AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Robust ultra-microporous metal-organic frameworks for highly efficient natural gas purification

Li Zhao1Pengxiao Liu1Chenghua Deng2,4Ting Wang2Sha Wang2Yong-Jun Tian1Jin-Sheng Zou1Xue-Cui Wu1Ying Zhang6Yun-Lei Peng1,3,5( )Zhenjie Zhang2( )Michael J. Zaworotko4
Department of Applied Chemistry, College of Science, China University of Petroleum (Beijing), Beijing 102249, China
College of Chemistry, Nankai University, Tianjin 300071, China
State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, China
Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94T9PX, Republic of Ireland
Basic Research Centre for Energy Interdisciplinary, China University of Petroleum (Beijing), Beijing 102249, China
Department of Materials Science and Engineering, College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, China
Show Author Information

Graphical Abstract

Three isomorphic ultra-microporous metal-organic frameworks (MOFs) (M-pyz, where M = Co, Ni, and Fe, and pyz = pyrazine) with high-density open metal sites and suitable pore structure were synthesized by green and rapid method, exhibiting remarkable selectivity adsorption capacity for ethane and propane, demonstrating potential for natural gas purification.

Abstract

The development of highly efficient separation technology for the purification of natural gas by removing ethane (C2H6) and propane (C3H8) is a crucial but challenging task to their efficient utilization in the chemical industry and social life. Here, we report three isomorphic ultra-microporous metal-organic frameworks (MOFs), M-pyz (M = Fe, Co, and Ni, and pyz = pyrazine) referred to as Fe-pyz, Co-pyz, and Ni-pyz, respectively, which possess high density of open metal sites and suitable pore structure. Compared with the benchmark materials reported, M-pyz not only has high adsorption capacities of C2H6 and C3H8 at low pressure (up to 51.6 and 63.7 cm3·cm−3), but also exhibits excellent C3H8/CH4 and C2H6/CH4 ideal adsorption solution theory (IAST) selectivities, 111 and 25, respectively. Theoretical calculations demonstrated that the materials’ separation performance was driven by multiple intermolecular interactions (hydrogen bonding interactions and van der Waals effect) between gas molecules (C2H6 and C3H8) and the M-pyz binding sites. And, dynamic breakthrough experiments verified the superior reusability and practical separation feasibility for the ternary CH4/C2H6/C3H8 mixtures. Furthermore, M-pyz can be synthesized rapidly and on a large scale at room temperature. This work presents a series of promising MOFs adsorbents to efficiently purify natural gas and promotes the industrial development process of MOFs materials.

References

[1]

Wang, H.; Liu, Y. L.; Li, J. Designer metal-organic frameworks for size-exclusion-based hydrocarbon separations: Progress and challenges. Adv. Mater. 2020, 32, 2002603.

[2]

Kundu, T.; Wahiduzzaman, M.; Shah, B. B.; Maurin, G.; Zhao, D. Solvent-induced control over breathing behavior in flexible metal-organic frameworks for natural-gas delivery. Angew. Chem., Int. Ed. 2019, 131, 8157–8161.

[3]

He, Y. B.; Zhou, W.; Qian, G. D.; Chen, B. L. Methane storage in metal-organic frameworks. Chem. Soc. Rev. 2014, 43, 5657–5678.

[4]

Zhang, Y. F.; Xiao, H. Y.; Zhou, X.; Wang, X.; Li, Z. Selective adsorption performances of UiO-67 for separation of light hydrocarbons C1, C2, and C3. Ind. Eng. Chem. Res. 2017, 56, 8689–8696.

[5]

Han, G. P.; Wang, K. K.; Peng, Y. G.; Zhang, Y. X.; Huang, H. L.; Zhong, C. L. Enhancing higher hydrocarbons capture for natural gas upgrading by tuning van der Waals interactions in fcu-type Zr-MOFs. Ind. Eng. Chem. Res. 2017, 56, 14633–14641.

[6]

Li, J. T.; Luo, X. L.; Zhao, N.; Zhang, L. R.; Huo, Q. S.; Liu, Y. L. Two finite binuclear [M22-OH)(COO)2] (M = Co, Ni) based highly porous metal-organic frameworks with high performance for gas sorption and separation. Inorg. Chem. 2017, 56, 4141–4147.

[7]

Shen, J. M.; Dailly, A.; Beckner, M. Natural gas sorption evaluation on microporous materials. Micropor. Mesopor. Mater. 2016, 235, 170–177.

