Journal Home > Volume 16 , Issue 12

Besides peripheral nerve injury, the acute inflammation is one of the pathological features of tissues after surgery, which exacerbates the postoperative pain, especially in the first 48 h after the surgery. Multimodal analgesia (MMA), such as the combination of non-steroidal anti-inflammatory drugs (NSAIDs) with local anesthetics, has shown enhanced potency compared with the usage of local anesthetics alone. However, rare formulations can provide long-term analgesia at a single dose. Herein, bupivacaine (BUP, a local anesthetic) loading poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPB) were coated with meloxicam (MLX, an NSAID) loading lipid bilayer (LPM), forming a core–shell nanosystem (NPB@LPM) to provide enhanced and long-term analgesia to treat postoperative pain. MLX was encapsulated in the lipid shell, which enabled high dose MLX to be released in the first 48 h after surgery to reduce the acute inflammation induced pain. BUP was encapsulated in the PLGA core to provide a long-term release for the nerve block. This nanosystem provided a 7-day (whole recovery cycle) effective analgesia in the Brennan’s plantar incision rat model. The tissue reactions of NPB@LPM are benign. This work will provide feasible strategies on designing drug delivery systems for postoperative pain management.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Construction of meloxicam and bupivacaine co-delivery nanosystem based on the pathophysiological environment of surgical injuries for enhanced postoperative analgesia

Show Author's information Mohan Li1Yumiao He1Zongran Liu2,4Xu Ma2,4Fengrun Sun3Lijian Pei1Chao Ma3Hongju Liu1Tianjiao Ji2,4( )Yuguang Huang1( )
Department of Anesthesiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Besides peripheral nerve injury, the acute inflammation is one of the pathological features of tissues after surgery, which exacerbates the postoperative pain, especially in the first 48 h after the surgery. Multimodal analgesia (MMA), such as the combination of non-steroidal anti-inflammatory drugs (NSAIDs) with local anesthetics, has shown enhanced potency compared with the usage of local anesthetics alone. However, rare formulations can provide long-term analgesia at a single dose. Herein, bupivacaine (BUP, a local anesthetic) loading poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPB) were coated with meloxicam (MLX, an NSAID) loading lipid bilayer (LPM), forming a core–shell nanosystem (NPB@LPM) to provide enhanced and long-term analgesia to treat postoperative pain. MLX was encapsulated in the lipid shell, which enabled high dose MLX to be released in the first 48 h after surgery to reduce the acute inflammation induced pain. BUP was encapsulated in the PLGA core to provide a long-term release for the nerve block. This nanosystem provided a 7-day (whole recovery cycle) effective analgesia in the Brennan’s plantar incision rat model. The tissue reactions of NPB@LPM are benign. This work will provide feasible strategies on designing drug delivery systems for postoperative pain management.

Keywords: core–shell nanostructure, multimodal analgesia, co-delivery system, postoperative pain management

References(46)

[1]

Joshi, G. P.; Schug, S. A.; Kehlet, H. Procedure-specific pain management and outcome strategies. Best Pract. Res. Clin. Anaesthesiol. 2014, 28, 191–201.

[2]

Mercado, L. A. S. C.; Liu, R.; Bharadwaj, K. M.; Johnson, J. J.; Gutierrez, R.; Das, P.; Balanza, G.; Deng, H.; Pandit, A.; Stone, T. A. D. et al. Association of intraoperative opioid administration with postoperative pain and opioid use. JAMA Surg. 2023, 14, e232009.

[3]

Feray, S.; Lubach, J.; Joshi, G. P.; Bonnet, F.; Van De Velde, M.; The PROSPECT Working Group *of the European Society of Regional Anaesthesia and Pain Therapy. PROSPECT guidelines for video-assisted thoracoscopic surgery: A systematic review and procedure-specific postoperative pain management recommendations. Anaesthesia 2022, 77, 311–325.

[4]

Joshi, G. P.; Van De Velde, M.; Kehlet, H.; the PROSPECT Working Group Collaborators. Development of evidence-based recommendations for procedure-specific pain management: PROSPECT methodology. Anaesthesia 2019, 74, 1298–1304.

[5]

Dinh, K. H.; Mcauliffe, P. F.; Boisen, M.; Esper, S. A.; Subramaniam, K.; Steiman, J. G.; Soran, A.; Johnson, R. R.; Holder-Murray, J. M.; Diego, E. J. Post-operative nausea and analgesia following total mastectomy is improved after implementation of an enhanced recovery protocol. Ann. Surg. Oncol. 2020, 27, 4828–4834.

