Journal Home > Volume 17 , Issue 4

Assembly of two-dimensional (2D) metal–organic layers (MOLs) based on the hard and soft acid–base theorem represents an exquisite strategy for the construction of photocatalytic platforms in virtue of the highly exposed active sites, much improved mass transport, and greatly elevated stability. Herein, nanocages composed of MOLs are produced for the first time through a cosolvent approach utilizing zirconium-based UiO-66-(OH)2 as the structural precursor. To endow the catalytic activity for CO2 conversion, single atomic Co2+ sites are appended to the Zr-oxo nodes of the MOL cages, demonstrating a remarkable CO yield of 7.74 mmol·g−1·h−1 and operational stability of 97.1% product retention after five repeated cycles. Such an outstanding photocatalytic performance is mainly attributed to the unique nanocage morphology comprising enormous 2D nanosheets for augmented Co2+ exposure and the abundant surface hydroxyl groups for local CO2 enrichment. This work underlines the tailoring of both metal–organic framework (MOF) morphology and functionality to boost the turnover rate of photocatalytic CO2 reduction reaction (CO2RR).


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Hydroxylated metal–organic-layer nanocages anchoring single atomic cobalt sites for robust photocatalytic CO2 reduction

Show Author's information Weiyi Pan1,2Zhihe Wei1,2Yanhui Su1,2Yuebin Lian3Zhangyi Zheng1,2Huihong Yuan1,2Yongze Qin1,2Xulan Xie1,2Qianqian Bai1,2Zhenyang Jiao1,2Wei Hua1,2Jinzhou Chen1,2Wenjun Yang1,2Zhao Deng1,2( )Yang Peng1,2,4( )
Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou 215006, China
Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
School of Photoelectric Engineering, Changzhou institute of technology, Changzhou 213032, China
Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, China

Abstract

Assembly of two-dimensional (2D) metal–organic layers (MOLs) based on the hard and soft acid–base theorem represents an exquisite strategy for the construction of photocatalytic platforms in virtue of the highly exposed active sites, much improved mass transport, and greatly elevated stability. Herein, nanocages composed of MOLs are produced for the first time through a cosolvent approach utilizing zirconium-based UiO-66-(OH)2 as the structural precursor. To endow the catalytic activity for CO2 conversion, single atomic Co2+ sites are appended to the Zr-oxo nodes of the MOL cages, demonstrating a remarkable CO yield of 7.74 mmol·g−1·h−1 and operational stability of 97.1% product retention after five repeated cycles. Such an outstanding photocatalytic performance is mainly attributed to the unique nanocage morphology comprising enormous 2D nanosheets for augmented Co2+ exposure and the abundant surface hydroxyl groups for local CO2 enrichment. This work underlines the tailoring of both metal–organic framework (MOF) morphology and functionality to boost the turnover rate of photocatalytic CO2 reduction reaction (CO2RR).

Keywords: single-atom catalyst, photocatalytic CO2 reduction, co-catalyst, nanocage, metal–organic layer

References(54)

[1]

Singh, G.; Lee, J.; Karakoti, A.; Bahadur, R.; Yi, J. B.; Zhao, D. Y.; Albahily, K.; Vinu, A. Emerging trends in porous materials for CO2 capture and conversion. Chem. Soc. Rev. 2020, 49, 4360–4404.

[2]

Gao, W. L.; Liang, S. Y.; Wang, R. J.; Jiang, Q.; Zhang, Y.; Zheng, Q. W.; Xie, B. Q.; Toe, C. Y.; Zhu, X. C.; Wang, J. Y. et al. Industrial carbon dioxide capture and utilization: State of the art and future challenges. Chem. Soc. Rev. 2020, 49, 8584–8686.

[3]

Zhang, J. H.; Zhong, D. C.; Lu, T. B. Co(II)-based molecular complexes for photochemical CO2 reduction. Acta Phys. -Chim. Sin. 2021, 37, 2008068.

[4]

Li, X.; Yu, J. G.; Jaroniec, M.; Chen, X. B. Cocatalysts for selective photoreduction of CO2 into solar fuels. Chem. Rev. 2019, 119, 3962–4179.

[5]

Kovačič, Ž.; Likozar, B.; Huš, M. Photocatalytic CO2 reduction: A review of ab initio mechanism, kinetics, and multiscale modeling simulations. ACS Catal. 2020, 10, 14984–15007.