[8]

Dong, Q. B.; Huang, Y. H.; Hyeon-Deuk, K.; Chang, I. Y.; Wan, J. M.; Chen, C. L.; Duan, J. G.; Jin, W. Q.; Kitagawa, S. Shape-and size-dependent kinetic ethylene sieving from a ternary mixture by a trap-and-flow channel crystal. Adv. Funct. Mater. 2022, 32, 2203745.

[9]

Sholl, D. S.; Lively, R. P. Seven chemical separations to change the world. Nature 2016, 532, 435–437.

[10]

Chai, Y. C.; Han, X.; Li, W. Y.; Liu, S. S.; Yao, S. K.; Wang, C.; Shi, W.; Da-Silva, I.; Manuel, P.; Cheng, Y. Q. et al. Control of zeolite pore interior for chemoselective alkyne/olefin separations. Science 2020, 368, 1002–1006.

[11]

Yang, Y. X.; Bai, P.; Guo, X. H. Separation of xylene isomers: A review of recent advances in materials. Ind. Eng. Chem. Res. 2017, 56, 14725–14753.

[12]

Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444.

[13]

Hanikel, N.; Pei, X. K.; Chheda, S.; Lyu, H.; Jeong, W.; Sauer, J.; Gagliardi, L.; Yaghi, O. M. Evolution of water structures in metal-organic frameworks for improved atmospheric water harvesting. Science 2021, 374, 454–459.

[14]

Dutta, A.; Pan, Y.; Liu, J. Q.; Kumar, A. Multicomponent isoreticular metal-organic frameworks: Principles, current status, and challenges. Coord. Chem. Rev. 2021, 445, 214074.

[15]

Sahoo, R.; Das, M. C. C2s/C1 hydrocarbon separation: The major step towards natural gas purification by metal-organic frameworks (MOFs). Coord. Chem. Rev. 2021, 442, 213998.

[16]

Yang, S. Q.; Hu, T. L. Reverse-selective metal-organic framework materials for the efficient separation and purification of light hydrocarbons. Coord. Chem. Rev. 2022, 468, 214628.

[17]

Zhou, H. C.; Long, J. R.; Yaghi, O. M. Introduction to metal-organic frameworks. Chem. Rev. 2012, 112, 673–674.

[18]

Zhou, H. C. J.; Kitagawa, S. Metal-organic frameworks (MOFs). Chem. Soc. Rev. 2014, 43, 5415–5418.

[19]

Senkovska, I.; Kaskel, S. Ultrahigh porosity in mesoporous MOFs: Promises and limitations. Chem. Commun. 2014, 50, 7089–7098.

[20]
Pei, J. Y.; Shao, K.; Zhang, L.; Wen, H. M.; Li, B.; Qian, G. D. Current status of microporous metal-organic frameworks for hydrocarbon separations. In Metal-Organic Framework: From Design to Applications; Bu, X. H.; Zaworotko, M. J.; Zhang, Z. J., Eds.; Springer: Cham, 2020; pp 305–338.
[21]

Wang, L.; Zhang, W. H.; Ding, J.; Gong, L. L.; Krishna, R.; Ran, Y. Y.; Chen, L.; Luo, F. Th-MOF showing six-fold imide-sealed pockets for middle-size-separation of propane from natural gas. Nano. Res. 2023, 16, 3287–3293.

[22]

Yin, M. J.; Zhang, Q. Y.; Fan, T. T.; Fan, C. B.; Pu, S. Z.; Krishna, R.; Luo, F. Selective krypton uptake through trap confinement, formation of Kr2 dimer, and light response in a photochromic and radiation-resistant thorium-diarylethene-framework. Chem. Eng. J. 2023, 451, 139004.

[23]

Yin, M. J.; Krishna, R.; Wang, W. J.; Yuan, D. Q.; Fan, Y. L.; Feng, X. F.; Wang, L.; Luo, F. A [Th8Co8] nanocage-based metal-organic framework with extremely narrow window but flexible nature enabling dual-sieving effect for both isotope and isomer separation. CCS Chem. 2021, 4, 1016–1027.

[24]

Cui, W. G.; Hu, T. L.; Bu, X. H. Metal-organic framework materials for the separation and purification of light hydrocarbons. Adv. Mater. 2020, 32, 1806445.

[25]

He, Y. B.; Zhang, Z. J.; Xiang, S. C.; Fronczek, F. R.; Krishna, R.; Chen, B. L. A robust doubly interpenetrated metal-organic framework constructed from a novel aromatic tricarboxylate for highly selective separation of small hydrocarbons. Chem. Commun. 2012, 48, 6493–6495.

