Journal Home > Volume 17 , Issue 3

The key to solve increasingly severe electromagnetic (EM) pollution is to explore sustainable, easily prepared, and cost-effective EM wave absorption materials with exceptional absorption capability. Herein, instead of anchoring on carbon materials in single layer, MoS2 flower-like microspheres were stacked on the surface of pomelo peels-derived porous carbon nanosheets (C) to fabricate MoS2@C nanocomposites by a facile solvothermal process. EM wave absorption performances of MoS2@C nanocomposites in X-band were systematically investigated, indicating the minimum reflection loss (RLmin) of −62.3 dB (thickness of 2.88 mm) and effective absorption bandwidth (EAB) almost covering the whole X-band (thickness of 2.63 mm) with the filler loading of only 20 wt.%. Superior EM wave absorption performances of MoS2@C nanocomposites could be attributed to the excellent impedance matching characteristic and dielectric loss capacity (conduction loss and polarization loss). This study revealed that the as-prepared MoS2@C nanocomposites would be a novel prospective candidate for the sustainable EM absorbents with superior EM wave absorption performances.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Stacking MoS2 flower-like microspheres on pomelo peels-derived porous carbon nanosheets for high-efficient X-band electromagnetic wave absorption

Show Author's information Jia Zhao( )Zhe GuQingguo Zhang( )
College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China

Abstract

The key to solve increasingly severe electromagnetic (EM) pollution is to explore sustainable, easily prepared, and cost-effective EM wave absorption materials with exceptional absorption capability. Herein, instead of anchoring on carbon materials in single layer, MoS2 flower-like microspheres were stacked on the surface of pomelo peels-derived porous carbon nanosheets (C) to fabricate MoS2@C nanocomposites by a facile solvothermal process. EM wave absorption performances of MoS2@C nanocomposites in X-band were systematically investigated, indicating the minimum reflection loss (RLmin) of −62.3 dB (thickness of 2.88 mm) and effective absorption bandwidth (EAB) almost covering the whole X-band (thickness of 2.63 mm) with the filler loading of only 20 wt.%. Superior EM wave absorption performances of MoS2@C nanocomposites could be attributed to the excellent impedance matching characteristic and dielectric loss capacity (conduction loss and polarization loss). This study revealed that the as-prepared MoS2@C nanocomposites would be a novel prospective candidate for the sustainable EM absorbents with superior EM wave absorption performances.

Keywords: electromagnetic (EM) wave absorption, MoS2@C nanocomposites, stacked structure, pomelo peels-derived porous carbon nanosheets (C)

References(57)

[1]

Shu, R. W.; Yang, X. H.; Zhao, Z. W. Fabrication of core-shell structure NiFe2O4@SiO2 decorated nitrogen-doped graphene composite aerogels towards excellent electromagnetic absorption in the Ku band. Carbon 2023, 210, 118047.

[2]

Zhang, Y. L.; Ruan, K. P.; Zhou, K.; Gu, J. W. Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 2023, 35, 2211642.

[3]

Lou, Z. C.; Wang, Q. Y.; Zhou, X. D.; Kara, U. I.; Mamtani, R. S.; Lv, H. L.; Zhang, M.; Yang, Z. H.; Li, Y. J.; Wang, C. X. et al. An angle-insensitive electromagnetic absorber enabling a wideband absorption. J. Mater. Sci. Technol. 2022, 113, 33–39.

[4]

Shu, R. W.; Zhao, Z. W.; Yang, X. H. Synthesis of hollow CuFe2O4 microspheres decorated nitrogen-doped graphene hybrid composites for broadband and efficient electromagnetic absorption. J. Colloid Interface Sci. 2023, 648, 66–77.

[5]
Liang, C. B.; Qiu, H.; Zhang, Y. L.; Liu, Y. Q.; Gu, J. W. External field-assisted techniques for polymer matrix composites with electromagnetic interference shielding. Sci. Bull., in press, https://doi.org/10.1016/j.scib.2023.07.046.
DOI
[6]

Guo, Y. Q.; Ruan, K. P.; Wang, G. S.; Gu, J. W. Advances and mechanisms in polymer composites toward thermal conduction and electromagnetic wave absorption. Sci. Bull. 2023, 68, 1195–1212.

