.; Menges, A.; Speck, T. 4D pine scale: Biomimetic 4D printed autonomous scale and flap structures capable of multi-phase movement. Philos. Trans. Roy. Soc. A 2020, 378, 20190445.

[49]

Eger, C. J.; Horstmann, M.; Poppinga, S.; Sachse, R.; Thierer, R.; Nestle, N.; Bruchmann, B.; Speck, T.; Bischoff, M.; Rühe, J. The structural and mechanical basis for passive-hydraulic pine cone actuation. Adv. Sci. 2022, 9, 2200458.

[50]

Chen, C. J.; Kuang, Y. D.; Zhu, S. Z.; Burgert, I.; Keplinger, T.; Gong, A.; Li, T.; Berglund, L.; Eichhorn, S. J.; Hu, L. B. Structure–property–function relationships of natural and engineered wood. Nat. Rev. Mater. 2020, 5, 642–666.

[51]

Xiao, S. L.; Chen, C. J.; Xia, Q. Q.; Liu, Y.; Yao, Y.; Chen, Q. Y.; Hartsfield, M.; Brozena, A.; Tu, K. K.; Eichhorn, S. J. et al. Lightweight, strong, moldable wood via cell wall engineering as a sustainable structural material. Science 2021, 374, 465–471.

[52]

Kuang, Y. D.; Chen, C. J.; Cheng, J.; Pastel, G.; Li, T.; Song, J. W.; Jiang, F.; Li, Y. J.; Zhang, Y.; Jang, S. H. et al. Selectively aligned cellulose nanofibers towards high-performance soft actuators. Extreme Mech. Lett. 2019, 29, 100463.

[53]

Abraham, Y.; Tamburu, C.; Klein, E.; Dunlop, J. W. C.; Fratzl, P.; Raviv, U.; Elbaum, R. Tilted cellulose arrangement as a novel mechanism for hygroscopic coiling in the stork’s bill awn. J. R. Soc. Interface 2012, 9, 640–647.

[54]

Liu, X. J.; Gao, M.; Chen, J. Y.; Guo, S.; Zhu, W.; Bai, L. C.; Zhai, W. Z.; Du, H. J.; Wu, H.; Yan, C. Z. et al. Recent advances in stimuli-responsive shape-morphing hydrogels. Adv. Funct. Mater. 2022, 32, 2203323.

[55]

Li, M.; Pal, A.; Aghakhani, A.; Pena-Francesch, A.; Sitti, M. Soft actuators for real-world applications. Nat. Rev. Mater. 2022, 7, 235–249.

[56]

Erb, R. M.; Sander, J. S.; Grisch, R.; Studart, A. R. Self-shaping composites with programmable bioinspired microstructures. Nat. Commun. 2013, 4, 1712.

[57]

Kim, Y. S.; Liu, M. J.; Ishida, Y.; Ebina, Y.; Osada, M.; Sasaki, T.; Hikima, T.; Takata, M.; Aida, T. Thermoresponsive actuation enabled by permittivity switching in an electrostatically anisotropic hydrogel. Nat. Mater. 2015, 14, 1002–1007.

[58]

Liu, M. J.; Ishida, Y.; Ebina, Y.; Sasaki, T.; Hikima, T.; Takata, M.; Aida, T. An anisotropic hydrogel with electrostatic repulsion between cofacially aligned nanosheets. Nature 2015, 517, 68–72.

[59]

Gladman, A. S.; Matsumoto, E. A.; Nuzzo, R. G.; Mahadevan, L.; Lewis, J. A. Biomimetic 4D printing. Nat. Mater. 2016, 15, 413–418.

[60]

Meng, L. L.; Bian, R. X.; Guo, C.; Xu, B. J.; Liu, H.; Jiang, L. Aligning Ag nanowires by a facile bioinspired directional liquid transfer: Toward anisotropic flexible conductive electrodes. Adv. Mater. 2018, 30, 1706938.

[61]

Zhao, C. Q.; Zhang, P. C.; Shi, R. R.; Xu, Y. C.; Zhang, L. H.; Fang, R. C.; Zhao, T. Y.; Qi, S. H.; Jiang, L.; Liu, M. J. Super-tough and strong nanocomposite fibers by flow-induced alignment of carbon nanotubes on grooved hydrogel surfaces. Sci. China Mater. 2019, 62, 1332–1340.

[62]

Zhao, C. Q.; Zhang, P. C.; Zhou, J. J.; Qi, S. H.; Yamauchi, Y.; Shi, R. R.; Fang, R. C.; Ishida, Y.; Wang, S. T.; Tomsia, A. P. et al. Layered nanocomposites by shear-flow-induced alignment of nanosheets. Nature 2020, 580, 210–215.

[63]

Lyu, Z. Y.; Koh, J. J.; Lim, G. J. H.; Zhang, D. W.; Xiong, T.; Zhang, L.; Liu, S. Q.; Duan, J. F.; Ding, J.; Wang, J. et al. Direct ink writing of programmable functional silicone-based composites for 4D printing applications. Interdiscip. Mater. 2022, 1, 507–516.

[64]

Lunni, D.; Cianchetti, M.; Filippeschi, C.; Sinibaldi, E.; Mazzolai, B. Plant-inspired soft bistable structures based on hygroscopic electrospun nanofibers. Adv. Mater. Interfaces 2020, 7, 1901310.

[65]

Thérien-Aubin, H.; Wu, Z. L.; Nie, Z. H.; Kumacheva, E. Multiple shape transformations of composite hydrogel sheets. J. Am. Chem. Soc. 2013, 135, 4834–4839.