[26]

Bae, Y. S.; Farha, O. K.; Spokoyny, A. M.; Mirkin, C. A.; Hupp, J. T.; Snurr, R. Q. Carborane-based metal-organic frameworks as highly selective sorbents for CO2 over methane. Chem. Commun. 2008, 4135–4137.

[27]

Bloch, E. D.; Queen, W. L.; Krishna, R.; Zadrozny, J. M.; Brown, C. M.; Long, J. R. Hydrocarbon separations in a metal-organic framework with open iron(II) coordination sites. Science 2012, 335, 1606–1610.

[28]

Yang, S. Q.; Krishna, R.; Chen, H. W.; Li, L. B.; Zhou, L.; An, Y. F.; Zhang, F. Y.; Zhang, Q.; Zhang, Y. H.; Li, W. et al. Immobilization of the polar group into an ultramicroporous metal-organic framework enabling benchmark inverse selective CO2/C2H2 separation with record C2H2 production. J. Am. Chem. Soc. 2023, 145, 13901–13911.

[29]

Peng, Y. L.; He, C. H.; Pham, T.; Wang, T.; Li, P. F.; Krishna, R.; Forrest, K. A.; Hogan, A.; Suepaul, S.; Space, B. et al. Robust microporous metal-organic frameworks for highly efficient and simultaneous removal of propyne and propadiene from propylene. Angew. Chem., Int. Ed. 2019, 58, 10209–10214.

[30]

Shen, J.; He, X.; Ke, T.; Krishna, R.; Van Baten, J. M.; Chen, R. D.; Bao, Z. B.; Xing, H. B.; Dincǎ, M.; Zhang, Z. G. et al. Simultaneous interlayer and intralayer space control in two-dimensional metal-organic frameworks for acetylene/ethylene separation. Nat. Commun. 2020, 11, 6259.

[31]

Wang, Y. T.; Hao, C. L.; Fan, W. D.; Fu, M. Y.; Wang, X. K.; Wang, Z. K.; Zhu, L.; Li, Y.; Lu, X. Q.; Dai, F. N. et al. One-step ethylene purification from an acetylene/ethylene/ethane ternary mixture by cyclopentadiene cobalt-functionalized metal-organic frameworks. Angew. Chem., Int. Ed. 2021, 133, 11451–11459.

[32]

Xu, M. M.; Liu, Y. H.; Zhang, X.; Wang, H. T.; Xie, L. H.; Li, J. R. Size exclusion propyne/propylene separation in an ultramicroporous yet hydrophobic metal-organic framework. Inorg. Chem. Front. 2022, 9, 4952–4961.

[33]

Zeng, H.; Xie, M.; Wang, T.; Wei, R. J.; Xie, X. J.; Zhao, Y. F.; Lu, W. G.; Li, D. Orthogonal-array dynamic molecular sieving of propylene/propane mixtures. Nature 2021, 595, 542–548.

[34]

Cheng, H. T.; Wang, Q.; Meng, L. L.; Sheng, P.; Zhang, Z. H.; Ding, M.; Gao, Y. J.; Bai, J. F. Formation of a N/O/F-rich and rooflike cluster-based highly stable Cu(I/II)-MOF for promising pipeline natural gas upgrading by the recovery of individual C3H8 and C2H6 gases. ACS Appl. Mater. Interfaces 2021, 13, 40713–40723.

[35]

Cheng, H. T.; Wang, Q.; Bai, J. F. Ligand-functional groups induced tuning MOFs’ 2D into 1D pore channels for pipeline natural gas purification. Chem.—Eur. J. 2023, 29, e202202047.

[36]

Mason, J. A.; Veenstra, M.; Long, J. R. Evaluating metal-organic frameworks for natural gas storage. Chem. Sci. 2014, 5, 32–51.

[37]

Yuan, Y. N.; Wu, H. X.; Xu, Y. Z.; Lv, D. F.; Tu, S.; Wu, Y.; Li, Z.; Xia, Q. Selective extraction of methane from C1/C2/C3 on moisture-resistant MIL-142A with interpenetrated networks. Chem. Eng. J. 2020, 395, 125057.

[38]

Zhang, Y. B.; Yang, L. F.; Wang, L. Y.; Cui, X. L.; Xing, H. B. Pillar iodination in functional boron cage hybrid supramolecular frameworks for high performance separation of light hydrocarbons. J. Mater. Chem. A 2019, 7, 27560–27566.

