Journal Home > Volume 17 , Issue 4

Polymer composite fibers with superior properties such as excellent combined strength and toughness and biocompatibility can be used in high-tech applications of braided protective devices and smart wearable, however the research of high-performance polymer composite fiber remains in the infant stage. Here we present a strategy to produce strong and tough anisotropic polymer nanocomposite fibers with orientedly aligned salt rods using mechanical stretching-assisted salting-out treatment. The prepared nanocomposite fibers have a tensile strength of up to 786 ± 2.7 MPa and an elongation at break of 81%, and the anisotropic fibers exhibit good transmission of mechanical vibration in the longitudinal direction with high resolution. During the fabrication process, the salt builds up into oriented rods during the directional salting process, and the polymer is confined to the 150 nm domain between the rods after the solvent is completely evaporated, giving the nanocomposite fibers superior mechanical properties. The presented strategy can be applied to the continuous mass production of nanocomposite fibers and is also generalizable to other polymer nanocomposites, which could extend the applicability of nanocomposite fibers to conditions involving more demanding mechanical loading and mechanical vibration transmission.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Continuous preparation of strong and tough PVA nanocomposite fibers by mechanical stretching-assisted salting-out treatment

Show Author's information Hang Chen1Guangze Yang1Yingzhi Sun1Yichao Xu2( )Mingjie Liu1,3( )
Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
Research Institute for Frontier Science, Beihang University, Beijing 100191, China
International Research Institute for Multidisciplinary Science, Beihang University, Beijing 100191, China

Abstract

Polymer composite fibers with superior properties such as excellent combined strength and toughness and biocompatibility can be used in high-tech applications of braided protective devices and smart wearable, however the research of high-performance polymer composite fiber remains in the infant stage. Here we present a strategy to produce strong and tough anisotropic polymer nanocomposite fibers with orientedly aligned salt rods using mechanical stretching-assisted salting-out treatment. The prepared nanocomposite fibers have a tensile strength of up to 786 ± 2.7 MPa and an elongation at break of 81%, and the anisotropic fibers exhibit good transmission of mechanical vibration in the longitudinal direction with high resolution. During the fabrication process, the salt builds up into oriented rods during the directional salting process, and the polymer is confined to the 150 nm domain between the rods after the solvent is completely evaporated, giving the nanocomposite fibers superior mechanical properties. The presented strategy can be applied to the continuous mass production of nanocomposite fibers and is also generalizable to other polymer nanocomposites, which could extend the applicability of nanocomposite fibers to conditions involving more demanding mechanical loading and mechanical vibration transmission.

Keywords: oriented structure, ultrastrong and stiff, mechanical vibration transmission, salting out, continuous production, poly (vinyl alcohol) (PVA) nanofibers

References(38)

[1]

Vepari, C.; Kaplan, D. L. Silk as a biomaterial. Prog. Polym. Sci. 2007, 32, 991–1007.

[2]

Koh, L. D.; Cheng, Y.; Teng, C. P.; Khin, Y. W.; Loh, X. J.; Tee, S. Y.; Low, M.; Ye, E. Y.; Yu, H. D.; Zhang, Y. W. et al. Structures, mechanical properties and applications of silk fibroin materials. Prog. Polym. Sci. 2015, 46, 86–110.

[3]

Pauling, L.; Corey, R. B. The pleated sheet, a new layer configuration of polypeptide chains. Proc. Natl. Acad. Sci. USA 1951, 37, 251–256.

[4]

Marsh, R. E.; Corey, R. B.; Pauling, L. An investigation of the structure of silk fibroin. Biochim. Biophys. Acta 1955, 16, 1–34.

[5]

Keten, S.; Xu, Z. P.; Ihle, B.; Buehler, M. J. Nanoconfinement controls stiffness, strength and mechanical toughness of β-sheet crystals in silk. Nat. Mater. 2010, 9, 359–367.

[6]

Cheng, B. C.; Lei, Z. Y.; Wu, P. Y. Bio-derived crystalline silk nanosheets for versatile macroscopic assemblies. Nano Res. 2022, 15, 5538–5544.

[7]

Lyu, J.; Wang, X. Z.; Liu, L. H.; Kim, Y.; Tanyi, E. K.; Chi, H.; Feng, W. C.; Xu, L. Z.; Li, T. H.; Noginov, M. A. et al. High strength conductive composites with plasmonic nanoparticles aligned on aramid nanofibers. Adv. Funct. Mater. 2016, 26, 8435–8445.