[66]

Wu, Z. L.; Moshe, M.; Greener, J.; Therien-Aubin, H.; Nie, Z. H.; Sharon, E.; Kumacheva, E. Three-dimensional shape transformations of hydrogel sheets induced by small-scale modulation of internal stresses. Nat. Commun. 2013, 4, 1586.

[67]

Zhang, L. D.; Naumov, P.; Du, X. M.; Hu, Z. G.; Wang, J. Vapomechanically responsive motion of microchannel-programmed actuators. Adv. Mater. 2017, 29, 1702231.

[68]

Dong, Y.; Wang, J.; Guo, X. K.; Yang, S. S.; Ozen, M. O.; Chen, P.; Liu, X.; Du, W.; Xiao, F.; Demirci, U. et al. Multi-stimuli-responsive programmable biomimetic actuator. Nat. Commun. 2019, 10, 4087.

[69]

Rivera-Tarazona, L. K.; Bhat, V. D.; Kim, H.; Campbell, Z. T.; Ware, T. H. Shape-morphing living composites. Sci. Adv. 2020, 6, eaax8582.

[70]

Zhao, Q.; Dunlop, J. W. C.; Qiu, X. L.; Huang, F. H.; Zhang, Z. B.; Heyda, J.; Dzubiella, J.; Antonietti, M.; Yuan, J. Y. An instant multi-responsive porous polymer actuator driven by solvent molecule sorption. Nat. Commun. 2014, 5, 4293.

[71]

Jamal, M.; Zarafshar, A. M.; Gracias, D. H. Differentially photo-crosslinked polymers enable self-assembling microfluidics. Nat. Commun. 2011, 2, 527.

[72]

Han, D. D.; Zhang, Y. L.; Jiang, H. B.; Xia, H.; Feng, J.; Chen, Q. D.; Xu, H. L.; Sun, H. B. Moisture-responsive graphene paper prepared by self-controlled photoreduction. Adv. Mater. 2015, 27, 332–338.

[73]

Han, B.; Zhang, Y. L.; Zhu, L.; Li, Y.; Ma, Z. C.; Liu, Y. Q.; Zhang, X. L.; Cao, X. W.; Chen, Q. D.; Qiu, C. W. et al. Plasmonic-assisted graphene oxide artificial muscles. Adv. Mater. 2019, 31, 1806386.

[74]

Cheng, H. H.; Liu, J.; Zhao, Y.; Hu, C. G.; Zhang, Z. P.; Chen, N.; Jiang, L.; Qu, L. T. Graphene fibers with predetermined deformation as moisture-triggered actuators and robots. Angew. Chem., Int. Ed. 2013, 52, 10482–10486.

[75]

Fan, W. X.; Shan, C. Y.; Guo, H. Y.; Sang, J. W.; Wang, R.; Zheng, R. R.; Sui, K. Y.; Nie, Z. H. Dual-gradient enabled ultrafast biomimetic snapping of hydrogel materials. Sci. Adv. 2019, 5, eaav7174.

[76]

Lan, R. C.; Sun, J.; Shen, C.; Huang, R.; Zhang, L. Y.; Yang, H. Reversibly and irreversibly humidity-responsive motion of liquid crystalline network gated by SO2 gas. Adv. Funct. Mater. 2019, 29, 1900013.

[77]

Wani, O. M.; Verpaalen, R.; Zeng, H.; Priimagi, A.; Schenning, A. P. H. J. An artificial nocturnal flower via humidity-gated photoactuation in liquid crystal networks. Adv. Mater. 2019, 31, 1805985.

[78]

Hu, Z. B.; Zhang, X. M.; Li, Y. Synthesis and application of modulated polymer gels. Science 1995, 269, 525–527.

[79]

Islam, M. R.; Li, X.; Smyth, K.; Serpe, M. J. Polymer-based muscle expansion and contraction. Angew. Chem., Int. Ed. 2013, 52, 10330–10333.

[80]

Chen, X.; Mahadevan, L.; Driks, A.; Sahin, O. Bacillus spores as building blocks for stimuli-responsive materials and nanogenerators. Nat. Nanotechnol. 2014, 9, 137–141.

[81]

Zhang, X. B.; Yu, Z. B.; Wang, C.; Zarrouk, D.; Seo, J. W. T.; Cheng, J. C.; Buchan, A. D.; Takei, K.; Zhao, Y.; Ager, J. W. et al. Photoactuators and motors based on carbon nanotubes with selective chirality distributions. Nat. Commun. 2014, 5, 2983.

[82]

Magdanz, V.; Stoychev, G.; Ionov, L.; Sanchez, S.; Schmidt, O. G. Stimuli-responsive microjets with reconfigurable shape. Angew. Chem. 2014, 126, 2711–2715.

[83]

Taccola, S.; Greco, F.; Sinibaldi, E.; Mondini, A.; Mazzolai, B.; Mattoli, V. Toward a new generation of electrically controllable hygromorphic soft actuators. Adv. Mater. 2015, 27, 1668–1675.

[84]

Chen, X.; Goodnight, D.; Gao, Z. H.; Cavusoglu, A. H.; Sabharwal, N.; DeLay, M.; Driks, A.; Sahin, O. Scaling up nanoscale water-driven energy conversion into evaporation-driven engines and generators. Nat. Commun. 2015, 6, 7346.

[85]

Li, X.; Serpe, M. J. Understanding the shape memory behavior of self-bending materials and their use as sensors. Adv. Funct. Mater. 2016, 26, 3282–3290.

