Journal Home > Volume 17 , Issue 1

With the fast generation of electronic waste (e-waste) and the increasing depletion of metal resources, “urban mining” that can selectively recover gold from secondary resources has attracted great interest. Construction of materials with high extraction capacity and satisfying selectivity in complex aqueous-based matrices still remains challenging. Here, a novel metal-organic framework/polymer composite (Fe-BTC/poly(thioctic acid), denoted as Fe-BTC/pTA) has been newly synthesized and applied for selective gold recovery in different matrices (river water, seawater, and leaching solution of e-waste). Benefiting from the high specific surface area and suitable pore sizes as well as the rational design of active sites, the composite exhibits high adsorption capacity (920 mg/g), high removal efficiency (> 99%), fast kinetics (below 0.1 ppb within 10 min), and good applicability in complex matrices, which are better than those of most reported sulfur-containing adsorbents. Solid-state metallic gold with high purity can be effectively enriched due to the high recyclability and long-term stability of the composite. The material after adsorption can be further applied as a heterogeneous catalyst for water remediation due to the in situ generated gold nanoparticles by the redox reaction between Au(III) ions and the S-containing groups in the composites.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

A MOF/poly(thioctic acid) composite for enhanced gold extraction from water matrices

Show Author's information Ruiqing Li1Sen Yan1Tianwei Xue1Rongxing Qiu1Yin Li2Wenli Hao1Guangkuo Xu1Yanliang Wang1Yanzhen Hong1Yuzhong Su1Hongtao Wang1Shuliang Yang3( )Li Peng1( )Jun Li1,4,5( )
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
College of Energy, Xiamen University, Xiamen 361005, China
National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, Xiamen University, Xiamen 361005, China
Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen 361005, China

Abstract

With the fast generation of electronic waste (e-waste) and the increasing depletion of metal resources, “urban mining” that can selectively recover gold from secondary resources has attracted great interest. Construction of materials with high extraction capacity and satisfying selectivity in complex aqueous-based matrices still remains challenging. Here, a novel metal-organic framework/polymer composite (Fe-BTC/poly(thioctic acid), denoted as Fe-BTC/pTA) has been newly synthesized and applied for selective gold recovery in different matrices (river water, seawater, and leaching solution of e-waste). Benefiting from the high specific surface area and suitable pore sizes as well as the rational design of active sites, the composite exhibits high adsorption capacity (920 mg/g), high removal efficiency (> 99%), fast kinetics (below 0.1 ppb within 10 min), and good applicability in complex matrices, which are better than those of most reported sulfur-containing adsorbents. Solid-state metallic gold with high purity can be effectively enriched due to the high recyclability and long-term stability of the composite. The material after adsorption can be further applied as a heterogeneous catalyst for water remediation due to the in situ generated gold nanoparticles by the redox reaction between Au(III) ions and the S-containing groups in the composites.

Keywords: metal-organic frameworks (MOFs), polymer composites, poly(thioctic acid) (pTA), gold recovery, urban mining

References(44)

[1]

Chen, Y.; Qiao, Q. Y.; Cao, J. Z.; Li, H. X.; Bian, Z. F. Precious metal recovery. Joule 2021, 5, 3097–3115.

[2]

Li, H.; Pan, Y.; Wu, F.; Zhou, Y. Y.; Pan, J. M. Turning waste into wealth: Efficient and rapid capture of gold from electronic waste with a thiourea functionalised magnetic core stirring rod adsorbent and its application for heterogeneous catalysis. Green Chem. 2022, 24, 7592–7601.

[3]

Ding, R.; Liu, J. J.; Wang, T.; Zhang, X. M. Bottom-up synthesis of cationic porphyrin-based porous organic polymers for highly efficient and selective recovery of gold. Chem. Eng. J. 2022, 449, 137758.

[4]

Novoselov, K. S. Graphene for gold extraction. Natl. Sci. Rev. 2022, 9, nwac160.

[5]

Cao, J. Z.; Xu, Z. M.; Chen, Y.; Li, S. J.; Jiang, Y.; Bai, L. L.; Yu, H.; Li, H. X.; Bian, Z. F. Tailoring the asymmetric structure of NH2-UiO-66 metal-organic frameworks for light-promoted selective and efficient gold extraction and separation. Angew. Chem., Int. Ed. 2023, 135, e202302202.

