AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Molten metal-organic complex to synthesize versatile ultrathin non-layered oxides

Kaisi Liu1,2,§Jiabin Wu2,§Qun Li2,§Hongrun Jin2Yongxin Luo2Bei Qi2Simin Dai2Jianquan Zhao3Liang Huang2( )Jun Zhou2
Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, Wuhan Textile University, Wuhan 430200, China
Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
Analytical and Testing Center, Huazhong University of Science and Technology, Wuhan 430074, China

§ Kaisi Liu, Jiabin Wu, and Qun Li contributed equally to this work.

Show Author Information

Graphical Abstract

A simple and universal strategy of puffing molten salt is proposed for the synthesis of oxide nanosheets.

Abstract

Two-dimensional (2D) materials have attracted a great deal of research interest because of their unique electrical, magnetic, optical, mechanical, and catalytic properties for various applications. To date, however, it is still difficult to fabricate most functional oxides as 2D materials unless they have a layered structure. Herein, we report a one-step universal strategy for preparing versatile non-layered oxide nanosheets by directly annealing the mixture of metal nitrate and dimethyl imidazole (2-MI). The 2-MI plays the key role for 2D oxides since 2-MI owns a very low molten point and sublimation temperature, in which its molten liquid can coordinate with metal ions, forming a metal-organic framework, and easily puffing by its gas molecules. A total of 17 materials were prepared by this strategy, including non-layered metal oxide nanosheets as well as metal/metal oxide loaded nitrogen-doped carbon nanosheets. The as-prepared cobalt particle-loaded nitrogen-doped carbon nanosheets (Co@N/C) exhibit remarkable bifunctional oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) electrocatalytic activity and durability. Besides, the Zn-air battery utilizing a Co@N/C catalyst exhibits high power density of 174.3 mW·cm−2. This facile strategy opens up a new way for large-scale synthesis of 2D oxides that holds great potential to push 2D oxides for practical applications.

Electronic Supplementary Material

Download File(s)
12274_2023_6070_MOESM1_ESM.pdf (4.7 MB)

References

[1]

Wu, J. B.; Li, Q.; Shuck, C. E.; Maleski, K.; Alshareef, H. N.; Zhou, J.; Gogotsi, Y.; Huang, L. An aqueous 2.1 V pseudocapacitor with MXene and V-MnO2 electrodes. Nano Res. 2022, 15, 535–541.

[2]

Kumbhakar, P.; Chowde Gowda, C.; Mahapatra, P. L.; Mukherjee, M.; Malviya, K. D.; Chaker, M.; Chandra, A.; Lahiri, B.; Ajayan, P. M.; Jariwala, D. et al. Emerging 2D metal oxides and their applications. Mater. Today 2021, 45, 142–168.

[3]

Mei, J.; Liao, T.; Kou, L. Z.; Sun, Z. Q. Two-dimensional metal oxide nanomaterials for next-generation rechargeable batteries. Adv. Mater. 2017, 29, 1700176.

[4]

Ten Elshof, J. E.; Yuan, H. Y.; Gonzalez Rodriguez, P. Two-dimensional metal oxide and metal hydroxide nanosheets: Synthesis, controlled assembly and applications in energy conversion and storage. Adv. Energy Mater. 2016, 6, 1600355.

[5]

Zhang, H. Ultrathin two-dimensional nanomaterials. ACS Nano 2015, 9, 9451–9469.

[6]

Gao, X.; Xiong, L. K.; Wu, J. B.; Wan, J.; Huang, L. Scalable and controllable synthesis of 2D high-proportion 1T-phase MoS2. Nano Res. 2020, 13, 2933–2938.

[7]

Hong, S. S.; Yu, J. H.; Lu, D.; Marshall, A. F.; Hikita, Y.; Cui, Y.; Hwang, H. Y. Two-dimensional limit of crystalline order in perovskite membrane films. Sci. Adv. 2017, 3, eaao5173.

[8]

Ji, D. X.; Cai, S. H.; Paudel, T. R.; Sun, H. Y.; Zhang, C. C.; Han, L.; Wei, Y. F.; Zang, Y. P.; Gu, M.; Zhang, Y. et al. Freestanding crystalline oxide perovskites down to the monolayer limit. Nature 2019, 570, 87–90.

[9]

Akinwande, D.; Petrone, N.; Hone, J. Two-dimensional flexible nanoelectronics. Nat. Commun. 2014, 5, 5678.