[86]

Cakmak, O.; El Tinay, H. O.; Chen, X.; Sahin, O. Spore-based water-resistant water-responsive actuators with high power density. Adv. Mater. Technol. 2019, 4, 1800596.

[87]

Wang, M.; Tian, X. L.; Ras, R. H. A.; Ikkala, O. Sensitive humidity-driven reversible and bidirectional bending of nanocellulose thin films as bio-inspired actuation. Adv. Mater. Interfaces 2015, 2, 1500080.

[88]

Zhao, Z.; Hwang, Y.; Yang, Y.; Fan, T. F.; Song, J. H.; Suresh, S.; Cho, N. J. Actuation and locomotion driven by moisture in paper made with natural pollen. Proc. Natl. Acad. Sci. USA 2020, 117, 8711–8718.

[89]

Ma, Y.; Zhang, Y. Y.; Wu, B. S.; Sun, W. P.; Li, Z. G.; Sun, J. Q. Polyelectrolyte multilayer films for building energetic walking devices. Angew. Chem., Int. Ed. 2011, 50, 6254–6257.

[90]

Lee, W. E.; Jin, Y. J.; Park, L. S.; Kwak, G. Fluorescent actuator based on microporous conjugated polymer with intramolecular stack structure. Adv. Mater. 2012, 24, 5604–5609.

[91]

Ma, M. M.; Guo, L.; Anderson, D. G.; Langer, R. Bio-inspired polymer composite actuator and generator driven by water gradients. Science 2013, 339, 186–189.

[92]

Pu, W.; Wei, F. N.; Yao, L. G.; Xie, S. X. A review of humidity-driven actuator: Toward high response speed and practical applications. J. Mater. Sci. 2022, 57, 12202–12235.

[93]

Zhang, M. C.; Wang, Y. L.; Jian, M. Q.; Wang, C. Y.; Liang, X. P.; Niu, J. L.; Zhang, Y. Y. Spontaneous alignment of graphene oxide in hydrogel during 3D printing for multistimuli-responsive actuation. Adv. Sci. 2020, 7, 1903048.

[94]

Piotrowska, R.; Hesketh, T.; Wang, H. Z.; Martin, A. R. G.; Bowering, D.; Zhang, C. Q.; Hu, C. T.; McPhee, S. A.; Wang, T.; Park, Y. et al. Mechanistic insights of evaporation-induced actuation in supramolecular crystals. Nat. Mater. 2021, 20, 403–409.

[95]

Park, Y.; Chen, X. Water-responsive materials for sustainable energy applications. J. Mater. Chem. A 2020, 8, 15227–15244.

[96]

Falahati, M.; Ahmadvand, P.; Safaee, S.; Chang, Y. C.; Lyu, Z. Y.; Chen, R.; Li, L.; Lin, Y. H. Smart polymers and nanocomposites for 3D and 4D printing. Mater. Today 2020, 40, 215–245.

[97]

Wang, J. F.; Liu, Y. Y.; Cheng, Z. J.; Xie, Z. M.; Yin, L.; Wang, W.; Song, Y. B.; Zhang, H. Y.; Wang, Y. S.; Fan, Z. M. Highly conductive MXene film actuator based on moisture gradients. Angew. Chem., Int. Ed. 2020, 59, 14029–14033.

[98]

Nguyen, V. H.; Tabassian, R.; Oh, S.; Nam, S.; Mahato, M.; Thangasamy, P.; Rajabi-Abhari, A.; Hwang, W. J.; Taseer, A. K.; Oh, I. K. Stimuli-responsive MXene-based actuators. Adv. Funct. Mater. 2020, 30, 1909504.

[99]

Wang, J. F.; Ma, H. X.; Liu, Y. Y.; Xie, Z. M.; Fan, Z. M. MXene-based humidity-responsive actuators: Preparation and properties. ChemPlusChem 2021, 86, 406–417.

[100]

Ma, C. X.; Li, T. F.; Zhao, Q.; Yang, X. X.; Wu, J. J.; Luo, Y. W.; Xie, T. Supramolecular lego assembly towards three-dimensional multi-responsive hydrogels. Adv. Mater. 2014, 26, 5665–5669.

[101]

Yang, M.; Wan, X. Z.; Liu, M. Q.; Wang, Z.; Jia, L. X.; Zhang, F. L.; Wang, S. T. Wetting-enabled three-dimensional interfacial polymerization (WET-DIP) for bioinspired anti-dehydration hydrogels. Small 2023, 19, 2208157.

[102]

Liu, Q. H.; Nian, G. D.; Yang, C. H.; Qu, S. X.; Suo, Z. G. Bonding dissimilar polymer networks in various manufacturing processes. Nat. Commun. 2018, 9, 846.

[103]

Yuk, H.; Zhang, T.; Parada, G. A.; Liu, X. Y.; Zhao, X. H. Skin-inspired hydrogel-elastomer hybrids with robust interfaces and functional microstructures. Nat. Commun. 2016, 7, 12028.

[104]

Ilievski, F.; Mazzeo, A. D.; Shepherd, R. F.; Chen, X.; Whitesides, G. M. Soft robotics for chemists. Angew. Chem., Int. Ed. 2011, 50, 1890–1895.

[105]

Shepherd, R. F.; Ilievski, F.; Choi, W.; Morin, S. A.; Stokes, A. A.; Mazzeo, A. D.; Chen, X.; Wang, M.; Whitesides, G. M. Multigait soft robot. Proc. Natl. Acad. Sci. USA 2011, 108, 20400–20403.