[6]

Kinsman, L. M. M.; Ngwenya, B. T.; Morrison, C. A.; Love, J. B. Tuneable separation of gold by selective precipitation using a simple and recyclable diamide. Nat. Commun. 2021, 12, 6258.

[7]

Deng, B.; Luong, D. X.; Wang, Z.; Kittrell, C.; McHugh, E. A.; Tour, J. M. Urban mining by flash Joule heating. Nat. Commun. 2021, 12, 5749.

[8]

Huang, T. Y.; Zhu, J.; Huang, X. F.; Ruan, J. J.; Xu, Z. M. Assessment of precious metals positioning in waste printed circuit boards and the economic benefits of recycling. Waste Manag. 2022, 139, 105–115.

[9]

Norgate, T.; Haque, N. Using life cycle assessment to evaluate some environmental impacts of gold production. J. Clean. Prod. 2012, 29–30, 53–63.

[10]

Kwon, Y. W.; Jun, Y. S.; Park, Y. G.; Jang, J.; Park, J. U. Recent advances in electronic devices for monitoring and modulation of brain. Nano Res. 2021, 14, 3070–3095.

[11]

Sun, D. T.; Gasilova, N.; Yang, S. L.; Oveisi, E.; Queen, W. L. Rapid, selective extraction of trace amounts of gold from complex water mixtures with a metal-organic framework (MOF)/polymer composite. J. Am. Chem. Soc. 2018, 140, 16697–16703.

[12]

Chen, Y. B.; Tang, J. L.; Wang, S. X.; Zhang, L. B. Facile preparation of a remarkable MOF adsorbent for Au(III) selective separation from wastewater: Adsorption, regeneration and mechanism. J. Mol. Liq. 2022, 349, 118137.

[13]

Qian, H. L.; Meng, F. L.; Yang, C. X.; Yan, X. P. Irreversible amide-linked covalent organic framework for selective and ultrafast gold recovery. Angew. Chem., Int. Ed. 2020, 59, 17607–17613.

[14]

Zhang, L.; Zheng, Q. Q.; Xiao, S. J.; Chen, J. Q.; Jiang, W.; Cui, W. R.; Yang, G. P.; Liang, R. P.; Qiu, J. D. Covalent organic frameworks constructed by flexible alkyl amines for efficient gold recovery from leaching solution of e-waste. Chem. Eng. J. 2021, 426, 131865.

[15]

Ma, T. T.; Zhao, R.; Li, Z. N.; Jing, X. F.; Faheem, M.; Song, J.; Tian, Y. Y.; Lv, X. J.; Shu, Q. H.; Zhu, G. S. Efficient gold recovery from e-waste via a chelate-containing porous aromatic framework. ACS Appl. Mater. Interfaces 2020, 12, 30474–30482.

[16]

Ma, T. T.; Zhao, R.; Song, J.; Jing, X. F.; Tian, Y. Y.; Zhu, G. S. Turning electronic waste to continuous-flow reactor using porous aromatic frameworks. ACS Appl. Mater. Interfaces 2022, 14, 25601–25608.

[17]

Skorjanc, T.; Shetty, D.; Trabolsi, A. Pollutant removal with organic macrocycle-based covalent organic polymers and frameworks. Chem 2021, 7, 882–918.

[18]

Hong, Y.; Thirion, D.; Subramanian, S.; Yoo, M.; Choi, H.; Kim, H. Y.; Stoddart, J. F.; Yavuz, C. T. Precious metal recovery from electronic waste by a porous porphyrin polymer. Proc. Natl. Acad. Sci. USA 2020, 117, 16174–16180.

[19]

Wu, H.; Wang, Y.; Tang, C.; Jones, L. O.; Song, B.; Chen, X. Y.; Zhang, L.; Wu, Y.; Stern, C. L.; Schatz, G. C. et al. High-efficiency gold recovery by additive-induced supramolecular polymerization of β-cyclodextrin. Nat. Commun. 2023, 14, 1284.

[20]

Sun, D. T.; Peng, L.; Reeder, W. S.; Moosavi, S. M.; Tiana, D.; Britt, D. K.; Oveisi, E.; Queen, W. L. Rapid, selective heavy metal removal from water by a metal-organic framework/polydopamine composite. ACS Cent. Sci. 2018, 4, 349–356.