[6]

Li, K.; Peng, B. S.; Peng, T. Y. Recent advances in heterogeneous photocatalytic CO2 conversion to solar fuels. ACS Catal. 2016, 6, 7485–7527.

[7]

Gao, C.; Wang, J.; Xu, H. X.; Xiong, Y. J. Coordination chemistry in the design of heterogeneous photocatalysts. Chem. Soc. Rev. 2017, 46, 2799–2823.

[8]

Materna, K. L.; Jiang, J. B.; Regan, K. P.; Schmuttenmaer, C. A.; Crabtree, R. H.; Brudvig, G. W. Optimization of photoanodes for photocatalytic water oxidation by combining a heterogenized iridium water-oxidation catalyst with a high-potential porphyrin photosensitizer. ChemSusChem 2017, 10, 4526–4534.

[9]

Sabbah, A.; Shown, I.; Qorbani, M.; Fu, F. Y.; Lin, T. Y.; Wu, H. L.; Chung, P. W.; Wu, C. I.; Santiago, S. R. M.; Shen, J. L. et al. Boosting photocatalytic CO2 reduction in a ZnS/ZnIn2S4 heterostructure through strain-induced direct Z-scheme and a mechanistic study of molecular CO2 interaction thereon. Nano Energy 2022, 93, 106809.

[10]

Zhang, Y. Z.; Zhi, X.; Harmer, J. R.; Xu, H. L.; Davey, K.; Ran, J. R.; Qiao, S. Z. Facet-specific active surface regulation of BixMOy (M = Mo, V, W) nanosheets for boosted photocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2022, 61, e202212355.

[11]

Yu, H.; Wu, X.; Mu, Q. Q.; Wei, Z. H.; Gu, Y. D.; Yuan, X. Z.; Lu, Y. T.; Deng, Z.; Peng, Y. Robust photocatalytic hydrogen production on metal-organic layers of Al-TCPP with ultrahigh turnover numbers. Chin. Chem. Lett. 2021, 32, 3833–3836.

[12]

Xiong, X. Y.; Zhao, Y. F.; Shi, R.; Yin, W. J.; Zhao, Y. X.; Waterhouse, G. I. N.; Zhang, T. R. Selective photocatalytic CO2 reduction over Zn-based layered double hydroxides containing tri or tetravalent metals. Sci. Bull. 2020, 65, 987–994.

[13]

Zhao, Y. F.; Waterhouse, G. I. N.; Chen, G. B.; Xiong, X. Y.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Two-dimensional-related catalytic materials for solar-driven conversion of COx into valuable chemical feedstocks. Chem. Soc. Rev. 2019, 48, 1972–2010.

[14]

Liu, Q.; Cheng, H.; Chen, T. X.; Lo, T. W. B.; Xiang, Z. M.; Wang, F. X. Regulating the *OCCHO intermediate pathway towards highly selective photocatalytic CO2 reduction to CH3CHO over locally crystallized carbon nitride. Energy Environ. Sci. 2022, 15, 225–233.

[15]

Su, Y. H.; Song, Z. L.; Zhu, W.; Mu, Q. Q.; Yuan, X. Z.; Lian, Y. B.; Cheng, H.; Deng, Z.; Chen, M. Z.; Yin, W. J. et al. Visible-light photocatalytic CO2 reduction using metal-organic framework derived Ni(OH)2 nanocages: A synergy from multiple light reflection, static charge transfer, and oxygen vacancies. ACS Catal. 2021, 11, 345–354.

[16]

Zhang, X. W.; Wang, P.; Lv, X. Y.; Niu, X. Y.; Lin, X. Y.; Zhong, S. X.; Wang, D. M.; Lin, H. J.; Chen, J. R.; Bai, S. Stacking engineering of semiconductor heterojunctions on hollow carbon spheres for boosting photocatalytic CO2 reduction. ACS Catal. 2022, 12, 2569–2580.

[17]

You, F. F.; Wan, J. W.; Qi, J.; Mao, D.; Yang, N. L.; Zhang, Q. H.; Gu, L.; Wang, D. Lattice distortion in hollow multi-shelled structures for efficient visible-light CO2 reduction with a SnS2/SnO2 junction. Angew. Chem., Int. Ed. 2020, 59, 721–724.