[106]

Morin, S. A.; Shepherd, R. F.; Kwok, S. W.; Stokes, A. A.; Nemiroski, A.; Whitesides, G. M. Camouflage and display for soft machines. Science 2012, 337, 828–832.

[107]

Martinez, R. V.; Branch, J. L.; Fish, C. R.; Jin, L. H.; Shepherd, R. F.; Nunes, R. M. D.; Suo, Z. G.; Whitesides, G. M. Robotic tentacles with three-dimensional mobility based on flexible elastomers. Adv. Mater. 2013, 25, 205–212.

[108]

Martinez, R. V.; Glavan, A. C.; Keplinger, C.; Oyetibo, A. I.; Whitesides, G. M. Soft actuators and robots that are resistant to mechanical damage. Adv. Funct. Mater. 2014, 24, 3003–3010.

[109]

Mosadegh, B.; Polygerinos, P.; Keplinger, C.; Wennstedt, S.; Shepherd, R. F.; Gupta, U.; Shim, J.; Bertoldi, K.; Walsh, C. J.; Whitesides, G. M. Pneumatic networks for soft robotics that actuate rapidly. Adv. Funct. Mater. 2014, 24, 2163–2170.

[110]

Pikul, J. H.; Li, S.; Bai, H.; Hanlon, R. T.; Cohen, I.; Shepherd, R. F. Stretchable surfaces with programmable 3D texture morphing for synthetic camouflaging skins. Science 2017, 358, 210–214.

[111]

Siéfert, E.; Reyssat, E.; Bico, J.; Roman, B. Bio-inspired pneumatic shape-morphing elastomers. Nat. Mater. 2019, 18, 24–28.

[112]

Laschi, C.; Mazzolai, B.; Cianchetti, M. Soft robotics: Technologies and systems pushing the boundaries of robot abilities. Sci. Robot. 2016, 1, eaah3690.

[113]

Laschi, C.; Mazzolai, B. Bioinspired materials and approaches for soft robotics. MRS Bull. 2021, 46, 345–349.

[114]

Liu, J. Q.; Iacoponi, S.; Laschi, C.; Wen, L.; Calisti, M. Underwater mobile manipulation: A soft arm on a benthic legged robot. IEEE Robot. Autom. Mag. 2020, 27, 12–26.

[115]

Klein, Y.; Efrati, E.; Sharon, E. Shaping of elastic sheets by prescription of non-euclidean metrics. Science 2007, 315, 1116–1120.

[116]

Kim, J.; Hanna, J. A.; Byun, M.; Santangelo, C. D.; Hayward, R. C. Designing responsive buckled surfaces by halftone gel lithography. Science 2012, 335, 1201–1205.

[117]

Nojoomi, A.; Arslan, H.; Lee, K.; Yum, K. Bioinspired 3D structures with programmable morphologies and motions. Nat. Commun. 2018, 9, 3705.

[118]

Verpaalen, R. C. P.; da Cunha, M. P.; Engels, T. A. P.; Debije, M. G.; Schenning, A. P. H. J. Liquid crystal networks on thermoplastics: Reprogrammable photo-responsive actuators. Angew. Chem., Int. Ed. 2020, 59, 4532–4536.

[119]

Cianchetti, M.; Laschi, C.; Menciassi, A.; Dario, P. Biomedical applications of soft robotics. Nat. Rev. Mater. 2018, 3, 143–153.

[120]

Yu, Q.; Bauer, J. M.; Moore, J. S.; Beebe, D. J. Responsive biomimetic hydrogel valve for microfluidics. Appl. Phys. Lett. 2001, 78, 2589–2591.

[121]

Xu, B. R.; Tian, Z. A.; Wang, J.; Han, H.; Lee, T.; Mei, Y. F. Stimuli-responsive and on-chip nanomembrane micro-rolls for enhanced macroscopic visual hydrogen detection. Sci. Adv. 2018, 4, eaap8203.

[122]

Yang, X. F.; Chang, L. L.; Pérez-Arancibia, N. O. An 88-milligram insect-scale autonomous crawling robot driven by a catalytic artificial muscle. Sci. Robot. 2020, 5, eaba0015.

[123]

Wang, L. M.; Hao, X. M.; Gao, Z. X.; Yang, Z. L.; Long, Y.; Luo, M.; Guan, J. G. Artificial nanomotors: Fabrication, locomotion characterization, motion manipulation, and biomedical applications. Interdiscip. Mater. 2022, 1, 256–280.

[124]

Tian, Z. A.; Xu, B. R.; Wan, G. C.; Han, X. M.; Di, Z. F.; Chen, Z.; Mei, Y. F. Gaussian-preserved, non-volatile shape morphing in three-dimensional microstructures for dual-functional electronic devices. Nat. Commun. 2021, 12, 509.

[125]

Liao, W.; Yang, Z. Q. 3D printing programmable liquid crystal elastomer soft pneumatic actuators. Mater. Horiz 2023, 10, 576–584.

[126]

Zhang, Y. F.; Zhang, N. B.; Hingorani, H.; Ding, N. Y.; Wang, D.; Yuan, C.; Zhang, B.; Gu, G. Y.; Ge, Q. Fast-response, stiffness-tunable soft actuator by hybrid multimaterial 3D printing. Adv. Funct. Mater. 2019, 29, 1806698.

[127]

Li, H.; Wang, J. F. Ultrafast yet controllable dual-responsive all-carbon actuators for implementing unusual mechanical movements. ACS Appl. Mater. Interfaces 2019, 11, 10218–10225.