[21]

Yang, S. L.; Karve, V. V.; Justin, A.; Kochetygov, I.; Espín, J.; Asgari, M.; Trukhina, O.; Sun, D. T.; Peng, L.; Queen, W. L. Enhancing MOF performance through the introduction of polymer guests. Coord. Chem. Rev. 2021, 427, 213525.

[22]

Wang, C.; Lin, G.; Zhao, J. L.; Wang, S. X.; Zhang, L. B. Enhancing Au(III) adsorption capacity and selectivity via engineering MOF with mercapto-1, 3, 4-thiadiazole. Chem. Eng. J. 2020, 388, 124221.

[23]

Mon, M.; Ferrando-Soria, J.; Grancha, T.; Fortea-Perez, F. R.; Gascon, J.; Leyva-Pérez, A.; Armentano, D.; Pardo, E. Selective gold recovery and catalysis in a highly flexible methionine-decorated metal-organic framework. J. Am. Chem. Soc. 2016, 138, 7864–7867.

[24]

Nguyen, T. S.; Hong, Y. R.; Dogan, N. A.; Yavuz, C. T. Gold recovery from e-waste by porous porphyrin-phenazine network polymers. Chem. Mater. 2020, 32, 5343–5349.

[25]

Zhong, S. C.; Wang, Y.; Bo, T.; Lan, J. H.; Zhang, Z. Y.; Sheng, L.; Peng, J.; Zhao, L.; Yuan, L. Y.; Zhai, M. L. et al. Efficient and selective gold recovery from e-waste by simple and easily synthesized covalent organic framework. Chem. Eng. J. 2023, 455, 140523.

[26]

Qiu, J. K.; Xu, C.; Xu, X. H.; Zhao, Y. J.; Zhao, Y.; Zhao, Y. L.; Wang, J. J. Porous covalent organic framework based hydrogen-bond nanotrap for the precise recognition and separation of gold. Angew. Chem., Int. Ed. 2023, 135, e202300459.

[27]

Chen, H.; Liu, T.; Zhou, P.; Li, S.; Ren, J.; He, H. C.; Wang, J. S.; Wang, N.; Guo, S. J. Efficient bifacial passivation with crosslinked thioctic acid for high-performance methylammonium lead iodide perovskite solar cells. Adv. Mater. 2020, 32, 1905661.

[28]

Shen, W.; Liu, W. G.; Yang, H. L.; Zhang, P.; Xiao, C. S.; Chen, X. S. A glutathione-responsive sulfur dioxide polymer prodrug as a nanocarrier for combating drug-resistance in cancer chemotherapy. Biomaterials 2018, 178, 706–719.

[29]

Chen, C.; Yang, X.; Li, S. J.; Zhang, C.; Ma, Y. N.; Ma, Y. X.; Gao, P.; Gao, S. Z.; Huang, X. J. Tannic acid-thioctic acid hydrogel: A novel injectable supramolecular adhesive gel for wound healing. Green Chem. 2021, 23, 1794–1804.

[30]

Dang, C.; Wang, M.; Yu, J.; Chen, Y. A.; Zhou, S. H.; Feng, X.; Liu, D. T.; Qi, H. S. Transparent, highly stretchable, rehealable, sensing, and fully recyclable ionic conductors fabricated by one-step polymerization based on a small biological molecule. Adv. Funct. Mater. 2019, 29, 1902467.

[31]

Deng, Y. X.; Zhang, Q.; Feringa, B. L.; Tian, H.; Qu, D. H. Toughening a self-healable supramolecular polymer by ionic cluster-enhanced iron-carboxylate complexes. Angew. Chem., Int. Ed. 2020, 59, 5278–5283.

[32]

Zhang, Q.; Deng, Y. X.; Luo, H. X.; Shi, C. Y.; Geise, G. M.; Feringa, B. L.; Tian, H.; Qu, D. H. Assembling a natural small molecule into a supramolecular network with high structural order and dynamic functions. J. Am. Chem. Soc. 2019, 141, 12804–12814.