[6]

Aiolfi, A.; Cavalli, M.; Ferraro, S. D.; Manfredini, L.; Bonitta, G.; Bruni, P. G.; Bona, D.; Campanelli, G. Treatment of inguinal hernia: Systematic review and updated network meta-analysis of randomized controlled trials. Ann. Surg. 2021, 274, 954–961.

[7]

Eisenach, J. C.; Brennan, T. J. Pain after surgery. PAIN 2018, 159, 1010–1011.

[8]

Hämäläinen, M. M.; Gebhart, G. F.; Brennan, T. J. Acute effect of an incision on mechanosensitive afferents in the plantar rat hindpaw. J. Neurophysiol. 2002, 87, 712–720.

[9]

Brennan, T. J. Pathophysiology of postoperative pain. Pain 2011, 152, S33–S40.

[10]

Spofford, C. M.; Brennan, T. J. Gene expression in skin, muscle, and dorsal root ganglion after plantar incision in the rat. Anesthesiology 2012, 117, 161–172.

[11]

Thybo, K. H.; Hägi-Pedersen, D.; Dahl, J. B.; Wetterslev, J.; Nersesjan, M.; Jakobsen, J. C.; Pedersen, N. A.; Overgaard, S.; Schroder, H. M.; Schmidt, H. et al. Effect of combination of paracetamol (acetaminophen) and ibuprofen vs either alone on patient-controlled morphine consumption in the first 24 hours after total hip arthroplasty: The PANSAID randomized clinical trial. JAMA 2019, 321, 562–571.

[12]

Wick, E. C.; Grant, M. C.; Wu, C. L. Postoperative multimodal analgesia pain management with nonopioid analgesics and techniques: A review. JAMA Surg. 2017, 152, 691–697.

[13]

He, Y. M.; Sun, F. R.; Li, M. H.; Ji, T. J.; Fang, Y. H.; Tan, G.; Ma, C.; Huang, Y. G. A Gel/fiber composite formulation achieves sequential delivery based on multimodal analgesia reducing chronic pain. Mater. Design 2023, 225, 111541.

[14]

He, Y. M.; Qin, L. N.; Huang, Y. G.; Ma, C. Advances of nano-structured extended-release local anesthetics. Nanoscale Res. Lett. 2020, 15, 13.

[15]

Zhang, W. J.; Ning, C.; Xu, W. G.; Hu, H. Z.; Li, M. Q.; Zhao, G. Q.; Ding, J. X.; Chen, X. S. Precision-guided long-acting analgesia by gel-immobilized bupivacaine-loaded microsphere. Theranostics 2018, 8, 3331–3347.

[16]

Parisien, M.; Lima, L. V.; Dagostino, C.; El-Hachem, N.; Drury, G. L.; Grant, A. V.; Huising, J.; Verma, V.; Meloto, C. B.; Silva, J. R. et al. Acute inflammatory response via neutrophil activation protects against the development of chronic pain. Sci. Transl. Med. 2022, 14, eabj9954.

[17]

Ji, T. J.; Kohane, D. S. Nanoscale systems for local drug delivery. Nano Today 2019, 28, 100765.

[18]

Kaye, A. D.; Novitch, M. B.; Carlson, S. F.; Fuller, M. C.; White, S. W.; Haroldson, A. R.; Kaiser, J. A.; Elkersh, M. A.; Brunk, A. J.; Jeha, G. M. et al. The role of exparel plus meloxicam for postoperative pain management. Curr. Pain Headache Rep. 2020, 24, 6.

[19]

Noolkar, S. B.; Jadhav, N. R.; Bhende, S. A.; Killedar, S. G. Solid-state characterization and dissolution properties of meloxicam-moringa coagulant-PVP ternary solid dispersions. AAPS PharmSciTech 2013, 14, 569–577.

[20]

Xu, J.; Brennan, T. J. Guarding pain and spontaneous activity of nociceptors after skin versus skin plus deep tissue incision. Anesthesiology 2010, 112, 153–164.