[128]

Han, D. D.; Liu, Y. Q.; Ma, J. N.; Mao, J. W.; Chen, Z. D.; Zhang, Y. L.; Sun, H. B. Biomimetic graphene actuators enabled by multiresponse graphene oxide paper with pretailored reduction gradient. Adv. Mater. Technol. 2018, 3, 1800258.

[129]

Ji, M. Y.; Jiang, N.; Chang, J.; Sun, J. Q. Near-infrared light-driven, highly efficient bilayer actuators based on polydopamine-modified reduced graphene oxide. Adv. Funct. Mater. 2014, 24, 5412–5419.

[130]

Wang, W.; Xiang, C. X.; Zhu, Q.; Zhong, W. B.; Li, M. F.; Yan, K. L.; Wang, D. Multistimulus responsive actuator with GO and carbon nanotube/PDMS bilayer structure for flexible and smart devices. ACS Appl. Mater. Interfaces 2018, 10, 27215–27223.

[131]

Han, D. D.; Zhang, Y. L.; Liu, Y.; Liu, Y. Q.; Jiang, H. B.; Han, B.; Fu, X. Y.; Ding, H.; Xu, H. L.; Sun, H. B. Bioinspired graphene actuators prepared by unilateral UV irradiation of graphene oxide papers. Adv. Funct. Mater. 2015, 25, 4548–4557.

[132]

Lv, Y. H.; Li, Q. C.; Shi, J. X.; Qin, Z.; Lei, Q. J.; Zhao, B.; Zhu, L. L.; Pan, K. Graphene-based moisture actuator with oriented microstructures prepared by one-step laser reduction for accurately controllable responsive direction and position. ACS Appl. Mater. Interfaces 2022, 14, 12434–12441.

[133]

Zhang, L.; Zhang, Y. Q.; Li, F. B.; Yan, S.; Wang, Z. S.; Fan, L. X.; Zhang, G. Z.; Li, H. J. Water-evaporation-powered fast actuators with multimodal motion based on robust nacre-mimetic composite film. ACS Appl. Mater. Interfaces 2019, 11, 12890–12897.

[134]

Gao, Y. Y.; Zhang, Y. L.; Han, B.; Zhu, L.; Dong, B.; Sun, H. B. Gradient assembly of polymer nanospheres and graphene oxide sheets for dual-responsive soft actuators. ACS Appl. Mater. Interfaces 2019, 11, 37130–37138.

[135]

Ma, J. N.; Zhang, Y. L.; Han, D. D.; Mao, J. W.; Chen, Z. D.; Sun, H. B. Programmable deformation of patterned bimorph actuator swarm. Natl. Sci. Rev. 2020, 7, 775–785.

[136]

Ma, J. N.; Zhang, Y. L.; Han, D. D.; Sun, H. B. Reconfigurable, reversible, and redefinable deformation of GO based on quantum-confined-superfluidics effect. Nano Lett. 2022, 22, 8093–8100.

[137]

Ma, J. N.; Mao, J. W.; Han, D. D.; Fu, X. Y.; Wang, Y. X.; Zhang, Y. L. Laser programmable patterning of RGO/GO janus paper for multiresponsive actuators. Adv. Mater. Technol. 2019, 4, 1900554.

[138]

Castaldo, R.; Lama, G. C.; Aprea, P.; Gentile, G.; Ambrogi, V.; Lavorgna, M.; Cerruti, P. Humidity-driven mechanical and electrical response of graphene/cloisite hybrid films. Adv. Funct. Mater. 2019, 29, 1807744.

[139]

Chathuranga, H.; Marriam, I.; Chen, S.; Zhang, Z. Y.; MacLeod, J.; Liu, Y. N.; Yang, H.; Yan, C. Multistimulus-responsive graphene oxide/Fe3O4/starch soft actuators. ACS Appl. Mater. Interfaces 2022, 14, 16772–16779.

[140]

Qiu, Y. Y.; Wang, M. T.; Zhang, W. Z.; Liu, Y. X.; Li, Y. V.; Pan, K. An asymmetric graphene oxide film for developing moisture actuators. Nanoscale 2018, 10, 14060–14066.

[141]

Zhang, Y. Q.; Jiang, H. Y.; Li, F. B.; Xia, Y. H.; Lei, Y.; Jin, X. H.; Zhang, G. Z.; Li, H. J. Graphene oxide based moisture-responsive biomimetic film actuators with nacre-like layered structures. J. Mater. Chem. A 2017, 5, 14604–14610.

[142]

Arazoe, H.; Miyajima, D.; Akaike, K.; Araoka, F.; Sato, E.; Hikima, T.; Kawamoto, M.; Aida, T. An autonomous actuator driven by fluctuations in ambient humidity. Nat. Mater. 2016, 15, 1084–1089.

[143]

Yang, L. Y.; Cui, J.; Zhang, L.; Xu, X. R.; Chen, X.; Sun, D. P. A moisture-driven actuator based on polydopamine-modified MXene/bacterial cellulose nanofiber composite film. Adv. Funct. Mater. 2021, 31, 2101378.

[144]

Li, P. D.; Su, N.; Wang, Z. Y.; Qiu, J. S. A Ti3C2Tx MXene-based energy-harvesting soft actuator with self-powered humidity sensing and real-time motion tracking capability. ACS Nano 2021, 15, 16811–16818.

[145]

Li, B.; Du, T.; Yu, B.; van der Gucht, J.; Zhou, F. Caterpillar-inspired design and fabrication of A self-walking actuator with anisotropy, gradient, and instant response. Small 2015, 11, 3494–3501.

