Journal Home > Volume 17 , Issue 4

Metal nanoparticle@porous material composites have attracted increasing attention due to their excellent synergistic catalytic performance. However, it is a challenge to introduce metal nanoparticles into cavities of porous materials without agglomeration on the exterior. Despite the progress achieved, a universal approach that can integrate different kinds of metal nanoparticles and porous materials is still highly desirable. Here we report a facile and general approach to fabricating metal nanoparticle@porous materials by microwave-triggered selective heating. The microwave can pass through the non-polar solvent and act on the polar solvent in the porous materials, causing the polar solvent to be heated, vaporized, and away from the pores of porous materials. The local void produced by the escape of polar solvent facilitates non-polar solvent containing metallic precursor to be dragged into the narrow pores, followed by further reduction, resulting in the complete encapsulation of nanoparticles. A series of metal nanoparticles@porous materials, ranging from metal-organic frameworks (MOFs) to zeolites, are successfully prepared by this method and show excellent size selectivity in catalytic reactions.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Incorporating metal nanoparticles in porous materials via selective heating effect using microwave

Show Author's information Yingyu ZhouJiacheng LiuFuyuan SunJunchen OuyangRuifa SuFanchen MengYongqi LuoCheng XuWeina ZhangSuoying Zhang( )Fengwei Huo( )
Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, China

Abstract

Metal nanoparticle@porous material composites have attracted increasing attention due to their excellent synergistic catalytic performance. However, it is a challenge to introduce metal nanoparticles into cavities of porous materials without agglomeration on the exterior. Despite the progress achieved, a universal approach that can integrate different kinds of metal nanoparticles and porous materials is still highly desirable. Here we report a facile and general approach to fabricating metal nanoparticle@porous materials by microwave-triggered selective heating. The microwave can pass through the non-polar solvent and act on the polar solvent in the porous materials, causing the polar solvent to be heated, vaporized, and away from the pores of porous materials. The local void produced by the escape of polar solvent facilitates non-polar solvent containing metallic precursor to be dragged into the narrow pores, followed by further reduction, resulting in the complete encapsulation of nanoparticles. A series of metal nanoparticles@porous materials, ranging from metal-organic frameworks (MOFs) to zeolites, are successfully prepared by this method and show excellent size selectivity in catalytic reactions.

Keywords: porous material, microwave synthesis, selective catalysis, nanoparticle encapsulation, selective heating effect

References(36)

[1]

Zhao, M. T.; Yuan, K.; Wang, Y.; Li, G. D.; Guo, J.; Gu, L.; Hu, W. P.; Zhao, H. J.; Tang, Z. Y. Metal-organic frameworks as selectivity regulators for hydrogenation reactions. Nature 2016, 539, 76–80.

[2]

Zhang, L. L.; Liu, L.; Pan, Z. Y.; Zhang, R.; Gao, Z. Y.; Wang, G. M.; Huang, K. K.; Mu, X. Y.; Bai, F. Q.; Wang, Y. et al. Visible-light-driven non-oxidative dehydrogenation of alkanes at ambient conditions. Nat. Energy 2022, 7, 1042–1051.

[3]

Li, Z.; Chen, Y. J.; Ji, S. F.; Tang, Y.; Chen, W. X.; Li, A.; Zhao, J.; Xiong, Y.; Wu, Y. E.; Gong, Y. et al. Iridium single-atom catalyst on nitrogen-doped carbon for formic acid oxidation synthesized using a general host-guest strategy. Nat. Chem. 2020, 12, 764–772.

[4]

Yang, Q. H.; Xu, Q.; Jiang, H. L. Metal-organic frameworks meet metal nanoparticles: Synergistic effect for enhanced catalysis. Chem. Soc. Rev. 2017, 46, 4774–4808.

[5]

Guo, J.; Wan, Y.; Zhu, Y. F.; Zhao, M. T.; Tang, Z. Y. Advanced photocatalysts based on metal nanoparticle/metal-organic framework composites. Nano Res. 2021, 14, 2037–2052.

[6]

Xu, M. L.; Li, D. D.; Sun, K.; Jiao, L.; Xie, C. F.; Ding, C. M.; Jiang, H. L. Interfacial microenvironment modulation boosting electron transfer between metal nanoparticles and MOFs for enhanced photocatalysis. Angew. Chem., Int. Ed. 2021, 60, 16372–16376.

[7]

Shen, Y.; Pan, T.; Wang, L.; Ren, Z.; Zhang, W. N.; Huo, F. W. Programmable logic in metal-organic frameworks for catalysis. Adv. Mater. 2021, 33, 2007442.