[39]

Jin, C. J.; Shi, S. L.; Liao, S.; Liu, S. M.; Xia, S. Y.; Luo, Y. P.; Wang, S. H.; Wang, H. M.; Chen, C. Post-synthetic ligand exchange by mechanochemistry: Toward green, efficient, and large-scale preparation of functional metal-organic frameworks. Chem. Mater. 2023, 35, 4489–4497.

[40]

Xian, S. K.; Peng, J. J.; Pandey, H.; Thonhauser, T.; Wang, H.; Li, J. Robust metal-organic frameworks with high industrial applicability in efficient recovery of C3H8 and C2H6 from natural gas upgrading. Engineering 2023, 23, 56–63.

[41]

Lin, J. B.; Nguyen, T. T. T.; Vaidhyanathan, R.; Burner, J.; Taylor, J. M.; Durekova, H.; Akhtar, F.; Mah, R. K.; Ghaffari-Nik, O.; Marx, S. et al. A scalable metal-organic framework as a durable physisorbent for carbon dioxide capture. Science 2021, 374, 1464–1469.

[42]

Geng, S. B.; Lin, E.; Li, X.; Liu, W. S.; Wang, T.; Wang, Z. F.; Sensharma, D.; Darwish, S.; Andaloussi, Y. H.; Pham, T. et al. Scalable room-temperature synthesis of highly robust ethane-selective metal-organic frameworks for efficient ethylene purification. J. Am. Chem. Soc. 2021, 143, 8654–8660.

[43]

Liu, D.; Pei, J. Y.; Zhang, X.; Gu, X. W.; Wen, H. M.; Chen, B. L.; Qian, G. D.; Li, B. Scalable green synthesis of robust ultra-microporous Hofmann clathrate material with record C3H6 storage density for efficient C3H6/C3H8 separation. Angew. Chem., Int. Ed. 2023, 62, e202218590.

[44]

Yong, J. Y.; Chen, J. Z.; Chen, Y. Q.; Cai, Y. L.; Gao, J. K. Hofmann-type metal-organic frameworks with high open metal sites density for efficient propylene/propane separation. Micropor. Mesopor. Mater. 2022, 344, 112233.

[45]

Lou, W. S.; Li, J. H.; Sun, W. Q.; Hu, Y. Q.; Wang, L. Y.; Neumann, R. F.; Steiner, M.; Gu, Z. L.; Luan, B. Q.; Zhang, Y. B. Screening Hoffman-type metal organic frameworks for efficient C2H2/CO2 separation. Chem. Eng. J. 2023, 452, 139296.

[46]

Niel, V.; Martinez-Agudo, J. M.; Muñoz, M. C.; Gaspar, A. B.; Real, J. A. Cooperative spin crossover behavior in cyanide-bridged Fe(II)-M(II) bimetallic 3D Hofmann-like networks (M = Ni, Pd, and Pt). Inorg. Chem. 2001, 40, 3838–3839.

[47]

Gao, J. K.; Qian, X. F.; Lin, R. B.; Krishna, R.; Wu, H.; Zhou, W.; Chen, B. L. Mixed metal-organic framework with multiple binding sites for efficient C2H2/CO2 separation. Angew. Chem., Int. Ed. 2020, 59, 4396–4400.

[48]

Pei, J. Y.; Shao, K.; Wang, J. X.; Wen, H. M.; Yang, Y.; Cui, Y. J.; Krishna, R.; Li, B.; Qian, G. D. A chemically stable Hofmann-type metal-organic framework with sandwich-like binding sites for benchmark acetylene capture. Adv. Mater. 2020, 32, 1908275.

[49]

Pei, J. Y.; Gu, X. W.; Liang, C. C.; Chen, B. L.; Li, B.; Qian, G. D. Robust and radiation-resistant Hofmann-type metal-organic frameworks for record xenon/krypton separation. J. Am. Chem. Soc. 2022, 144, 3200–3209.

[50]

Qiao, Y.; Chang, X.; Zheng, J. Y.; Yi, M.; Chang, Z.; Yu, M. H.; Bu, X. H. Self-interpenetrated water-stable microporous metal-organic framework toward storage and purification of light hydrocarbons. Inorg. Chem. 2021, 60, 2749–2755.

[51]

Luo, J. H.; Wang, J.; Cao, Y.; Yao, S.; Zhang, L. R.; Huo, Q. S.; Liu, Y. L. Assembly of an indium-porphyrin framework JLU-Liu7: A mesoporous metal-organic framework with high gas adsorption and separation of light hydrocarbons. Inorg. Chem. Front. 2017, 4, 139–143.