[146]

Weng, M. C.; Zhou, P. D.; Chen, L. Z.; Zhang, L. L.; Zhang, W.; Huang, Z. G.; Liu, C. H.; Fan, S. S. Multiresponsive bidirectional bending actuators fabricated by a pencil-on-paper method. Adv. Funct. Mater. 2016, 26, 7244–7253.

[147]

Wang, W.; Zhang, Y.; Zhang, Y. L.; Zhang, J. R.; Sun, X. C.; Han, D. D.; Sun, H. B. Multicoating nanoarchitectonics for facile preparation of multi-responsive paper actuators. ACS Appl. Mater. Interfaces 2022, 14, 27242–27250.

[148]

Qin, J. R.; Feng, P. P.; Wang, Y. R.; Du, X. L.; Song, B. T. Nanofibrous actuator with an alignment gradient for millisecond-responsive, multidirectional, multimodal, and multidimensional large deformation. ACS Appl. Mater. Interfaces 2020, 12, 46719–46732.

[149]

Zou, Y. Q.; Lam, A.; Brooks, D. E.; Phani, A. S.; Kizhakkedathu, J. N. Bending and stretching actuation of soft materials through surface-initiated polymerization. Angew. Chem., Int. Ed. 2011, 50, 5116–5119.

[150]

Ryu, J.; Mohammadifar, M.; Tahernia, M.; Chun, H. I.; Gao, Y.; Choi, S. Paper robotics: Self-folding, gripping, and locomotion. Adv. Mater. Technol. 2020, 5, 1901054.

[151]

Le Duigou, A.; Chabaud, G.; Scarpa, F.; Castro, M. Bioinspired electro-thermo-hygro reversible shape-changing materials by 4D printing. Adv. Funct. Mater. 2019, 29, 1903280.

[152]

Yang, M. F.; Wang, S. Q.; Liu, Z. Y.; Chen, Y.; Zaworotko, M. J.; Cheng, P.; Ma, J. G.; Zhang, Z. J. Fabrication of moisture-responsive crystalline smart materials for water harvesting and electricity transduction. J. Am. Chem. Soc. 2021, 143, 7732–7739.

[153]

Mao, T. H.; Liu, Z. Y.; Guo, X. X.; Wang, Z. F.; Liu, J. J.; Wang, T.; Geng, S. B.; Chen, Y.; Cheng, P.; Zhang, Z. J. Engineering covalent organic frameworks with polyethylene glycol as self-sustained humidity-responsive actuators. Angew. Chem., Int. Ed. 2023, 62, e202216318.

[154]

Troyano, J.; Carné-Sánchez, A.; Maspoch, D. Programmable self-assembling 3D architectures generated by patterning of swellable MOF-based composite films. Adv. Mater. 2019, 31, 1808235.

[155]

Troyano, J.; Carné-Sánchez, A.; Pérez-Carvajal, J.; León-Reina, L.; Imaz, I.; Cabeza, A.; Maspoch, D. A self-folding polymer film based on swelling metal-organic frameworks. Angew. Chem., Int. Ed. 2018, 57, 15420–15424.

[156]

Li, J. J.; Mou, L. L.; Zhang, R.; Sun, J. K.; Wang, R.; An, B. G.; Chen, H.; Inoue, K.; Ovalle-Robles, R.; Liu, Z. F. Multi-responsive and multi-motion bimorph actuator based on super-aligned carbon nanotube sheets. Carbon 2019, 148, 487–495.

[157]

Lan, L. F.; Yang, X. S.; Tang, B. L.; Yu, X.; Liu, X. K.; Li, L.; Naumov, P.; Zhang, H. Y. Hybrid elastic organic crystals that respond to aerial humidity. Angew. Chem., Int. Ed. 2022, 61, e202200196.

[158]

Manikandan, G.; Murali, A.; Kumar, R.; Satapathy, D. K. Rapid moisture-responsive silk fibroin actuators. ACS Appl. Mater. Interfaces 2021, 13, 8880–8888.

[159]

Wang, H. Z.; Liu, Z. L.; Lao, J. P.; Zhang, S.; Abzalimov, R.; Wang, T.; Chen, X. High energy and power density peptidoglycan muscles through super-viscous nanoconfined water. Adv. Sci. 2022, 9, 2104697.

[160]

Liu, Y. Y.; Xu, B.; Sun, S. T.; Wei, J.; Wu, L. M.; Yu, Y. L. Humidity- and photo-induced mechanical actuation of cross-linked liquid crystal polymers. Adv. Mater. 2017, 29, 1604792.

[161]

He, Y.; Kong, K. R.; Guo, Z. X.; Fang, W. F.; Ma, Z. Q.; Pan, H. H.; Tang, R. K.; Liu, Z. M. A highly sensitive, reversible, and bidirectional humidity actuator by calcium carbonate ionic oligomers incorporated poly(vinylidene fluoride). Adv. Funct. Mater. 2021, 31, 2101291.

[162]

Li, X. Q.; Ma, B. R.; Dai, J. Y.; Sui, C. X.; Pande, D.; Smith, D. R.; Brinson, L. C.; Hsu, P. C. Metalized polyamide heterostructure as a moisture-responsive actuator for multimodal adaptive personal heat management. Sci. Adv. 2021, 7, eabj7906.

[163]

de Haan, L. T.; Verjans, J. M. N.; Broer, D. J.; Bastiaansen, C. W. M.; Schenning, A. P. H. J. Humidity-responsive liquid crystalline polymer actuators with an asymmetry in the molecular trigger that bend, fold, and curl. J. Am. Chem. Soc. 2014, 136, 10585–10588.