[21]

Chen, S. F.; Yao, W. F.; Wang, H. X.; Wang, T. N.; Xiao, X.; Sun, G. L.; Yang, J.; Guan, Y.; Zhang, Z.; Xia, Z. Y. et al. Injectable electrospun fiber-hydrogel composite sequentially releasing clonidine and ropivacaine for prolonged and walking regional analgesia. Theranostics 2022, 12, 4904–4921.

[22]

Yu, C.; Xu, Z. X.; Hao, Y. H.; Gao, Y. B.; Yao, B. W.; Zhang, J.; Wang, B.; Hu, Z. Q.; Peng, R. Y. A novel microcurrent dressing for wound healing in a rat skin defect model. Mil. Med. Res. 2019, 6, 22.

[23]

Janssen, L.; Allard, N. A. E.; Saris, C. G. J.; Keijer, J.; Hopman, M. T. E.; Timmers, S. Muscle toxicity of drugs: When drugs turn physiology into pathophysiology. Physiol. Rev. 2020, 100, 633–672.

[24]

Choi, S. E.; Park, Y. S.; Koh, H. C. NF-κB/p53-activated inflammatory response involves in diquat-induced mitochondrial dysfunction and apoptosis. Environ. Toxicol. 2018, 33, 1005–1018.

[25]

Hussey, H. J.; Tisdale, M. J. Effect of the specific cyclooxygenase-2 inhibitor meloxicam on tumour growth and cachexia in a murine model. 3.0.CO;2-D">Int. J. Cancer 2000, 87, 95–100.

[26]

Li, X. N.; Xu, J. J.; Wu, J. B.; Ji, L.; Yuan, C. H.; Wang, Z. P. Curcumin exerts protective effect on PC12 cells against lidocaine-induced cytotoxicity by suppressing the formation of NLRP3 inflammasome. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 7092–7100.

[27]

Ferre, F.; Krin, A.; Sanchez, M.; Ancelin, D.; Cavaignac, E.; Charre, A.; Bennis, M.; Marty, P.; Dray, C.; Brouchet, A. et al. Perineural dexamethasone attenuates liposomal bupivacaine-induced delayed neural inflammation in mice in vivo. Br. J. Anaesth. 2020, 125, 175–183.

[28]

Chen, J.; Wang, Y. T.; Yu, Y. L.; Wang, J. H.; Liu, J. W.; Ihara, H. Qiu, H. D. Composite materials based on covalent organic frameworks for multiple advanced applications. Exploration 2023, 3, 20220144.

[29]

Zheng, C. X.; Li, M. Q.; Ding, J. X. Challenges and opportunities of nanomedicines in clinical translation. BIO Integration. 2021, 2, 57–60.

[30]

Younis, M. A.; Tawfeek, H. M.; Abdellatif, A. A. H.; Abdel-Aleem, J. A.; Harashima, H. Clinical translation of nanomedicines: Challenges, opportunities, and keys. Adv. Drug Deliv. Rev. 2022, 181, 114083.

[31]

Hu, C. M. J.; Fang, R. H.; Wang, K. C.; Luk, B. T.; Thamphiwatana, S.; Dehaini, D.; Nguyen, P.; Angsantikul, P.; Wen, C. H.; Kroll, A. V. et al. Nanoparticle biointerfacing by platelet membrane cloaking. Nature 2015, 526, 118–121.

[32]

Zhao, Z. M.; Ukidve, A.; Gao, Y. S.; Kim, J.; Mitragotri, S. Erythrocyte leveraged chemotherapy (ELeCt): Nanoparticle assembly on erythrocyte surface to combat lung metastasis. Sci. Adv. 2019, 5, eaax9250.

[33]

Ebeid, K.; Meng, X. B.; Thiel, K. W.; Do, A. V.; Geary, S. M.; Morris, A. S.; Pham, E. L.; Wongrakpanich, A.; Chhonker, Y. S.; Murry, D. J. et al. Synthetically lethal nanoparticles for treatment of endometrial cancer. Nat. Nanotechnol. 2018, 13, 72–81.

[34]

Zhou, L. T.; Ye, Z. Y.; Zhang, E.; Chen, L.; Hou, Y. T.; Lin, J. C.; Huang, F. L.; Yuan, Z. X. Co-delivery of dexamethasone and captopril by α8 integrin antibodies modified liposome-PLGA nanoparticle hybrids for targeted anti-inflammatory/anti-fibrosis therapy of glomerulonephritis. Int. J. Nanomedicine 2022, 17, 1531–1547.