[10]

Zhao, W.; Cui, C. C.; Xu, Y. H.; Liu, Q. Y.; Zhang, Y.; Zhang, Z. H.; Lu, S. C.; Rong, Z. Q.; Li, X. Z.; Fang, Y. Y. et al. Triggering Pt activity sites in basal plane of van der Waals PtTe2 materials by amorphization engineering for hydrogen evolution. Adv. Mater. 2023, 35, 2301593.

[11]

Alsaif, M. M. Y. A.; Chrimes, A. F.; Daeneke, T.; Balendhran, S.; Bellisario, D. O.; Son, Y.; Field, M. R.; Zhang, W.; Nili, H.; Nguyen, E. P. et al. High-performance field effect transistors using electronic inks of 2D molybdenum oxide nanoflakes. Adv. Funct. Mater. 2016, 26, 91–100.

[12]

Ma, R. Z.; Sasaki, T. Nanosheets of oxides and hydroxides: Ultimate 2D charge-bearing functional crystallites. Adv. Mater. 2010, 22, 5082–5104.

[13]

Adpakpang, K.; Oh, S. M.; Agyeman, D. A.; Jin, X. Y.; Jarulertwathana, N.; Kim, I. Y.; Sarakonsri, T.; Kang, Y. M.; Hwang, S. J. Holey 2D nanosheets of low-valent manganese oxides with an excellent oxygen catalytic activity and a high functionality as a catalyst for Li-O2 batteries. Adv. Funct. Mater. 2018, 28, 1707106.

[14]

Weaver, J. F. Surface chemistry of late transition metal oxides. Chem. Rev. 2013, 113, 4164–4215.

[15]

Chia, X.; Pumera, M. Characteristics and performance of two-dimensional materials for electrocatalysis. Nat. Catal. 2018, 1, 909–921.

[16]

Hu, Z. M.; Xiao, X.; Jin, H. Y.; Li, T. Q.; Chen, M.; Liang, Z.; Guo, Z. F.; Li, J.; Wan, J.; Huang, L. et al. Rapid mass production of two-dimensional metal oxides and hydroxides via the molten salts method. Nat. Commun. 2017, 8, 15630.

[17]

Yang, C. S.; Shang, D. S.; Liu, N.; Fuller, E. J.; Agrawal, S.; Talin, A. A.; Li, Y. Q.; Shen, B. G.; Sun, Y. All-solid-state synaptic transistor with ultralow conductance for neuromorphic computing. Adv. Funct. Mater. 2018, 28, 1804170.

[18]

Coleman, J. N.; Lotya, M.; O'Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J. et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 2011, 331, 568–571.

[19]

Lee, J. M.; Kang, B.; Jo, Y. K.; Hwang, S. J. Organic intercalant-free liquid exfoliation route to layered metal-oxide nanosheets via the control of electrostatic interlayer interaction. ACS Appl. Mater. Interfaces 2019, 11, 12121–12132.

[20]

Zhang, C.; Park, S. H.; O'Brien, S. E.; Seral-Ascaso, A.; Liang, M. Y.; Hanlon, D.; Krishnan, D.; Crossley, A.; McEvoy, N.; Coleman, J. N. et al. Liquid exfoliation of interlayer spacing-tunable 2D vanadium oxide nanosheets: High capacity and rate handling Li-ion battery cathodes. Nano Energy 2017, 39, 151–161.

[21]

Wu, J. B.; Su, J. W.; Wu, T.; Huang, L.; Li, Q.; Luo, Y. X.; Jin, H. R.; Zhou, J.; Zhai, T. Y.; Wang, D. S. et al. Scalable synthesis of 2D Mo2C and thickness-dependent hydrogen evolution on its basal plane and edges. Adv. Mater., 2023, 35, 2209954.

[22]

Li, Q.; Liu, K. S.; Gui, S. W.; Wu, J. B.; Li, X. G.; Li, Z. F.; Jin, H. R.; Yang, H.; Hu, Z. M.; Liang, W. X. et al. Cobalt doping boosted electrocatalytic activity of CaMn3O6 for hydrogen evolution reaction. Nano Res. 2022, 15, 2870–2876.

[23]

Zhou, N.; Yang, R.; Zhai, T. Two-dimensional non-layered materials. Mater. Today Nano 2019, 8, 100051.