[164]

Ge, W. N.; Zhang, F. S.; Wang, D. D.; Wei, Q. M.; Li, Q. Y.; Feng, Z. X.; Feng, S. L.; Xue, X. Y.; Qing, G. Y.; Liu, Y. H. Highly tough, stretchable, and solvent-resistant cellulose nanocrystal photonic films for mechanochromism and actuator properties. Small 2022, 18, 2107105.

[165]

Carter, N. A.; Grove, T. Z. Protein self-assemblies that can generate, hold, and discharge electric potential in response to changes in relative humidity. J. Am. Chem. Soc. 2018, 140, 7144–7151.

[166]

Li, X. K.; Liu, J. Z.; Li, D. D.; Huang, S. Q.; Huang, K.; Zhang, X. X. Bioinspired multi-stimuli responsive actuators with synergistic color- and morphing-change abilities. Adv. Sci. 2021, 8, 2101295.

[167]

Cao, J.; Zhou, C. L.; Su, G. H.; Zhang, X. X.; Zhou, T.; Zhou, Z. H.; Yang, Y. B. Arbitrarily 3D configurable hygroscopic robots with a covalent-noncov alent interpenetrating network and self-healing ability. Adv. Mater. 2019, 31, 1900042.

[168]

Zhang, L. D.; Liang, H. R.; Jacob, J.; Naumov, P. Photogated humidity-driven motility. Nat. Commun. 2015, 6, 7429.

[169]

Li, B.; Duan, X. Z.; Cheng, D. M.; Chen, X. Y.; Gao, Z. X.; Ren, W. B.; Shao, K. Z.; Zang, H. Y. Controllable transition metal-directed assembly of [Mo2O2S2]2+ building blocks into smart molecular humidity-responsive actuators. J. Am. Chem. Soc. 2023, 145, 2243–2251.

[170]

Kim, K.; Guo, Y. H.; Bae, J.; Choi, S.; Song, H. Y.; Park, S.; Hyun, K.; Ahn, S. K. 4D printing of hygroscopic liquid crystal elastomer actuators. Small 2021, 17, 2100910.

[171]

Malachowski, K.; Breger, J.; Kwag, H. R.; Wang, M. O.; Fisher, J. P.; Selaru, F. M.; Gracias, D. H. Stimuli-responsive theragrippers for chemomechanical controlled release. Angew. Chem., Int. Ed. 2014, 53, 8045–8049.

[172]

Wang, W.; Yao, L. N.; Cheng, C. Y.; Zhang, T.; Atsumi, H.; Wang, L. D.; Wang, G. Y.; Anilionyte, O.; Steiner, H.; Ou, J. F. et al. Harnessing the hygroscopic and biofluorescent behaviors of genetically tractable microbial cells to design biohybrid wearables. Sci. Adv. 2017, 3, e1601984.

[173]

Xu, S.; Yan, Z.; Jang, K. I.; Huang, W.; Fu, H. R.; Kim, J.; Wei, Z. J.; Flavin, M.; McCracken, J.; Wang, R. H. et al. Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling. Science 2015, 347, 154–159.

[174]

Huang, W.; Zhou, J. C.; Froeter, P. J.; Walsh, K.; Liu, S. Y.; Kraman, M. D.; Li, M. Y.; Michaels, J. A.; Sievers, D. J.; Gong, S. B. et al. Three-dimensional radio-frequency transformers based on a self-rolled-up membrane platform. Nat. Electron. 2018, 1, 305–313.

[175]

Lee, W.; Liu, Y.; Lee, Y.; Sharma, B. K.; Shinde, S. M.; Kim, S. D.; Nan, K.; Yan, Z.; Han, M. D.; Huang, Y. G. et al. Two-dimensional materials in functional three-dimensional architectures with applications in photodetection and imaging. Nat. Commun. 2018, 9, 1417.

[176]

Liu, Z. Y.; Qi, D. P.; Leow, W. R.; Yu, J. C.; Xiloyannnis, M.; Cappello, L.; Liu, Y. Q.; Zhu, B. W.; Jiang, Y.; Chen, G. et al. 3D-structured stretchable strain sensors for out-of-plane force detection. Adv. Mater. 2018, 30, 1707285.

[177]

Ning, X.; Yu, X.; Wang, H. L.; Sun, R. J.; Corman, R. E.; Li, H. B.; Lee, C. M.; Xue, Y. G.; Chempakasseril, A.; Yao, Y. et al. Mechanically active materials in three-dimensional mesostructures. Sci. Adv. 2018, 4, eaat8313.

[178]

Han, M. D.; Wang, H. L.; Yang, Y. Y.; Liang, C. M.; Bai, W. B.; Yan, Z.; Li, H. B.; Xue, Y. G.; Wang, X. L.; Akar, B. et al. Three-dimensional piezoelectric polymer microsystems for vibrational energy harvesting, robotic interfaces and biomedical implants. Nat. Electron. 2019, 2, 26–35.

[179]

Huang, W.; Yang, Z. D.; Kraman, M. D.; Wang, Q. Y.; Ou, Z. H.; Rojo, M. M.; Yalamarthy, A. S.; Chen, V.; Lian, F. F.; Ni, J. H. et al. Monolithic mtesla-level magnetic induction by self-rolled-up membrane technology. Sci. Adv. 2020, 6, eaay4508.

[180]

Chen, Z.; Kong, S. C.; He, Y. H.; Yi, S. H.; Liu, G.; Mao, Z. Y.; Huo, M. K.; Chan, C. H.; Lu, J. Soft, bistable actuators for reconfigurable 3D electronics. ACS Appl. Mater. Interfaces 2021, 13, 41968–41977.