[8]

Chowdhury, S. C.; Gillespie, J. W. A molecular dynamics study of the effects of hydrogen bonds on mechanical properties of Kevlar® crystal. Comput. Mater. Sci. 2018, 148, 286–300.

[9]

Cheng, B. C.; Wu, P. Y. Scalable fabrication of Kevlar/Ti3C2Tx MXene intelligent wearable fabrics with multiple sensory capabilities. ACS Nano 2021, 15, 8676–8685.

[10]

Lei, C. X.; Zhang, Y. Z.; Liu, D. Y.; Wu, K.; Fu, Q. Metal-level robust, folding endurance, and highly temperature-stable MXene-based film with engineered aramid nanofiber for extreme-condition electromagnetic interference shielding applications. ACS Appl. Mater. Interfaces 2020, 12, 26485–26495.

[11]

Hu, P. Y.; Lyu, J.; Fu, C.; Gong, W. B.; Liao, J. H.; Lu, W. B.; Chen, Y. P.; Zhang, X. T. Multifunctional aramid nanofiber/carbon nanotube hybrid aerogel films. ACS Nano 2020, 14, 688–697.

[12]

Shi, W.; Shuai, Z. G.; Wang, D. Tuning thermal transport in chain-oriented conducting polymers for enhanced thermoelectric efficiency: A computational study. Adv. Funct. Mater. 2017, 27, 1702847.

[13]

Zhao, C. Q.; Zhang, P. C.; Zhou, J. J.; Qi, S. H.; Yamauchi, Y.; Shi, R. R.; Fang, R. C.; Ishida, Y.; Wang, S. T.; Tomsia, A. P. et al. Layered nanocomposites by shear-flow-induced alignment of nanosheets. Nature 2020, 580, 210–215.

[14]

Wegst, U. G. K.; Bai, H.; Saiz, E.; Tomsia, A. P.; Ritchie, R. O. Bioinspired structural materials. Nat. Mater. 2015, 14, 23–36.

[15]

Simon, R.; Prosen, S. P.; Duffy, J. Carbon fibre composites. Nature, 1967, 213, 1113–1114.

[16]

Petrov, A.; Rudyak, V. Y.; Chertovich, A. Optimal entanglement of polymers promotes the formation of highly oriented fibers. Macromolecules 2022, 55, 6493–6504.

[17]

Shi, H. F.; Zhao, Y.; Dong, X.; Zhou, Y.; Wang, D. J. Frustrated crystallisation and hierarchical self-assembly behaviour of comb-like polymers. Chem. Soc. Rev. 2013, 42, 2075–2099.

[18]

Long, Y.; Shanks, R. A.; Stachurski, Z. H. Kinetics of polymer crystallisation. Prog. Polym. Sci. 1995, 20, 651–701.

[19]

Richter, D.; Kruteva, M. Polymer dynamics under confinement. Soft Matter 2019, 15, 7316–7349.

[20]

Bollas, S.; Chrissopoulou, K.; Andrikopoulos, K. S.; Voyiatzis, G. A.; Anastasiadis, S. H. Polymer conformation under confinement. Polymers 2017, 9, 73.

[21]

Sharma, R. P.; Green, P. F. Role of “hard” and “soft” confinement on polymer dynamics at the nanoscale. ACS Macro Lett. 2017, 6, 908–914.

[22]

Wang, S.; Tian, M. H.; Hu, S. Y.; Zhai, W.; Zheng, G. Q.; Liu, C. T.; Shen, C. Y.; Dai, K. Hierarchical nanofibrous mat via water-assisted electrospinning for self-powered ultrasensitive vibration sensors. Nano Energy 2022, 97, 107149.

[23]

Piollet, E.; Fotsing, E. R.; Ross, A.; Michon, G. High damping and nonlinear vibration of sandwich beams with entangled cross-linked fibres as core material. Compos. Part. B Eng. 2019, 168, 353–366.

[24]

Huang, J.; Xu, Y. C.; Qi, S. H.; Zhou, J. J.; Shi, W.; Zhao, T. Y.; Liu, M. J. Ultrahigh energy-dissipation elastomers by precisely tailoring the relaxation of confined polymer fluids. Nat. Commun. 2021, 12, 3610.

