Journal Home > Volume 17 , Issue 4

The solar-driven reduction of CO2 into valuable products is a promising method to alleviate global environmental problems and energy crises. However, the low surface charge density limits the photocatalytic conversion performance of CO2. Herein, a polymeric carbon nitride (PCN) photocatalyst with Zn single atoms (Zn1/CN) was designed and synthesized for CO2 photoreduction. The results of the CO2 photoreduction studies show that the CO and CH4 yields of Zn1/CN increased fivefold, reaching 76.9 and 22.9 μmol/(g·h), respectively, in contrast to the unmodified PCN. Ar+ plasma-etched X-ray photoelectron spectroscopy and synchrotron radiation-based X-ray absorption fine structure results reveal that Zn single atom is mainly present in the interlayer space of PCN in the Zn–N4 configuration. Photoelectrochemical characterizations indicate that the interlayer Zn–N4 configuration can amplify light absorption and establish an interlayer charge transfer channel. Light-assisted Kelvin probe force microscopy confirms that more photogenerated electrons are delivered to the catalyst surface through interlayer Zn–N4 configuration, which increases its surface charge density. Further, in-situ infrared spectroscopy combined with density functional theory calculation reveals that promoted surface charge density accelerates key intermediates (*COOH) conversion, thus achieving efficient CO2 conversion. This work elucidates the role of internal single atoms in catalytic surface reactions, which provides important implications for the design of single-atom catalysts.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Promoted surface charge density from interlayer Zn–N4 configuration in carbon nitride for enhanced CO2 photoreduction

Show Author's information Xianjin Shi1,2,3Yu Huang1,2( )Gangqiang Zhu4Wei Peng1,2Meijuan Chen5
State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Key Laboratory of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an 710061, China
Center of Excellence in Quaternary Science and Global Change, Chinese Academy of Sciences, Xi’an 710061, China
University of Chinese Academy of Sciences, Beijing 100049, China
School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710062, China
School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an 710049, China

Abstract

The solar-driven reduction of CO2 into valuable products is a promising method to alleviate global environmental problems and energy crises. However, the low surface charge density limits the photocatalytic conversion performance of CO2. Herein, a polymeric carbon nitride (PCN) photocatalyst with Zn single atoms (Zn1/CN) was designed and synthesized for CO2 photoreduction. The results of the CO2 photoreduction studies show that the CO and CH4 yields of Zn1/CN increased fivefold, reaching 76.9 and 22.9 μmol/(g·h), respectively, in contrast to the unmodified PCN. Ar+ plasma-etched X-ray photoelectron spectroscopy and synchrotron radiation-based X-ray absorption fine structure results reveal that Zn single atom is mainly present in the interlayer space of PCN in the Zn–N4 configuration. Photoelectrochemical characterizations indicate that the interlayer Zn–N4 configuration can amplify light absorption and establish an interlayer charge transfer channel. Light-assisted Kelvin probe force microscopy confirms that more photogenerated electrons are delivered to the catalyst surface through interlayer Zn–N4 configuration, which increases its surface charge density. Further, in-situ infrared spectroscopy combined with density functional theory calculation reveals that promoted surface charge density accelerates key intermediates (*COOH) conversion, thus achieving efficient CO2 conversion. This work elucidates the role of internal single atoms in catalytic surface reactions, which provides important implications for the design of single-atom catalysts.

Keywords: photocatalytic CO2 reduction, surface charge density, single-atom catalysts, charge transfer dynamics, interlayer modification

References(51)

[1]

Hepburn, C.; Adlen, E.; Beddington, J.; Carter, E. A.; Fuss, S.; Dowell, N. M.; Minx, J. C.; Smith, P.; Williams, C. K. The technological and economic prospects for CO2 utilization and removal. Nature 2019, 575, 87–97.