[7]

Wen, B.; Wang, X. X.; Cao, W. Q.; Shi, H. L.; Lu, M. M.; Wang, G.; Jin, H. B.; Wang, W. Z.; Yuan, J.; Cao, M. S. Reduced graphene oxides: The thinnest and most lightweight materials with highly efficient microwave attenuation performances of the carbon world. Nanoscale 2014, 6, 5754–5761.

[8]

Cui, X. Q.; Liang, X. H.; Liu, W.; Gu, W. H.; Ji, G. B.; Du, Y. W. Stable microwave absorber derived from 1D customized heterogeneous structures of Fe3N@C. Chem. Eng. J. 2020, 381, 122589.

[9]

Han, Y. X.; He, M. K.; Hu, J. W.; Liu, P. B.; Liu, Z. W.; Ma, Z. L.; Ju, W. B.; Gu, J. W. Hierarchical design of FeCo-based microchains for enhanced microwave absorption in C band. Nano Res. 2023, 16, 1773–1778.

[10]

Shu, R. W.; Wu, J. J.; Yang, X. H. Fabrication of Co/C composites derived from Co-based metal organic frameworks with broadband and efficient electromagnetic absorption. Compos. Part A: Appl. Sci. Manuf. 2023, 173, 107677.

[11]

Cheng, Y.; Zhao, H. Q.; Zhao, Y.; Cao, J. M.; Zheng, J.; Ji, G. B. Structure-switchable mesoporous carbon hollow sphere framework toward sensitive microwave response. Carbon 2020, 161, 870–879.

[12]

E, T.; Ma, Z. Y.; Cai, D.; Yang, S. Y.; Li, Y. Enhancement of interfacial charge transfer of TiO2/graphene with doped Ca2+ for improving electrical conductivity. ACS Appl. Mater. Interfaces 2021, 13, 41875–41885.

[13]

Wu, Y.; Chen, L.; Han, Y. X.; Liu, P. B.; Xu, H. H.; Yu, G. Z.; Wang, Y. Y.; Wen, T.; Ju, W. B.; Gu, J. W. Hierarchical construction of CNT networks in aramid papers for high-efficiency microwave absorption. Nano Res. 2023, 16, 7801–7809.

[14]

Liu, X. D.; Huang, Y.; Zhao, X. X.; Han, X. P.; Jia, Y. W.; Zong, M. Core-shell N-doped carbon nanofibers@poly(3,4-ethylenedioxythiophene): Flexible composite fibers for enhanced electromagnetic wave absorption. Compos. Part A: Appl. Sci. Manuf. 2022, 163, 107227.

[15]

Li, W. X.; Li, B. Q.; Zhao, Y. L.; Wei, X. Q.; Guo, F. Facile synthesis of Fe3O4 nanoparticles/reduced graphene oxide sandwich composites for highly efficient microwave absorption. J. Colloid. Interface. Sci. 2023, 645, 76–85.

[16]

Ren, Q. Q.; Yao, L. W.; Sun, Y. S.; Zhu, H. Y.; Wang, Y. N.; Zhang, H.; Yun, J. N.; Yan, J. F.; Zhang, Z. Y.; Zhao, W. Enhanced electromagnetic wave absorption properties of ultrathin SnO nanosheets/carbon nanotube hybrids. J. Alloys Compd. 2023, 960, 170694.

[17]

Zhao, H. Q.; Cheng, Y.; Zhang, Z.; Zhang, B. S.; Pei, C. C.; Fan, F. Y.; Ji, G. B. Biomass-derived graphene-like porous carbon nanosheets towards ultralight microwave absorption and excellent thermal infrared properties. Carbon 2021, 173, 501–511.

[18]

Zhao, H. Q.; Cheng, Y.; Lv, H. L.; Ji, G. B.; Du, Y. W. A novel hierarchically porous magnetic carbon derived from biomass for strong lightweight microwave absorption. Carbon 2019, 142, 245–253.

[19]

Mou, P. P.; Zhao, J. C.; Wang, G. Z.; Shi, S. H.; Wan, G. P.; Zhou, M. F.; Deng, Z.; Teng, S. J.; Wang, G. L. BCN nanosheets derived from coconut shells with outstanding microwave absorption and thermal conductive properties. Chem. Eng. J. 2022, 437, 135285.

[20]

Chang, Q. L.; Li, C. P.; Sui, J.; Waterhouse, G. I. N.; Zhang, Z. M.; Yu, L. M. Cage-like eggshell membrane-derived Co-CoxSy-Ni/N, S-codoped carbon composites for electromagnetic wave absorption. Chem. Eng. J. 2022, 430, 132650.