[181]

Kim, B. H.; Li, K.; Kim, J. T.; Park, Y.; Jang, H.; Wang, X. J.; Xie, Z. Q.; Won, S. M.; Yoon, H. J.; Lee, G. et al. Three-dimensional electronic microfliers inspired by wind-dispersed seeds. Nature 2021, 597, 503–510.

[182]

Hiendlmeier, L.; Zurita, F.; Vogel, J.; Del Duca, F.; Al Boustani, G.; Peng, H.; Kopic, I.; Nikić, M.; Teshima, T. F.; Wolfrum, B. 4D-printed soft and stretchable self-folding cuff electrodes for small-nerve interfacing. Adv. Mater. 2023, 35, 2210206.

[183]

Kalmykov, A.; Huang, C. J.; Bliley, J.; Shiwarski, D.; Tashman, J.; Abdullah, A.; Rastogi, S. K.; Shukla, S.; Mataev, E.; Feinberg, A. W. et al. Organ-on-e-chip: Three-dimensional self-rolled biosensor array for electrical interrogations of human electrogenic spheroids. Sci. Adv. 2019, 5, eaax0729.

[184]

Huang, Q.; Tang, B. H.; Romero, J. C.; Yang, Y. Q.; Elsayed, S. K.; Pahapale, G.; Lee, T. J.; Pantoja, I. E. M.; Han, F.; Berlinicke, C. et al. Shell microelectrode arrays (MEAs) for brain organoids. Sci. Adv. 2022, 8, eabq5031.

[185]

Zhang, Y. C.; Zheng, N.; Cao, Y.; Wang, F. L.; Wang, P.; Ma, Y. J.; Lu, B. W.; Hou, G. H.; Fang, Z. Z.; Liang, Z. W. et al. Climbing-inspired twining electrodes using shape memory for peripheral nerve stimulation and recording. Sci. Adv. 2019, 5, eaaw1066.

[186]

Jiao, D. J.; Zhu, Q. L.; Li, C. Y.; Zheng, Q.; Wu, Z. L. Programmable morphing hydrogels for soft actuators and robots: From structure designs to active functions. Acc. Chem. Res. 2022, 55, 1533–1545.

[187]

Zhang, F. L.; Li, D.; Wang, C. X.; Liu, Z. H.; Yang, M.; Cui, Z. Q.; Yi, J. Q.; Wang, M.; Jiang, Y.; Lv, Z. S. et al. Shape morphing of plastic films. Nat. Commun. 2022, 13, 7294.

[188]

Wang, J.; Zhao, T. H.; Fan, Y. Y.; Wu, H. M.; Lv, J. A. Leveraging bioinspired structural constraints for tunable and programmable snapping dynamics in high-speed soft actuators. Adv. Funct. Mater. 2023, 33, 2209798.

[189]

Wang, Z.; Huang, K.; Wan, X. Z.; Liu, M. Q.; Chen, Y.; Shi, X. H.; Wang, S. T. High-strength plus reversible supramolecular adhesives achieved by regulating intermolecular PtII···PtII interactions. Angew. Chem., Int. Ed. 2022, 61, e202211495.

[190]

Liu, Z. Y.; Yan, F. Switchable adhesion: On-demand bonding and debonding. Adv. Sci. 2022, 9, 2200264.

[191]

Chen, Y. P.; Meng, J. X.; Gu, Z.; Wan, X. Z.; Jiang, L.; Wang, S. T. Bioinspired multiscale wet adhesive surfaces: Structures and controlled adhesion. Adv. Funct. Mater. 2020, 30, 1905287.

[192]

Jiao, J. R.; Zhang, F. L.; Jiao, T.; Gu, Z.; Wang, S. T. Bioinspired superdurable pestle-loop mechanical interlocker with tunable peeling force, strong shear adhesion, and low noise. Adv. Sci. 2018, 5, 1700787.

[193]

Zhang, F. L.; Jiang, L.; Wang, S. T. Repairable cascaded slide-lock system endows bird feathers with tear-resistance and superdurability. Proc. Natl. Acad. Sci. USA 2018, 115, 10046–10051.

[194]

Caccavo, D.; Cascone, S.; Lamberti, G.; Barba, A. A. Hydrogels: Experimental characterization and mathematical modelling of their mechanical and diffusive behaviour. Chem. Soc. Rev. 2018, 47, 2357–2373.

[195]

Yao, X.; Chen, L.; Ju, J.; Li, C. H.; Tian, Y.; Jiang, L.; Liu, M. J. Superhydrophobic diffusion barriers for hydrogels via confined interfacial modification. Adv. Mater. 2016, 28, 7383–7389.

[196]

Chen, L.; Yao, X.; Gu, Z. D.; Zheng, K. K.; Zhao, C. Q.; Lei, W. W.; Rong, Q. F.; Lin, L.; Wang, J. B.; Jiang, L. et al. Covalent tethering of photo-responsive superficial layers on hydrogel surfaces for photo-controlled release. Chem. Sci. 2017, 8, 2010–2016.

Publication history
Copyright
Acknowledgements

Publication history

Received: 15 June 2023
Revised: 30 July 2023
Accepted: 13 August 2023
Published: 18 September 2023
Issue date: February 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

We acknowledge the support of the National Natural Science Foundation of China (Nos. 22035008, 21972155, and 21988102) and the International Partnership Program of Chinese Academy of Sciences (No. 1A1111KYSB20200010).

Return