[2]

Jiang, Z.; Xu, X. H.; Ma, Y. H.; Cho, H. S.; Ding, D.; Wang, C.; Wu, J.; Oleynikov, P.; Jia, M.; Cheng, J. et al. Filling metal-organic framework mesopores with TiO2 for CO2 photoreduction. Nature 2020, 586, 549–554.

[3]

Diercks, C. S.; Liu, Y. Z.; Cordova, K. E.; Yaghi, O. M. The role of reticular chemistry in the design of CO2 reduction catalysts. Nat. Mater. 2018, 17, 301–307.

[4]

Collado, L.; Reynal, A.; Fresno, F.; Barawi, M.; Escudero, C.; Perez-Dieste, V.; Coronado, J. M.; Serrano, D. P.; Durrant, J. R.; de la Peña O'Shea, V. A. Unravelling the effect of charge dynamics at the plasmonic metal/semiconductor interface for CO2 photoreduction. Nat. Commun. 2018, 9, 4986.

[5]

Habisreutinger, S. N.; Schmidt-Mende, L.; Stolarczyk, J. K. Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew. Chem., Int. Ed. 2013, 52, 7372–7408.

[6]

Xie, S. J.; Wang, Y.; Zhang, Q. H.; Deng, W. P.; Wang, Y. MgO- and Pt-promoted TiO2 as an efficient photocatalyst for the preferential reduction of carbon dioxide in the presence of water. ACS Catal. 2014, 4, 3644–3653.

[7]

Lu, K. Q.; Li, Y. H.; Zhang, F.; Qi, M. Y.; Chen, X.; Tang, Z. R.; Yamada, Y. M. A.; Anpo, M.; Conte, M.; Xu, Y. J. Rationally designed transition metal hydroxide nanosheet arrays on graphene for artificial CO2 reduction. Nat. Commun. 2020, 11, 5181.

[8]

Chen, Y. H.; Qi, M. Y.; Li, Y. H.; Tang, Z. R.; Wang, T.; Gong, J. L.; Xu, Y. J. Activating two-dimensional Ti3C2Tx-MXene with single-atom cobalt for efficient CO2 photoreduction. Cell Rep. Phys. Sci. 2021, 2, 100371.

[9]

Xiao, Y.; Zhang, W. B. High throughput screening of M3C2 MXenes for efficient CO2 reduction conversion into hydrocarbon fuels. Nanoscale 2020, 12, 7660–7673.

[10]

Zhang, T.; Lin, W. B. Metal-organic frameworks for artificial photosynthesis and photocatalysis. Chem. Soc. Rev. 2014, 43, 5982–5993.

[11]

Huang, N. Y.; He, H.; Liu, S. J.; Zhu, H. L.; Li, Y. J.; Xu, J.; Huang, J. R.; Wang, X.; Liao, P. Q.; Chen, X. M. Electrostatic attraction-driven assembly of a metal-organic framework with a photosensitizer boosts photocatalytic CO2 reduction to CO. J. Am. Chem. Soc. 2021, 143, 17424–17430.

[12]

Huang, N. Y.; Shen, J. Q.; Zhang, X. W.; Liao, P. Q.; Zhang, J. P.; Chen, X. M. Coupling ruthenium bipyridyl and cobalt imidazolate units in a metal-organic framework for an efficient photosynthetic overall reaction in diluted CO2. J. Am. Chem. Soc. 2022, 144, 8676–8682.

[13]

Wang, Y.; Zhang, Z. Z.; Zhang, L. N.; Luo, Z. B.; Shen, J. N.; Lin, H. X.; Long, J. L.; Wu, J. C. S.; Fu, X. Z.; Wang, X. X. et al. Visible-Light driven overall conversion of CO2 and H2O to CH4 and O2 on 3D-SiC@2D-MoS2 heterostructure. J. Am. Chem. Soc. 2018, 140, 14595–14598.

[14]

Ong, W. J.; Tan, L. L.; Ng, Y. H.; Yong, S. T.; Chai, S. P. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability. . Chem. Rev. 2016, 116, 7159–7329.