[21]

Luo, J. H.; Dai, Z. Y.; Feng, M. N.; Chen, X. W.; Sun, C. H.; Xu, Y. Hierarchically porous carbon derived from natural porphyra for excellent electromagnetic wave absorption. J. Mater. Sci. Technol. 2022, 129, 206–214.

[22]

Zhang, D. Q.; Zhang, H. B.; Cheng, J. Y.; Raza, H.; Liu, T. T.; Liu, B.; Ba, X. W.; Zheng, G. P.; Chen, G. H.; Cao, M. S. Customizing coaxial stacking VS2 nanosheets for dual-band microwave absorption with superior performance in the C- and Ku-bands. J. Mater. Chem. C 2020, 8, 5923–5933.

[23]

Huang, Z. H.; Cheng, J. Y.; Zhang, H. B.; Xiong, Y. F.; Zhou, Z. X.; Zheng, Q. B.; Zheng, G. P.; Zhang, D. Q.; Cao, M. S. High-performance microwave absorption enabled by Co3O4 modified VB-group laminated VS2 with frequency modulation from S-band to Ku-band. J. Mater. Sci. Technol. 2022, 107, 155–164.

[24]

Zhang, D. Q.; Liu, T. T.; Cheng, J. Y.; Cao, Q.; Zheng, G. P.; Liang, S.; Wang, H.; Cao, M. S. Lightweight and high-performance microwave absorber based on 2D WS2-RGO heterostructures. Nano-Micro Lett. 2019, 11, 38.

[25]

Zhang, H. B.; Cheng, J. Y.; Wang, H. H.; Huang, Z. H.; Zheng, Q. B.; Zheng, G. P.; Zhang, D. Q.; Che, R. C.; Cao, M. S. Initiating VB-group laminated NbS2 electromagnetic wave absorber toward superior absorption bandwidth as large as 6.48 GHz through phase engineering modulation. Adv. Funct. Mater. 2022, 32, 2108194.

[26]

Fang, X. R.; Wei, P.; Wang, L.; Wang, X. S.; Chen, B.; He, Q. Y.; Yue, Q. Y.; Zhang, J. D.; Zhao, W. et al. Transforming monolayer transition-metal dichalcogenide nanosheets into one-dimensional nanoscrolls with high photosensitivity. ACS Appl. Mater. Interfaces 2018, 10, 13011–13018.

[27]

Adhikari, S.; Mandal, S.; Kim, D. H. Z-scheme 2D/1D MoS2 nanosheet-decorated Ag2Mo2O7 microrods for efficient catalytic oxidation of levofloxacin. Chem. Eng. J. 2019, 373, 31–43.

[28]

Choi, W.; Choudhary, N.; Han, G. H.; Park, J.; Akinwande, D.; Lee, Y. H. Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater. Today 2017, 20, 116–130.

[29]

Sun, C. L.; Zhao, K. N.; He, Y.; Zheng, J. M.; Xu, W. W.; Zhang, C. Y.; Wang, X. Guo, M.H. ;Mai, L. Q.; Wang, C. M. et al. Interconnected vertically stacked 2D-MoS2 for ultrastable cycling of rechargeable Li-Ion battery. ACS Appl. Mater. Interfaces 2019, 11, 20762–20769.

[30]

Guo, H. Q.; Wang, L.; You, W. B.; Yang, L. T.; Li, X.; Chen, G. Y.; Wu, Z. C.; Qian, X.; Wang, M.; Che, R. C. Engineering phase transformation of MoS2/RGO by N-doping as an excellent microwave absorber. ACS Appl. Mater. Interfaces 2020, 12, 16831–16840.

[31]

Ning, M. Q.; Man, Q. K.; Tan, G. G.; Lei, Z. K.; Li, J. B.; Li, R. W. Ultrathin MoS2 nanosheets encapsulated in hollow carbon spheres: A case of a dielectric absorber with optimized impedance for efficient microwave absorption. ACS Appl. Mater. Interfaces 2020, 12, 20785–20796.

[32]

Yang, K.; Cui, Y. H.; Liu, Z. H.; Liu, P.; Zhang, Q. Y.; Zhang, B. L. Design of core-shell structure NC@MoS2 hierarchical nanotubes as high-performance electromagnetic wave absorber. Chem. Eng. J. 2021, 426, 131308.