[52]

Gao, S.; Morris, C. G.; Lu, Z. Z.; Yan, Y.; Godfrey, H. G. W.; Murray, C.; Tang, C. C.; Thomas, K. M.; Yang, S.; Schröder, M. Selective hysteretic sorption of light hydrocarbons in a flexible metal-organic framework material. Chem. Mater. 2016, 28, 2331–2340.

[53]

Lv, D. F.; Liu, Z. W.; Xu, F.; Wu, H. X.; Yuan, W. B.; Yan, J.; Xi, H. X.; Chen, X.; Xia, Q. B. A Ni-based metal-organic framework with super-high C3H8 uptake for adsorptive separation of light alkanes. Sep. Purif. Technol. 2021, 266, 118198.

[54]

Zhou, J. Y.; Ke, T.; Steinke, F.; Stock, N.; Zhang, Z. G.; Bao, Z. B.; He, X.; Ren, Q. L.; Yang, Q. W. Tunable confined aliphatic pore environment in robust metal-organic frameworks for efficient separation of gases with a similar structure. J. Am. Chem. Soc. 2022, 144, 14322–14329.

[55]

Wu, Y. F.; Liu, Z. W.; Peng, J. J.; Wang, X.; Zhou, X.; Li, Z. Enhancing selective adsorption in a robust pillared-layer metal-organic framework via channel methylation for the recovery of C2-C3 from natural gas. ACS Appl. Mater. Interfaces 2020, 12, 51499–51505.

[56]

Wang, D. M.; Zhao, T. T.; Cao, Y.; Yao, S.; Li, G. H.; Huo, Q. S.; Liu, Y. L. High performance gas adsorption and separation of natural gas in two microporous metal-organic frameworks with ternary building units. Chem. Commun. 2014, 50, 8648–8650.

[57]

Wang, D. M.; Liu, B.; Yao, S.; Wang, T.; Li, G. H.; Huo, Q. S.; Liu, Y. L. A polyhedral metal-organic framework based on the supermolecular building block strategy exhibiting high performance for carbon dioxide capture and separation of light hydrocarbons. Chem. Commun. 2015, 51, 15287–15289.

[58]

Krishna, R. Metrics for evaluation and screening of metal-organic frameworks for applications in mixture separations. ACS Omega 2020, 5, 16987–17004.

[59]

Wang, L. Y.; Sun, W. Q.; Zhang, Y. B.; Xu, N.; Krishna, R.; Hu, J. B.; Jiang, Y. J.; He, Y. B.; Xing, H. B. Interpenetration symmetry control within ultramicroporous robust boron cluster hybrid MOFs for benchmark purification of acetylene from carbon dioxide. Angew. Chem., Int. Ed. 2021, 60, 22865–22870.

[60]

Ye, Y. X.; Xie, Y.; Shi, Y. S.; Gong, L. S.; Phipps, J.; Al-Enizi, A. M.; Nafady, A.; Chen, B. L.; Ma, S. Q. A microporous metal-organic framework with unique aromatic pore surfaces for high performance C2H6/C2H4 separation. Angew. Chem., Int. Ed. 2023, 62, e202302564.

[61]

Hu, T. L.; Wang, H. L.; Li, B.; Krishna, R.; Wu, H.; Zhou, W.; Zhao, Y. F.; Han, Y.; Wang, X.; Zhu, W. D. et al. Microporous metal-organic framework with dual functionalities for highly efficient removal of acetylene from ethylene/acetylene mixtures. Nat. Commun. 2015, 6, 7328.

[62]

Zhang, Y. B.; Yang, L. F.; Wang, L. Y.; Duttwyler, S.; Xing, H. B. A microporous metal-organic framework supramolecularly assembled from a CuII dodecaborate cluster complex for selective gas separation. Angew. Chem., Int. Ed. 2019, 131, 8229–8234.

Nano Research
Pages 12338-12344
Cite this article:
Zhao L, Liu P, Deng C, et al. Robust ultra-microporous metal-organic frameworks for highly efficient natural gas purification. Nano Research, 2023, 16(10): 12338-12344. https://doi.org/10.1007/s12274-023-6072-5
Topics:
Part of a topical collection:

2756

Views

11

Crossref

10

Web of Science

11

Scopus

0

CSCD

Altmetrics

Received: 26 June 2023
Revised: 26 July 2023
Accepted: 07 August 2023
Published: 27 September 2023
© Tsinghua University Press 2023
Return