[35]

Ji, W. H.; Zhang, T. L.; Lu, Z. G.; Shen, J.; Xiao, Z. B.; Zhang, X. Synthesis and characterization of novel biocompatible nanocapsules encapsulated lily fragrance. Chin. Chem. Lett. 2019, 30, 739–742.

[36]

Zhou, Y.; Fang, A. P.; Wang, F. Z.; Li, H. L.; Jin, Q. S.; Huang, L. J.; Fu, C. M.; Zeng, J.; Jin, Z. H.; Song, X. R. Core–shell lipid-polymer nanoparticles as a promising ocular drug delivery system to treat glaucoma. Chin. Chem. Lett. 2020, 31, 494–500.

[37]

Zhou, Z. F.; Ye, J. F.; Chen, L. Y.; Ma, A. D.; Zou, F. Simultaneous determination of ropivacaine, bupivacaine and dexamethasone in biodegradable PLGA microspheres by high performance liquid chromatography. Yakugaku Zasshi 2010, 130, 1061–1068.

[38]

Wen, K.; Na, X. M.; Yuan, M. M.; Bazybek, N.; Li, X.; Wei, Y.; Ma, G. H. Preparation of novel ropivacaine hydrochloride-loaded PLGA microspheres based on post-loading mode and efficacy evaluation. Colloids Surf. B: Biointerfaces 2022, 210, 112215.

[39]

Epstein-Barash, H.; Shichor, I.; Kwon, A. H.; Hall, S.; Lawlor, M. W.; Langer, R.; Kohane, D. S. Prolonged duration local anesthesia with minimal toxicity. Proc. Natl. Acad. Sci. USA 2009, 106, 7125–7130.

[40]

Maurice, J. M.; Gan, Y.; Ma, F. X.; Chang, Y. C.; Hibner, M.; Huang, Y. Bupivacaine causes cytotoxicity in mouse C2C12 myoblast cells: Involvement of ERK and Akt signaling pathways. Acta Pharmacol. Sin. 2010, 31, 493–500.

[41]

Weldon, C.; Ji, T. J.; Nguyen, M. T.; Rwei, A.; Wang, W. P.; Hao, Y.; Zhao, C.; Mehta, M.; Wang, B. Y.; Tsui, J. et al. Nanoscale bupivacaine formulations to enhance the duration and safety of intravenous regional anesthesia. ACS Nano 2019, 13, 18–25.

[42]

Brennan, T. J.; Vandermeulen, E. P.; Gebhart, G. F. Characterization of a rat model of incisional pain. Pain 1996, 64, 493–502.

[43]

Pilkington, S. M.; Rhodes, L. E.; Al-Aasswad, N. M. I.; Massey, K. A.; Nicolaou, A. Impact of EPA ingestion on COX- and LOX-mediated eicosanoid synthesis in skin with and without a pro-inflammatory UVR challenge-report of a randomised controlled study in humans. Mol. Nutr. Food Res. 2014, 58, 580–90.

[44]

Masoodi, M.; Nicolaou, A. Lipidomic analysis of twenty-seven prostanoids and isoprostanes by liquid chromatography/electrospray tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2006, 20, 3023–3029.

[45]

Chopra, S.; Giovanelli, P.; Alvarado-Vazquez, P. A.; Alonso, S.; Song, M.; Sandoval, T. A.; Chae, C. S.; Tan, C.; Fonseca, M. M.; Gutierrez, S. et al. IRE1α-XBP1 signaling in leukocytes controls prostaglandin biosynthesis and pain. Science 2019, 365, eaau6499.

[46]

Li, Q. B.; Chang, L.; Ye, F.; Luo, Q. H.; Tao, Y. X.; Shu, H. H. Role of spinal cyclooxygenase-2 and prostaglandin E2 in fentanyl-induced hyperalgesia in rats. Br. J. Anaesth. 2018, 120, 827–835.

File
12274_2023_6074_MOESM1_ESM.pdf (2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 29 June 2023
Revised: 03 August 2023
Accepted: 07 August 2023
Published: 12 October 2023
Issue date: December 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was financially supported by the National High Level Hospital Clinical Research Funding (Nos. 2022-PUMCH-B-006 and 2022-PUMCH-C-067), the National Natural Science Foundation of China (No. 32271391), and Beijing Natural Science Foundation (No. Z220022).

Return