[33]

Liu, J. K.; Jia, Z. R.; Zhou, W. H.; Liu, X. H.; Zhang, C. H.; Xu, B. H.; Wu, G. L. Self-assembled MoS2/magnetic ferrite CuFe2O4 nanocomposite for high-efficiency microwave absorption. Chem. Eng. J. 2022, 429, 132253.

[34]

Ma, Z. L.; Xiang, X. L.; Shao, L.; Zhang, Y. L.; Gu, J. W. Multifunctional wearable silver nanowire decorated leather nanocomposites for joule heating, electromagnetic interference shielding and piezoresistive sensing. Angew. Chem., Int. Ed. 2022, 61, e202200705.

[35]

Song, P.; Ma, Z. L.; Qiu, H.; Ru, Y. F.; Gu, J. W. High-efficiency electromagnetic interference shielding of rGO@FeNi/epoxy composites with regular honeycomb structures. Nano-Micro Lett. 2022, 14, 51.

[36]

Zhao, J.; Wei, Y.; Zhang, Y.; Zhang, Q. G. 3D flower-like hollow CuS@PANI microspheres with superb X-band electromagnetic wave absorption. J. Mater. Sci. Technol. 2022, 126, 141–151.

[37]

Zhao, J.; Li, M.; Gao, X. G. Construction of SnO2 nanoparticle cluster@PANI core-shell microspheres for efficient X-band electromagnetic wave absorption. J. Alloys Compd. 2022, 915, 165439.

[38]

Liu, P. B.; Gao, S.; Wang, Y.; Zhou, F. T.; Huang, Y.; Huang, W. H.; Chang, N. H. Core–shell Ni@C encapsulated by N-doped carbon derived from nickel-organic polymer coordination composites with enhanced microwave absorption. Carbon 2020, 170, 503–516.

[39]

Lian, Y. L.; Han, B. H.; Liu, D. W.; Wang, Y. H.; Zhao, H. H.; Xu, P.; Han, X. J.; Du, Y. C. Solvent-free synthesis of ultrafine tungsten carbide nanoparticles-decorated carbon nanosheets for microwave absorption. Nano-Micro Lett. 2020, 12, 153.

[40]

Wang, X. Y.; Zhu, T.; Chang, S. C.; Lu, Y. K.; Mi, W. B.; Wang, W. 3D nest-like architecture of core–shell CoFe2O4@1T/2H-MoS2 composites with tunable microwave absorption performance. ACS Appl. Mater. Interfaces 2020, 12, 11252–11264.

[41]

Cheng, J.; Cai, L.; Shi, Y. Y.; Pan, F.; Dong, Y. Y.; Zhu, X. J.; Jiang, H. J.; Zhang, X.; Xiang, Z.; Lu, W. Polarization loss-enhanced honeycomb-like MoS2 nanoflowers/undaria pinnatifida-derived porous carbon composites with high-efficient electromagnetic wave absorption. Chem. Eng. J. 2022, 431, 134284.

[42]

Luo, J. H.; Feng, M. N.; Dai, Z. Y.; Jiang, C. Y.; Yao, W.; Zhai, N. X. MoS2 wrapped MOF-derived N-doped carbon nanocomposite with wideband electromagnetic wave absorption. Nano Res. 2022, 15, 5781–5789.

[43]

Zhang, W. D.; Zhang, X.; Zheng, Y.; Guo, C.; Yang, M. Y.; Li, Z.; Wu, H. J.; Qiu, H.; Yan, H. X.; Qi, S. H. Preparation of polyaniline@MoS2@Fe3O4 nanowires with a wide band and small thickness toward enhancement in microwave absorption. ACS Appl. Nano Mater. 2018, 1, 5865–5875.

[44]

Cheng, J. B.; Zhao, H. B.; Cao, M.; Li, M. E.; Zhang, A. N.; Li, S. L.; Wang, Y. Z. Banana leaflike C-doped MoS2 aerogels toward excellent microwave absorption performance. ACS Appl. Mater. Interfaces 2020, 12, 26301–26312.

[45]

Xing, L. S.; Li, X.; Wu, Z. C.; Yu, X. F.; Liu, J. W.; Wang, L.; Cai, C. Y.; You, W. B.; Chen, G. Y.; Ding, J. J. et al. 3D hierarchical local heterojunction of MoS2/FeS2 for enhanced microwave absorption. Chem. Eng. J. 2020, 379, 122241.