[24]

Huang, L.; Hu, Z. M.; Jin, H. R.; Wu, J. B.; Liu, K. S.; Xu, Z. H.; Wan, J.; Zhou, H.; Duan, J. J.; Hu, B. et al. Salt-assisted synthesis of 2D materials. Adv. Funct. Mater. 2020, 30, 1908486.

[25]

Li, Q.; Wu, J. B.; Wu, T.; Jin, H. R.; Zhang, N.; Li, J.; Liang, W. X.; Liu, M. L.; Huang, L.; Zhou, J. Phase engineering of atomically thin perovskite oxide for highly active oxygen evolution. Adv. Funct. Mater. 2021, 31, 2102002.

[26]

Xiao, X.; Song, H. B.; Lin, S. Z.; Zhou, Y.; Zhan, X. J.; Hu, Z. M.; Zhang, Q.; Sun, J. Y.; Yang, B.; Li, T. Q. et al. Scalable salt-templated synthesis of two-dimensional transition metal oxides. Nat. Commun. 2016, 7, 11296.

[27]

Zhang, J.; Fan, X. Y.; Meng, X. D.; Zhou, J.; Wang, M. Y.; Chen, S.; Cao, Y. W.; Chen, Y.; Bielawski, C. W.; Geng, J. X. Ice-templated large-scale preparation of two-dimensional sheets of conjugated polymers: Thickness-independent flexible supercapacitance. ACS Nano 2021, 15, 8870–8882.

[28]

Li, W.; Wang, K. L.; Cheng, S. J.; Jiang, K. A two-dimensional hybrid of SbOx nanoplates encapsulated by carbon flakes as a high performance sodium storage anode. J. Mater. Chem. A 2017, 5, 1160–1167.

[29]

Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451–10453.

[30]

Peng, L. L.; Xiong, P.; Ma, L.; Yuan, Y. F.; Zhu, Y.; Chen, D. H.; Luo, X. Y.; Lu, J.; Amine, K.; Yu, G. H. Holey two-dimensional transition metal oxide nanosheets for efficient energy storage. Nat. Commun. 2017, 8, 15139.

[31]

Chen, D. H.; Peng, L. L.; Yuan, Y. F.; Zhu, Y.; Fang, Z. W.; Yan, C. S.; Chen, G.; Shahbazian-Yassar, R.; Lu, J.; Amine, K. et al. Two-dimensional holey Co3O4 nanosheets for high-rate alkali-ion batteries: From rational synthesis to in situ probing. Nano Lett. 2017, 17, 3907–3913.

[32]

Wang, D.; Zhou, W. W.; Zhang, R.; Zeng, J. J.; Du, Y.; Qi, S.; Cong, C. X.; Ding, C. Y.; Huang, X. X.; Wen, G. W. et al. Mass production of large-sized, nonlayered 2D nanosheets: Their directed synthesis by a rapid “gel-blowing” strategy, and applications in Li/Na storage and catalysis. Adv. Mater. 2018, 30, 1803569.

[33]

Liu, K. S.; Jin, H. R.; Huang, L. W.; Luo, Y. X.; Zhu, Z. H.; Dai, S. M.; Zhuang, X. Y.; Wang, Z. D.; Huang, L.; Zhou, J. Puffing ultrathin oxides with nonlayered structures. Sci. Adv 2022, 8, eabn2030.

[34]

Pan, Y.; Sun, K. A.; Liu, S. J.; Cao, X.; Wu, K. L.; Cheong, W. C.; Chen, Z.; Wang, Y.; Li, Y.; Liu, Y. Q. et al. Core–shell ZIF-8@ZIF-67-derived CoP nanoparticle-embedded N-doped carbon nanotube hollow polyhedron for efficient overall water splitting. J. Am. Chem. Soc. 2018, 140, 2610–2618.

[35]

Wang, M.; Liu, J. X.; Guo, C. M.; Gao, X. S.; Gong, C. H.; Wang, Y.; Liu, B.; Li, X. X.; Gurzadyan, G. G.; Sun, L. C. Metal-organic frameworks (ZIF-67) as efficient cocatalysts for photocatalytic reduction of CO2: The role of the morphology effect. J. Mater. Chem. A 2018, 6, 4768–4775.

[36]

Zhan, G. W.; Zeng, H. C. ZIF-67-derived nanoreactors for controlling product selectivity in CO2 Hydrogenation. ACS Catal. 2017, 7, 7509–7519.

[37]

Yin, W. J.; Weng, B. C.; Ge, J.; Sun, Q. D.; Li, Z. Z.; Yan, Y. F. Oxide perovskites, double perovskites and derivatives for electrocatalysis, photocatalysis, and photovoltaics. Energy Environ. Sci. 2019, 12, 442–462.