[8]

Wang, B. Q.; Liu, W. X.; Zhang, W. N.; Liu, J. F. Nanoparticles@nanoscale metal-organic framework composites as highly efficient heterogeneous catalysts for size- and shape-selective reactions. Nano Res. 2017, 10, 3826–3835.

[9]
Xiao, L. Y.; Cheng, C. Q.; Li, Z. X.; Zheng, C. Y.; Du, J.; Song, M. N.; Wan, Y.; Li, S. P.; Jun, G.; Zhao, M. T. Dynamically modulated synthesis of hollow metal-organic frameworks for selective hydrogenation reactions. Nano Res., in press, https://doi.org/ 10.1007/s12274-023-5750-7.
[10]

Li, L. Y.; Li, Z. X.; Yang, W. J.; Huang, Y. M.; Huang, G.; Guan, Q. Q.; Dong, Y. M.; Lu, J. L.; Yu, S. H.; Jiang, H. L. Integration of Pd nanoparticles with engineered pore walls in MOFs for enhanced catalysis. Chem 2021, 7, 686–698.

[11]

Ge, X. Y.; Wong, R.; Anisa, A.; Ma, S. Q. Recent development of metal-organic framework nanocomposites for biomedical applications. Biomaterials 2022, 281, 121322.

[12]

Wang, Q.; Astruc, D. State of the art and prospects in metal-organic framework (MOF)-based and MOF-derived nanocatalysis. Chem. Rev. 2020, 120, 1438–1511.

[13]

Sabo, M.; Henschel, A.; Fröde, H.; Klemm, E.; Kaskel, S. Solution infiltration of palladium into MOF-5: Synthesis, physisorption and catalytic properties. J. Mater. Chem. 2007, 17, 3827–3832.

[14]

Pan, Y. Y.; Yuan, B. Z.; Li, Y. W.; He, D. H. Multifunctional catalysis by Pd@MIL-101: One-step synthesis of methyl isobutyl ketone over palladium nanoparticles deposited on a metal-organic framework. Chem. Commun. 2010, 46, 2280–2282.

[15]

Khajavi, H.; Stil, H. A.; Kuipers, H. P. C. E.; Gascon, J.; Kapteijn, F. Shape and transition state selective hydrogenations using egg-shell Pt-MIL-101(Cr) catalyst. ACS Catal. 2013, 3, 2617–2626.

[16]

Koo, W. T.; Choi, S. J.; Kim, S. J.; Jang, J. S.; Tuller, H. L.; Kim, I. D. Heterogeneous sensitization of metal-organic framework driven metal@metal oxide complex catalysts on an oxide nanofiber scaffold toward superior gas sensors. J. Am. Chem. Soc. 2016, 138, 13431–13437.

[17]

Guo, Z. Y.; Xiao, C. X.; Maligal-Ganesh, R. V.; Zhou, L.; Goh, T. W.; Li, X. L.; Tesfagaber, D.; Thiel, A.; Huang, W. Y. Pt nanoclusters confined within metal-organic framework cavities for chemoselective cinnamaldehyde hydrogenation. ACS Catal. 2014, 4, 1340–1348.

[18]

Aijaz, A.; Karkamkar, A.; Choi, Y. J.; Tsumori, N.; Rönnebro, E.; Autrey, T.; Shioyama, H.; Xu, Q. Immobilizing highly catalytically active Pt nanoparticles inside the pores of metal-organic framework: A double solvents approach. J. Am. Chem. Soc. 2012, 134, 13926–13929.

[19]

Shen, Y.; Li, Z. F.; Guo, S. Y.; Shao, Y. R.; Hu, T. L. Encapsulation of ultrafine metal-organic framework nanoparticles within multichamber carbon spheres by a two-step double-solvent strategy for high-performance catalysts. ACS Appl. Mater. Interfaces 2011, 13, 12169–12180.

[20]

Hermes, S.; Schröter, M. K.; Schmid, R.; Khodeir, L.; Muhler, M.; Tissler, A.; Fischer, R. W.; Fischer, R. A. Metal@MOF: Loading of highly porous coordination polymers host lattices by metal organic chemical vapor deposition. Angew. Chem., Int. Ed. 2005, 44, 6237–6241.

[21]

Yang, W. Q.; Liu, Q. L.; Yang, J.; Xian, J. H.; Li, Y. L.; Li, G. Q.; Su, C. Y. Ultrafine PdRu nanoparticles immobilized in metal-organic frameworks for efficient fluorophenol hydrodefluorination under mild aqueous conditions. CCS Chem. 2022, 4, 2276–2285.

[22]

Hermannsdörfer, J.; Kempe, R. Selective palladium-loaded MIL-101 catalysts. Chem.—Eur. J. 2011, 17, 8071–8077.