[46]

Zhang, W. L.; Zhao, J. M.; Cai, C. C.; Qin, Y.; Meng, X. J.; Liu, Y. H.; Nie, S. X. Gas-sensitive cellulosic triboelectric materials for self-powered ammonia sensing. Adv. Sci. (Weinh.) 2022, 9, 2203428.

[47]

Wei, C. H.; He, M. K.; Li, M. Q.; Ma, X.; Dang, W. L.; Liu, P. B.; Gu, J. W. Hollow Co/NC@MnO2 polyhedrons with enhanced synergistic effect for high-efficiency microwave absorption. Mater. Today Phys. 2023, 36, 101142.

[48]

Cui, E. B.; Pan, F.; Xiang, Z.; Liu, Z. C.; Yu, L. Z.; Xiong, J.; Li, X.; Lu, W. Engineering dielectric loss of FeCo/polyvinylpyrrolidone core-shell nanochains@graphene oxide composites with excellent microwave absorbing properties. Adv. Eng. Mater. 2021, 23, 2000827.

[49]

Yan, X.; Huang, X. X.; Zhong, B.; Wu, T.; Wang, H. T.; Zhang, T.; Bai, N.; Zhou, G. P.; Pan, H.; Wen, G. W. et al. Balancing interface polarization strategy for enhancing electromagnetic wave absorption of carbon materials. Chem. Eng. J. 2020, 391, 123538.

[50]

Li, X.; Huang, C.; Wang, Z. L.; Xiang, Z.; Lu, W. Enhanced electromagnetic wave absorption of layered FeCo@carbon nanocomposites with a low filler loading. J. Alloys Compd. 2021, 879, 160465.

[51]

Xiang, Z.; Deng, B. W.; Huang, C.; Liu, Z. C.; Song, Y. M.; Lu, W. Rational design of hollow nanosphere γ-Fe2O3/MWCNTs composites with enhanced electromagnetic wave absorption. J. Alloys Compd. 2020, 822, 153570.

[52]

Liu, W.; Tan, S. J.; Yang, Z. H.; Ji, G. B. Enhanced low-frequency electromagnetic properties of MOF-derived cobalt through interface design. ACS Appl. Mater. Interfaces 2018, 10, 31610–31622.

[53]

Kong, L.; Yin, X. W.; Zhang, Y. J.; Yuan, X. Y.; Li, Q.; Ye, F.; Cheng, L. F.; Zhang, L. T. Electromagnetic wave absorption properties of reduced graphene oxide modified by maghemite colloidal nanoparticle clusters. J. Phys. Chem. C 2013, 117, 19701–19711.

[54]

Kong, L.; Yin, X. W.; Yuan, X. Y.; Zhang, Y. J.; Liu, X. M.; Cheng, L. F.; Zhang, L. T. Electromagnetic wave absorption properties of graphene modified with carbon nanotube/poly(dimethyl siloxane) composites. Carbon 2014, 73, 185–193.

[55]

Zhao, J.; Lu, Y. J.; Ye, W. L.; Wang, L.; Liu, B.; Lv, S. S.; Chen, L. X.; Gu, J. W. Enhanced wave-absorbing performances of silicone rubber composites by incorporating C-SnO2-MWCNT absorbent with ternary heterostructure. Ceram. Int. 2019, 45, 20282–20289.

[56]

Han, M. K.; Yin, X. W.; Kong, L.; Li, M.; Duan, W. Y.; Zhang, L. T.; Cheng, L. F. Graphene-wrapped ZnO hollow spheres with enhanced electromagnetic wave absorption properties. J. Mater. Chem. A 2014, 2, 16403–16409.

[57]

Liu, Y.; Jian, X. Y.; Su, X. L.; Luo, F.; Xu, J.; Wang, J. B.; He, X. H.; Qu, Y. H. Electromagnetic interference shielding and absorption properties of Ti3SiC2/nano Cu/epoxy resin coating. J. Alloys Compd. 2018, 740, 68–76.

File
12274_2023_6090_MOESM1_ESM.pdf (1.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 01 August 2023
Revised: 11 August 2023
Accepted: 12 August 2023
Published: 18 September 2023
Issue date: March 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgement

This work was supported by the PhD Start-up Fund of Science and Technology Department of Liaoning Province (No. 2022-BS-306), the General Cultivation Scientific Research Project of Bohai University (No. 0522xn058), and the PhD Research Startup Foundation of Bohai University (No. 0521bs021).

Return