Journal Home > Volume 17 , Issue 4

Assembly of two-dimensional (2D) metal–organic layers (MOLs) based on the hard and soft acid–base theorem represents an exquisite strategy for the construction of photocatalytic platforms in virtue of the highly exposed active sites, much improved mass transport, and greatly elevated stability. Herein, nanocages composed of MOLs are produced for the first time through a cosolvent approach utilizing zirconium-based UiO-66-(OH)2 as the structural precursor. To endow the catalytic activity for CO2 conversion, single atomic Co2+ sites are appended to the Zr-oxo nodes of the MOL cages, demonstrating a remarkable CO yield of 7.74 mmol·g−1·h−1 and operational stability of 97.1% product retention after five repeated cycles. Such an outstanding photocatalytic performance is mainly attributed to the unique nanocage morphology comprising enormous 2D nanosheets for augmented Co2+ exposure and the abundant surface hydroxyl groups for local CO2 enrichment. This work underlines the tailoring of both metal–organic framework (MOF) morphology and functionality to boost the turnover rate of photocatalytic CO2 reduction reaction (CO2RR).

File
12274_2023_6083_MOESM1_ESM.pdf (4.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 15 June 2023
Revised: 02 August 2023
Accepted: 10 August 2023
Published: 14 September 2023
Issue date: April 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 22075193 and 22072101), the Natural Science Foundation of Jiangsu Province (Nos. BK20221239, BK20211306, and BK20220027), the Six Talent Peaks Project in Jiangsu Province (No. TD-XCL-006), and the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions. Besides, we also acknowledge the support from Soochow Municipal Laboratory for low carbon technologies and industries.

Return