[23]

Park, Y. K.; Choi, S. B.; Nam, H. J.; Jung, D. Y.; Ahn, H. C.; Choi, K.; Furukawa, H.; Kim, J. Catalytic nickel nanoparticles embedded in a mesoporous metal-organic framework. Chem. Commun. 2010, 46, 3086–3088.

[24]

Yang, Q. H.; Chen, Y. Z.; Wang, Z. U.; Xu, Q.; Jiang, H. L. One-pot tandem catalysis over Pd@MIL-101: Boosting the efficiency of nitro compound hydrogenation by coupling with ammonia borane dehydrogenation. Chem. Commun. 2015, 51, 10419–10422.

[25]

Dhankhar, A.; Rai, R. K.; Tyagi, D.; Yao, X.; Singh, S. K. Synergistic catalysis with MIL-101: Stabilized highly active bimetallic NiPd and CuPd alloy nanoparticle catalysts for C-C coupling reactions. ChemistrySelect 2016, 1, 3223–3227.

[26]

Zhu, Q. L.; Li, J.; Xu, Q. Immobilizing metal nanoparticles to metal-organic frameworks with size and location control for optimizing catalytic performance. J. Am. Chem. Soc. 2013, 135, 10210–10213.

[27]

Chen, Y. Z.; Xu, Q.; Yu, S. H.; Jiang, H. L. Tiny Pd@Co core–shell nanoparticles confined inside a metal-organic framework for highly efficient catalysis. Small 2015, 11, 71–76.

[28]

Jiang, H. L.; Liu, B.; Akita, T.; Haruta, M.; Sakurai, H.; Xu, Q. Au@ZIF-8: CO oxidation over gold nanoparticles deposited to metal-organic framework. J. Am. Chem. Soc. 2009, 131, 11302–11303.

[29]

Mukoyoshi, M.; Kobayashi, H.; Kusada, K.; Hayashi, M.; Yamada, T.; Maesato, M.; Taylor, J. M.; Kubota, Y.; Kato, K.; Takata, M. et al. Hybrid materials of Ni NP@MOF prepared by a simple synthetic method. Chem. Commun. 2015, 51, 12463–12466.

[30]

Li, G. Q.; Kobayashi, H.; Kusada, K.; Taylor, J. M.; Kubota, Y.; Kato, K.; Takata, M.; Yamamoto, T.; Matsumura, S.; Kitagawa, H. An ordered bcc CuPd nanoalloy synthesised via the thermal decomposition of Pd nanoparticles covered with a metal-organic framework under hydrogen gas. Chem. Commun. 2014, 50, 13750–13753.

[31]

Zhang, W. N.; Lu, G.; Cui, C. L.; Liu, Y. Y.; Li, S. Z.; Yan, W. J.; Xing, C.; Chi, Y. R.; Yang, Y. H.; Huo, F. W. A family of metal-organic frameworks exhibiting size-selective catalysis with encapsulated noble-metal nanoparticles. Adv. Mater. 2014, 26, 4056–4060.

[32]

Lu, G.; Li, S. Z.; Guo, Z.; Farha, O. K.; Hauser, B. G.; Qi, X. Y.; Wang, Y.; Wang, X.; Han, S. Y.; Liu, X. G. et al. Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation. Nat. Chem. 2012, 4, 310–316.

[33]

Zhou, J. J.; Wang, P.; Wang, C. X.; Goh, Y. T.; Fang, Z.; Messersmith, P. B.; Duan, H. W. Versatile core–shell nanoparticle@metal-organic framework nanohybrids: Exploiting mussel-inspired polydopamine for tailored structural integration. ACS Nano 2015, 9, 6951–6960.

[34]

Maurin-Pasturel, G.; Long, J.; Guari, Y.; Godiard, F.; Willinger, M. G.; Guerin, C.; Larionova, J. Nanosized heterostructures of Au@prussian blue analogues: Towards multifunctionality at the nanoscale. Angew. Chem., Int. Ed. 2014, 53, 3872–3876.

[35]

Yang, Q. H.; Xu, Q.; Yu, S. H.; Jiang, H. L. Pd Nanocubes@ZIF-8: Integration of plasmon-driven photothermal conversion with a metal-organic framework for efficient and selective catalysis. Angew. Chem., Int. Ed. 2016, 55, 3685–3689.

[36]

Sugikawa, K.; Furukawa, Y.; Sada, K. SERS-active metal-organic frameworks embedding gold nanorods. Chem. Mater 2011, 23, 3132–3134.

File
12274_2023_6089_MOESM1_ESM.pdf (601.9 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 17 July 2023
Revised: 12 August 2023
Accepted: 13 August 2023
Published: 21 September 2023
Issue date: April 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21908105, 21971114 and 62288102) and the Nanjing Municipal Science and Technology Innovation Project.

Return