[15]

Cao, S. W.; Low, J.; Yu, J. G.; Jaroniec, M. Polymeric photocatalysts based on graphitic carbon nitride. Adv. Mater. 2015, 27, 2150–2176.

[16]

He, J.; Janaky, C. Recent advances in solar-driven carbon dioxide conversion: Expectations versus reality. ACS Energy Lett. 2020, 5, 1996–2014.

[17]

Cao, Y. H.; Guo, L.; Dan, M.; Doronkin, D. E.; Han, C. Q.; Rao, Z. Q.; Liu, Y.; Meng, J.; Huang, Z. A.; Zheng, K. B. et al. Modulating electron density of vacancy site by single Au atom for effective CO2 photoreduction. Nat. Commun. 2021, 12, 1675.

[18]

Wang, Y. Y.; Qu, Y.; Qu, B. H.; Bai, L. L.; Liu, Y.; Yang, Z. D.; Zhang, W.; Jing, L. Q.; Fu, H. G. Construction of six-oxygen-coordinated single Ni sites on g-C3N4 with boron-oxo species for photocatalytic water-activation-induced CO2 reduction. Adv. Mater. 2021, 33, 2105482.

[19]

Huang, G. C.; Niu, Q.; He, Y. X.; Tian, J. J.; Gao, M. B.; Li, C. Y.; An, N.; Bi, J. H.; Zhang, J. W. Spatial confinement of copper single atoms into covalent triazine-based frameworks for highly efficient and selective photocatalytic CO2 reduction. Nano Res. 2022, 15, 8001–8009.

[20]

Cheng, L.; Zhang, P.; Wen, Q. Y.; Fan, J. J.; Xiang, Q. J. Copper and platinum dual-single-atoms supported on crystalline graphitic carbon nitride for enhanced photocatalytic CO2 reduction. Chin. J. Catal. 2022, 43, 451–460.

[21]

Shi, X. J.; Huang, Y.; Bo, Y. N.; Duan, D. L.; Wang, Z. Y.; Cao, J. J.; Zhu, G. Q.; Ho, W.; Wang, L. Q.; Huang, T. T. et al. Highly selective photocatalytic CO2 methanation with water vapor on single-atom platinum-decorated defective carbon nitride. Angew. Chem., Int. Ed. 2022, 61, e202203063.

[22]

Jiang, X. H.; Zhang, L. S.; Liu, H. Y.; Wu, D. S.; Wu, F. Y.; Tian, L.; Liu, L. L.; Zou, J. P.; Luo, S. L.; Chen, B. B. Silver single atom in carbon nitride catalyst for highly efficient photocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2020, 59, 23112–23116.

[23]

Ji, S. F.; Qu, Y.; Wang, T.; Chen, Y. J.; Wang, G. F.; Li, X.; Dong, J. C.; Chen, Q. Y.; Zhang, W. Y.; Zhang, Z. D. et al. Rare-earth single erbium atoms for enhanced photocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2020, 59, 10651–10657.

[24]

Lakhi, K. S.; Park, D. H.; Al-Bahily, K.; Cha, W.; Viswanathan, B.; Choy, J. H.; Vinu, A. Mesoporous carbon nitrides: Synthesis, functionalization, and applications. Chem. Soc. Rev. 2017, 46, 72–101.

[25]

Fu, J. W.; Yu, J. G.; Jiang, C. J.; Cheng, B. g-C3N4-based heterostructured photocatalysts. Adv. Energy Mater. 2018, 8, 1701503.

[26]

Zhang, L. Z.; Jia, Y.; Liu, H. L.; Zhuang, L. Z.; Yan, X. C.; Lang, C. G.; Wang, X.; Yang, D. J.; Huang, K. K.; Feng, S. H. et al. Charge polarization from atomic metals on adjacent graphitic layers for enhancing the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2019, 58, 9404–9408.