[18]

Bie, C. B.; Zhu, B. C.; Xu, F. Y.; Zhang, L. Y.; Yu, J. G. In situ grown monolayer N-doped graphene on CdS hollow spheres with seamless contact for photocatalytic CO2 reduction. Adv. Mater. 2019, 31, 1902868.

[19]

Ding, M. L.; Flaig, R. W.; Jiang, H. L.; Yaghi, O. M. Carbon capture and conversion using metal-organic frameworks and MOF-based materials. Chem. Soc. Rev. 2019, 48, 2783–2828.

[20]

Mialane, P.; Mellot-Draznieks, C.; Gairola, P.; Duguet, M.; Benseghir, Y.; Oms, O.; Dolbecq, A. Heterogenisation of polyoxometalates and other metal-based complexes in metal-organic frameworks: From synthesis to characterisation and applications in catalysis. Chem. Soc. Rev. 2021, 50, 6152–6220.

[21]

He, H. M.; Sun, Q.; Gao, W. Y.; Perman, J. A.; Sun, F. X.; Zhu, G. S.; Aguila, B.; Forrest, K.; Space, B.; Ma, S. Q. A stable metal-organic framework featuring a local buffer environment for carbon dioxide fixation. Angew. Chem., Int. Ed. 2018, 57, 4657–4662.

[22]

Sun, K.; Qian, Y. Y.; Jiang, H. L. Metal-organic frameworks for photocatalytic water splitting and CO2 reduction. Angew. Chem., Int. Ed. 2023, 62, e202217565.

[23]

He, Y. Q.; Li, C. G.; Chen, X. B.; Shi, Z.; Feng, S. H. Visible-light-responsive UiO-66(Zr) with defects efficiently promoting photocatalytic CO2 reduction. ACS Appl. Mater. Interfaces 2022, 14, 28977–28984.

[24]

Li, J.; Huang, H. L.; Xue, W. J.; Sun, K.; Song, X. H.; Wu, C. R.; Nie, L.; Li, Y.; Liu, C. Y.; Pan, Y. et al. Self-adaptive dual-metal-site pairs in metal-organic frameworks for selective CO2 photoreduction to CH4. Nat. Catal. 2021, 4, 719–729.

[25]

Wang, J. X.; Sun, K.; Wang, D. N.; Niu, X. W.; Lin, Z. Y.; Wang, S. Y.; Yang, W. J.; Huang, J. E.; Jiang, H. L. Precise regulation of the coordination environment of single Co(II) sites in a metal-organic framework for boosting CO2 photoreduction. ACS Catal. 2023, 13, 8760–8769.

[26]

Zhao, R.; Liang, Z. B.; Zou, R. Q.; Xu, Q. Metal-organic frameworks for batteries. Joule 2018, 2, 2235–2259.

[27]

Cao, L. Y.; Wang, C. Metal-organic layers for electrocatalysis and photocatalysis. ACS Cent. Sci. 2020, 6, 2149–2158.

[28]

Cao, L. Y.; Lin, Z. K.; Peng, F.; Wang, W. W.; Huang, R. Y.; Wang, C.; Yan, J. W.; Liang, J.; Zhang, Z. M.; Zhang, T. et al. Self-supporting metal-organic layers as single-site solid catalysts. Angew. Chem., Int. Ed. 2016, 55, 4962–4966.

[29]

Li, F. L.; Wang, P. T.; Huang, X. Q.; Young, D. J.; Wang, H. F.; Braunstein, P.; Lang, J. P. Large-scale, bottom-up synthesis of binary metal-organic framework nanosheets for efficient water oxidation. Angew. Chem., Int. Ed. 2019, 58, 7051–7056.

[30]

Yang, W.; Wang, H. J.; Liu, R. R.; Wang, J. W.; Zhang, C.; Li, C.; Zhong, D. C.; Lu, T. B. Tailoring crystal facets of metal-organic layers to enhance photocatalytic activity for CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 409–414.

[31]

He, T.; Ni, B.; Zhang, S. M.; Gong, Y.; Wang, H. Q.; Gu, L.; Zhuang, J.; Hu, W. P.; Wang, X. Ultrathin 2D zirconium metal-organic framework nanosheets: Preparation and application in photocatalysis. Small 2018, 14, 1703929.