[33]

Zhang, Q.; Shi, C. Y.; Qu, D. H.; Long, Y. T.; Feringa, B. L.; Tian, H. Exploring a naturally tailored small molecule for stretchable, self-healing, and adhesive supramolecular polymers. Sci. Adv. 2018, 4, eaat8192.

[34]

Xue, T. W.; He, T.; Peng, L.; Syzgantseva, O. A.; Li, R. Q.; Liu, C. B.; Sun, D. T.; Xu, G. K.; Qiu, R. X.; Wang, Y. L. et al. A customized MOF-polymer composite for rapid gold extraction from water matrices. Sci. Adv. 2023, 9, eadg4923.

[35]

Jiang, G. J.; Jia, Y. X.; Wang, J. J.; Sun, Y. T.; Zhou, Y. C.; Ruan, Y. H.; Xia, X. H.; Xu, T. H.; Xie, S.; Zhang, S. et al. Facile preparation of novel Fe-BTC@PAN nanofibrous aerogel membranes for highly efficient continuous flow degradation of organic dyes. Sep. Purif. Technol. 2022, 300, 121753.

[36]

Sahadevan, S. A.; Abhervé, A.; Monni, N.; De Pipaón, C. S.; Galán-Mascarós, J. R.; Waerenborgh, J. C.; Vieira, B. J. C.; Auban-Senzier, P.; Pillet, S.; Bendeif, E. E. et al. Conducting anilate-based mixed-valence Fe(II)Fe(III) coordination polymer: Small-polaron hopping model for oxalate-type Fe(II)Fe(III) 2D networks. J. Am. Chem. Soc. 2018, 140, 12611–12621.

[37]

He, T.; Kong, X. J.; Li, J. R. Chemically stable metal-organic frameworks: Rational construction and application expansion. Acc. Chem. Res. 2021, 54, 3083–3094.

[38]

Ahamad, M. N.; Khan, M. S.; Shahid, M.; Ahmad, M. Metal organic frameworks decorated with free carboxylic acid groups: Topology, metal capture and dye adsorption properties. Dalton Trans. 2020, 49, 14690–14705.

[39]

Chen, X. Y.; Yuk, H.; Wu, J. J.; Nabzdyk, C. S.; Zhao, X. H. Instant tough bioadhesive with triggerable benign detachment. Proc. Nat. Acad. Sci. USA 2020, 117, 15497–15503.

[40]

Karikalan, N.; Karthik, R.; Chen, S. M.; Karuppiah, C.; Elangovan, A. Sonochemical synthesis of sulfur doped reduced graphene oxide supported cus nanoparticles for the non-enzymatic glucose sensor applications. Sci. Rep. 2017, 7, 2494.

[41]

Yue, C. L.; Sun, H. M.; Liu, W. J.; Guan, B. B.; Deng, X. D.; Zhang, X.; Yang, P. Environmentally benign, rapid, and selective extraction of gold from ores and waste electronic materials. Angew. Chem., Int. Ed. 2017, 56, 9331–9335.

[42]

Zhu, Y. F.; Qiu, X. Y.; Zhao, S. L.; Guo, J.; Zhang, X. F.; Zhao, W. S.; Shi, Y. N.; Tang, Z. Y. Structure regulated catalytic performance of gold nanocluster-MOF nanocomposites. Nano Res. 2020, 13, 1928–1932.

[43]

Yang, S. L.; Cao, C. Y.; Peng, L.; Huang, P. P.; Sun, Y. B.; Wei, F.; Song, W. G. Spindle-shaped nanoscale yolk/shell magnetic stirring bars for heterogeneous catalysis in macro- and microscopic systems. Chem. Commun. 2016, 52, 1575–1578.

[44]

Yang, S. L.; Cao, C. Y.; Sun, Y. B.; Huang, P. P.; Wei, F. F.; Song, W. G. Nanoscale magnetic stirring bars for heterogeneous catalysis in microscopic systems. Angew. Chem., Int. Ed. 2015, 54, 2661–2664.

File
12274_2023_6077_MOESM1_ESM.pdf (2.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 27 April 2023
Revised: 16 June 2023
Accepted: 07 August 2023
Published: 21 September 2023
Issue date: January 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

The authors acknowledge financial support from the National Natural Science Foundation of China (Nos. 22078274, 22373080, and 21903066) and the President Fund of Xiamen University (No. 20720210046).

Return