[27]

Zeng, Z. X.; Su, Y.; Quan, X.; Choi, W.; Zhang, G. H.; Liu, N.; Kim, B.; Chen, S.; Yu, H. T.; Zhang, S. S. Single-atom platinum confined by the interlayer nanospace of carbon nitride for efficient photocatalytic hydrogen evolution. Nano Energy 2020, 69, 104409.

[28]

Li, Y. R.; Wang, Z. W.; Xia, T.; Ju, H. X.; Zhang, K.; Long, R.; Xu, Q.; Wang, C. M.; Song, L.; Zhu, J. F. et al. Implementing metal-to-ligand charge transfer in organic semiconductor for improved visible-near-infrared photocatalysis. Adv. Mater. 2016, 28, 6959–6965.

[29]

Shi, X. J.; Cao, L. N. Y.; Chen, M. J.; Huang, Y. Recent progress on two-dimensional materials confining single atoms for CO2 photoreduction. Chin. Chem. Lett. 2022, 33, 5023–5029.

[30]

Cao, S. W.; Li, H.; Tong, T.; Chen, H. C.; Yu, A. C.; Yu, J. G.; Chen, H. M. Single-atom engineering of directional charge transfer channels and active sites for photocatalytic hydrogen evolution. Adv. Funct. Mater. 2018, 28, 1802169.

[31]

Xiao, X. D.; Gao, Y. T.; Zhang, L. P.; Zhang, J. C.; Zhang, Q.; Li, Q.; Bao, H. L.; Zhou, J.; Miao, S.; Chen, N. et al. A promoted charge separation/transfer system from Cu single atoms and C3N4 layers for efficient photocatalysis. Adv. Mater. 2020, 32, 2003082.

[32]

Joly, Y. X-ray absorption near-edge structure calculations beyond the muffin-tin approximation. Phys. Rev. B 2001, 63, 125120.

[33]

Wang, S. Y.; Gao, Y. Y.; Miao, S.; Liu, T. F.; Mu, L. C.; Li, R. G.; Fan, F. T.; Li, C. Positioning the water oxidation reaction sites in plasmonic photocatalysts. J. Am. Chem. Soc. 2017, 139, 11771–11778.

[34]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[35]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple [Phys. Rev. Lett. 77, 3865 (1996)]. Phys. Rev. Lett. 1997, 78, 1396.

[36]

Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.

[37]

Li, A.; Cao, Q.; Zhou, G. Y.; Schmidt, B. V. K. J.; Zhu, W. J.; Yuan, X. T.; Huo, H. L.; Gong, J. L.; Antonietti, M. Three-phase photocatalysis for the enhanced selectivity and activity of CO2 reduction on a hydrophobic surface. Angew. Chem., Int. Ed. 2019, 58, 14549–14555.

[38]

Dong, C. Y.; Lian, C.; Hu, S. C.; Deng, Z. S.; Gong, J. Q.; Li, M. D.; Liu, H. L.; Xing, M. Y.; Zhang, J. L. Size-dependent activity and selectivity of carbon dioxide photocatalytic reduction over platinum nanoparticles. Nat. Commun. 2018, 9, 1252.

[39]

Chen, P.; Dong, X. A.; Huang, M.; Li, K. L.; Xiao, L.; Sheng, J. P.; Chen, S.; Zhou, Y.; Dong, F. Rapid self-decomposition of g-C3N4 during gas–solid photocatalytic CO2 reduction and its effects on performance assessment. ACS Catal. 2022, 12, 4560–4570.

[40]

Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76–80.

[41]

Xiong, T.; Cen, W. L.; Zhang, Y. X.; Dong, F. Bridging the g-C3N4 interlayers for enhanced photocatalysis. ACS Catal. 2016, 6, 2462–2472.