[32]

Luo, T. K.; Fan, Y. J.; Mao, J. M.; Yuan, E.; You, E.; Xu, Z. W.; Lin, W. B. Dimensional reduction enhances photodynamic therapy of metal-organic nanophotosensitizers. J. Am. Chem. Soc. 2022, 144, 5241–5246.

[33]

Rada, Z. H.; Abid, H. R.; Shang, J.; Sun, H. Q.; He, Y. D.; Webley, P.; Liu, S. M.; Wang, S. B. Functionalized UiO-66 by single and binary (OH)2 and NO2 groups for uptake of CO2 and CH4. Ind. Eng. Chem. Res. 2016, 55, 7924–7932.

[34]

Saiz, P. G.; Iglesias, N.; Gonzalez Navarrete, B.; Rosales, M.; Quintero, Y. M.; Reizabal, A.; Orive, J.; Fidalgo Marijuan, A.; Larrea, E. S.; Lopes, A. C. et al. Chromium speciation in zirconium-based metal-organic frameworks for environmental remediation. Chem. -Eur. J. 2020, 26, 13861–13872.

[35]

Gutterød, E. S.; Pulumati, S. H.; Kaur, G.; Lazzarini, A.; Solemsli, B. G.; Gunnaes, A. E.; Ahoba-Sam, C.; Kalyva, M. E.; Sannes, J. A.; Svelle, S. et al. Influence of defects and H2O on the hydrogenation of CO2 to methanol over Pt nanoparticles in UiO-67 metal-organic framework. J. Am. Chem. Soc. 2020, 142, 17105–17118.

[36]

Planas, N.; Mondloch, J. E.; Tussupbayev, S.; Borycz, J.; Gagliardi, L.; Hupp, J. T.; Farha, O. K.; Cramer, C. J. Defining the proton topology of the Zr6-based metal-organic framework NU-1000. J. Phys. Chem. Lett. 2014, 5, 3716–3723.

[37]

Ma, X.; Liu, H.; Yang, W. J.; Mao, G. Y.; Zheng, L. R.; Jiang, H. L. Modulating coordination environment of single-atom catalysts and their proximity to photosensitive units for boosting MOF photocatalysis. J. Am. Chem. Soc. 2021, 143, 12220–12229.

[38]

Manna, K.; Ji, P. F.; Lin, Z. K.; Greene, F. X.; Urban, A.; Thacker, N. C.; Lin, W. B. Chemoselective single-site Earth-abundant metal catalysts at metal-organic framework nodes. Nat. Commun. 2016, 7, 12610.

[39]

Gutiérrez-Tarriño, S.; Olloqui-Sariego, J. L.; Calvente, J. J.; Espallargas, G. M.; Rey, F.; Corma, A.; Oña-Burgos, P. Cobalt metal-organic framework based on layered double nanosheets for enhanced electrocatalytic water oxidation in neutral media. J. Am. Chem. Soc. 2020, 142, 19198–19208.

[40]

Li, Y.; Chen, G.; Zhu, Y. P.; Hu, Z. W.; Chan, T. S.; She, S. X.; Dai, J.; Zhou, W.; Shao, Z. P. Activating both basal plane and edge sites of layered cobalt oxides for boosted water oxidation. Adv. Funct. Mater. 2021, 31, 2103569.

[41]

An, L.; Zhang, H.; Zhu, J. M.; Xi, S. B.; Huang, B. L.; Sun, M. Z.; Peng, Y.; Xi, P. X.; Yan, C. H. Balancing activity and stability in spinel cobalt oxides through geometrical sites occupation towards efficient electrocatalytic oxygen evolution. Angew. Chem., Int. Ed. 2023, 62, e202214600.

[42]

Zheng, H. L.; Huang, S. L.; Luo, M. B.; Wei, Q.; Chen, E. X.; He, L.; Lin, Q. P. Photochemical in situ exfoliation of metal-organic frameworks for enhanced visible-light-driven CO2 reduction. Angew. Chem., Int. Ed. 2020, 59, 23588–23592.

[43]

Ke, Y.; Liang, Q.; Zhao, S.; Zhang, Z. H.; Li, X. Z.; Li, Z. Y. In situ self-assembled ZIF-67/MIL-125-derived Co3O4/TiO2 p–n heterojunctions for enhanced photocatalytic CO2 reduction. Inorg. Chem. 2022, 61, 2652–2661.