[25]

Zhou, J.; Miles, R. N. Sensing fluctuating airflow with spider silk. Proc. Natl. Acad. Sci. USA 2017, 114, 12120–12125.

[26]

Hua, M. T.; Wu, S. W.; Ma, Y. F.; Zhao, Y. S.; Chen, Z. L.; Frenkel, I.; Strzalka, J.; Zhou, H.; Zhu, X. Y.; He, X. M. Strong tough hydrogels via the synergy of freeze-casting and salting out. Nature 2021, 590, 594–599.

[27]

Zhang, H.; Tang, N.; Yu, X.; Li, M. H.; Hu, J. Strong and tough physical eutectogels regulated by the spatiotemporal expression of non-covalent interactions. Adv. Funct. Mater. 2022, 32, 2206305.

[28]

Chaúque, E. F. C.; Dlamini, L. N.; Adelodun, A. A.; Greyling, C. J.; Ngila, J. C. Modification of electrospun polyacrylonitrile nanofibers with EDTA for the removal of Cd and Cr ions from water effluents. Appl. Surf. Sci. 2016, 369, 19–28.

[29]

Savastru, D.; Miclos, S.; Savastru, R.; Lancranjan, I. I. Analysis of mechanical vibrations applied on a LPGFS smart composite polymer material. Compos. Struct. 2019, 226, 111243.

[30]

Liang, Z. H.; Zhou, Z. Z.; Li, J.; Zhang, S. L.; Dong, B. H.; Zhao, L.; Wu, C. C.; Yang, H. Y.; Chen, F. X.; Wang, S. M. Multi-functional silk fibers/fabrics with a negligible impact on comfortable and wearability properties for fiber bulk. Chem. Eng. J. 2021, 415, 128980.

[31]

Yu, H. J.; Tong, Z. W.; Zhang, B. J.; Chen, Z. W.; Li, X. L.; Su, D.; Ji, H. M. Thermal radiation shielded, high strength, fire resistant fiber/nanorod/aerogel composites fabricated by in-situ growth of TiO2 nanorods for thermal insulation. Chem. Eng. J. 2021, 418, 129342.

[32]

Zhang, H.; Zhang, X.; Chen, Q.; Li, X.; Wang, P. F.; Yang, E. H.; Duan, F.; Gong, X. L.; Zhang, Z.; Yang, J. L. Encapsulation of shear thickening fluid as an easy-to-apply impact-resistant material. J. Mater. Chem. A. 2017, 5, 22472–22479.

[33]

Dong, E. Q.; Song, Z. C.; Zhang, Y.; Ghaffari Mosanenzadeh, S.; He, Q.; Zhao, X. H.; Fang, N. X. Bioinspired metagel with broadband tunable impedance matching. Sci. Adv. 2020, 6, eabb3641.

[34]

Birch, J. M.; Dickinson, M. H. Spanwise flow and the attachment of the leading-edge vortex on insect wings. Nature 2001, 412, 729–733.

[35]

Di, J. T.; Zhang, X. H.; Yong, Z. Z.; Zhang, Y. Y.; Li, D.; Li, R.; Li, Q. W. Carbon-nanotube fibers for wearable devices and smart textiles. Adv. Mater. 2016, 28, 10529–10538.

[36]

Hong, P. D.; Huang, H. T. Effect of co-solvent complex on preferential adsorption phenomenon in polyvinyl alcohol ternary solutions. Polymer 2000, 41, 6195–6204.

[37]

Sa’adon, S.; Ansari, M. N. M.; Razak, S. I. A.; Anand, J. S.; Nayan, N. H. M.; Ismail, A. E.; Khan, M. U. A.; Haider, A. Preparation and physicochemical characterization of a diclofenac sodium-dual layer polyvinyl alcohol patch. Polymers 2021, 13, 2459.

[38]

Peppas, N. A.; Merrill, E. W. Differential scanning calorimetry of crystallized PVA hydrogels. J. Appl. Polym. Sci. 1976, 20, 1457–1465.

File
12274_2023_6075_MOESM1_ESM.pdf (1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 12 July 2023
Revised: 06 August 2023
Accepted: 07 August 2023
Published: 13 September 2023
Issue date: April 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Key Research and Development Project (No. 2022YFA1503000), and the National Natural Science Foundation of China (Nos. 22161142021 and 22175010).

Return