[42]

Han, L. L.; Song, S. J.; Liu, M. J.; Yao, S. Y.; Liang, Z. X.; Cheng, H.; Ren, Z. H.; Liu, W.; Lin, R. Q.; Qi, G. C. et al. Stable and efficient single-atom Zn catalyst for CO2 reduction to CH4. J. Am. Chem. Soc. 2020, 142, 12563–12567.

[43]

Gao, C.; Chen, S. M.; Wang, Y.; Wang, J. W.; Zheng, X. S.; Zhu, J. F.; Song, L.; Zhang, W. K.; Xiong, Y. J. Heterogeneous single-atom catalyst for visible-light-driven high-turnover CO2 reduction: The role of electron transfer. Adv. Mater. 2018, 30, 1704624.

[44]

Di, J.; Chen, C.; Yang, S. Z.; Chen, S. M.; Duan, M. L.; Xiong, J.; Zhu, C.; Long, R.; Hao, W.; Chi, Z. et al. Isolated single atom cobalt in Bi3O4Br atomic layers to trigger efficient CO2 photoreduction. Nat. Commun. 2019, 10, 2840.

[45]

Wang, Z. Y.; Chen, M. J.; Huang, Y.; Shi, X. J.; Zhang, Y. F.; Huang, T. T.; Cao, J. J.; Ho, W.; Lee, S. C. Self-assembly synthesis of boron-doped graphitic carbon nitride hollow tubes for enhanced photocatalytic NOx removal under visible light. Appl. Catal. B: Environ. 2018, 239, 352–361.

[46]

Zhou, M.; Bao, J.; Xu, Y.; Zhang, J. J.; Xie, J. F.; Guan, M. L.; Wang, C. L.; Wen, L. Y.; Lei, Y.; Xie, Y. Photoelectrodes based upon Mo: BiVO4 inverse opals for photoelectrochemical water splitting. ACS Nano 2014, 8, 7088–7098.

[47]

Chen, R. T.; Ren, Z. F.; Liang, Y.; Zhang, G. H.; Dittrich, T.; Liu, R. Z.; Liu, Y.; Zhao, Y.; Pang, S.; An, H. Y. et al. Spatiotemporal imaging of charge transfer in photocatalyst particles. Nature 2022, 610, 296–301.

[48]

Gao, W.; Li, S.; He, H. C.; Li, X. N.; Cheng, Z. X.; Yang, Y.; Wang, J. L.; Shen, Q.; Wang, X. Y.; Xiong, Y. J. et al. Vacancy-defect modulated pathway of photoreduction of CO2 on single atomically thin AgInP2S6 sheets into olefiant gas. Nat. Commun. 2021, 12, 4747.

[49]

Yang, Y. L.; Li, F.; Chen, J.; Fan, J. J.; Xiang, Q. J. Single Au atoms anchored on amino-group-enriched graphitic carbon nitride for photocatalytic CO2 reduction. ChemSusChem 2020, 13, 1979–1985.

[50]

Liang, Y. J.; Wu, X.; Liu, X. Y.; Li, C. H.; Liu, S. W. Recovering solar fuels from photocatalytic CO2 reduction over W6+-incorporated crystalline g-C3N4 nanorods by synergetic modulation of active centers. Appl. Catal. B: Environ. 2022, 304, 120978.

[51]

Xue, H.; Zhu, H. L.; Huang, J. R.; Liao, P. Q.; Chen, X. M. Ultrathin two-dimensional triptycence-based metal-organic framework for highly selective CO2 electroreduction to CO. Chin. Chem. Lett. 2023, 34, 107134.

File
12274_2023_6079_MOESM1_ESM.pdf (2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 26 June 2023
Revised: 28 July 2023
Accepted: 08 August 2023
Published: 07 September 2023
Issue date: April 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences, China (Nos. XDA23010300 and XDA23010000), the National Natural Science Foundation of China (Nos. 51878644 and 41573138), and the CAS Youth Interdisciplinary Team. The authors also thank professor Yujie Xiong (University of Science and Technology of China) for his helpful suggestions.

Return