[44]

Wei, M. J.; Xu, X. Y.; Song, J. Q.; Pan, M.; Su, C. Y. A 2D layered cobalt-based metal-organic framework for photoreduction of CO2 to syngas with a controllable wide ratio range. J. Mater. Chem. A 2023, 11, 691–699.

[45]

Han, C.; Zhang, X. D.; Huang, S. S.; Hu, Y.; Yang, Z.; Li, T. T.; Li, Q. P.; Qian, J. J. MOF-on-MOF-derived hollow Co3O4/In2O3 nanostructure for efficient photocatalytic CO2 reduction. Adv. Sci. 2023, 10, 2300797.

[46]

Yang, H. L.; Zhang, D. D.; Luo, Y.; Yang, W. X.; Zhan, X. Q.; Yang, W. Y.; Hou, H. L. Highly efficient and selective visible-light driven photoreduction of CO2 to CO by metal-organic frameworks-derived Ni-Co-O porous microrods. Small 2022, 18, 2202939.

[47]

Yang, H.; Lai, C. L.; Wu, M. L.; Wang, S. D.; Xia, Y.; Pan, F. F.; Lv, K. L.; Wen, L. L. Novel amino-functionalized Ni(II)-based MOFs for efficiently photocatalytic reduction of CO2 to CO with superior selectivity under visible-light illumination. Chem. Eng. J. 2023, 455, 140425.

[48]

Zhao, Y. J.; Shao, Z. C.; Cui, Y.; Geng, K. S.; Meng, X. R.; Wu, J.; Hou, H. W. Guest-induced multilevel charge transport strategy for developing metal-organic frameworks to boost photocatalytic CO2 reduction. Small 2023, 19, 2300398.

[49]

Gao, X. S.; Guo, B.; Guo, C. M.; Meng, Q. D.; Liang, J.; Liu, J. X. Zirconium-based metal-organic framework for efficient photocatalytic reduction of CO2 to CO: The influence of doped metal ions. ACS Appl. Mater. Interfaces 2020, 12, 24059–24065.

[50]

Wang, Y.; Huang, N. Y.; Shen, J. Q.; Liao, P. Q.; Chen, X. M.; Zhang, J. P. Hydroxide ligands cooperate with catalytic centers in metal-organic frameworks for efficient photocatalytic CO2 reduction. J. Am. Chem. Soc. 2018, 140, 38–41.

[51]

Zhong, W. F.; Sa, R. J.; Li, L. Y.; He, Y. J.; Li, L. Y.; Bi, J. H.; Zhuang, Z. Y.; Yu, Y.; Zou, Z. G. A covalent organic framework bearing single Ni sites as a synergistic photocatalyst for selective photoreduction of CO2 to CO. J. Am. Chem. Soc. 2019, 141, 7615–7621.

[52]

Mu, X. X.; Jiang, J. F.; Chao, F. F.; Lou, Y. B.; Chen, J. X. Ligand modification of UiO-66 with an unusual visible light photocatalytic behavior for RhB degradation. Dalton Trans. 2018, 47, 1895–1902.

[53]

Gao, C.; Chen, S. M.; Wang, Y.; Wang, J. W.; Zheng, X. S.; Zhu, J. F.; Song, L.; Zhang, W. K.; Xiong, Y. J. Heterogeneous single-atom catalyst for visible-light-driven high-turnover CO2 reduction: The role of electron transfer. Adv. Mater. 2018, 30, 1704624.

[54]

Lv, G. R.; Liu, J. M.; Xiong, Z. H.; Zhang, Z. H.; Guan, Z. Y. Selectivity adsorptive mechanism of different nitrophenols on UiO-66 and UiO-66-NH2 in aqueous solution. J. Chem. Eng. Data 2016, 61, 3868–3876.

File
12274_2023_6083_MOESM1_ESM.pdf (4.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 15 June 2023
Revised: 02 August 2023
Accepted: 10 August 2023
Published: 14 September 2023
Issue date: April 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 22075193 and 22072101), the Natural Science Foundation of Jiangsu Province (Nos. BK20221239, BK20211306, and BK20220027), the Six Talent Peaks Project in Jiangsu Province (No. TD-XCL-006), and the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions. Besides, we also acknowledge the support from Soochow Municipal Laboratory for low carbon technologies and industries.

Return