[38]

Vasala, S.; Karppinen, M. A2B′B″O6 perovskites: A review. Prog. Solid State Chem. 2015, 43, 1–36.

[39]

Aso, R.; Kan, D.; Shimakawa, Y.; Kurata, H. Atomic level observation of octahedral distortions at the perovskite oxide heterointerface. Sci. Rep. 2013, 3, 2214.

[40]

Cheng, Q. Q.; Han, S. B.; Mao, K.; Chen, C.; Yang, L. J.; Zou, Z. Q.; Gu, M.; Hu, Z.; Yang, H. Co nanoparticle embedded in atomically-dispersed Co-N-C nanofibers for oxygen reduction with high activity and remarkable durability. Nano Energy 2018, 52, 485–493.

[41]

Wu, J. B.; Zhou, H.; Li, Q.; Chen, M.; Wan, J.; Zhang, N.; Xiong, L. K.; Li, S.; Xia, B. Y.; Feng, G.; Liu, M. L.; Huang, L. Densely populated isolated single Co-N site for efficient oxygen electrocatalysis. Adv. Energy Mater. 2019, 9, 1900149.

[42]

Yu, P.; Wang, L.; Sun, F. F.; Xie, Y.; Liu, X.; Ma, J. Y.; Wang, X. W.; Tian, C. G.; Li, J. H.; Fu, H. G. Co nanoislands rooted on Co-N-C nanosheets as efficient oxygen electrocatalyst for Zn-air batteries. Adv. Mater. 2019, 31, 1901666.

[43]

Patil, R.; Kumar, N.; Bhattacharjee, S.; Wu, H. Y.; Han, P. C.; Matsagar, B. M.; Wu, K. C. W.; Salunkhe, R. R.; Bhaumik, A.; Dutta, S. Influence of catalase encapsulation on cobalt@nanoporous carbon with multiwall shell for supercapacitor and polyurethane synthesis using carbon dioxide. Chem. Eng. J. 2023, 453, 139874.

[44]

Hu, L. B.; Xu, Z.; He, P. J.; Wang, X. G.; Tian, Z. Q.; Yuan, H. F.; Yu, F.; Dai, B. Zinc and nitrogen-doped carbon in-situ wrapped ZnO nanoparticles as a high-activity catalyst for acetylene acetoxylation. Catal. Lett. 2020, 150, 1155–1162.

[45]

Song, H. X.; Fang, G. Q.; Gao, Z. H.; Su, Y.; Yan, X. R.; Lin, J.; Wang, W. H.; Ren, W. Z.; Wei, H. S. In situ transformation of ZIF-8 into porous overlayer on Ru/ZnO for enhanced hydrogenation catalysis. ACS Appl. Mater. Interfaces 2022, 14, 12295–12303.

[46]

Yan, L.; Xu, Z. Y.; Hu, W. K.; Ning, J. Q.; Zhong, Y. J.; Hu, Y. Formation of sandwiched leaf-like CNTs-Co/ZnCo2O4@NC-CNTs nanohybrids for high-power-density rechargeable Zn-air batteries. Nano Energy 2021, 82, 105710.

[47]

Qin, J. N.; Wang, S. B.; Wang, X. C. Visible-light reduction CO2 with dodecahedral zeolitic imidazolate framework ZIF-67 as an efficient co-catalyst. Appl. Catal. B: Environ. 2017, 209, 476–482.

[48]

Pattengale, B.; Yang, S. Z.; Lee, S.; Huang, J. F. Mechanistic probes of zeolitic imidazolate framework for photocatalytic application. ACS Catal. 2017, 7, 8446–8453.

[49]

Sun, S. N.; Sun, Y. M.; Zhou, Y.; Xi, S. B.; Ren, X.; Huang, B. C.; Liao, H. B.; Wang, L. P.; Du, Y. H. et al. Shifting oxygen charge towards octahedral metal: A way to promote water oxidation on cobalt spinel oxides. Angew. Chem., Int. Ed. 2019, 131, 6103–6108.

Nano Research
Pages 3147-3155
Cite this article:
Liu K, Wu J, Li Q, et al. Molten metal-organic complex to synthesize versatile ultrathin non-layered oxides. Nano Research, 2024, 17(4): 3147-3155. https://doi.org/10.1007/s12274-023-6070-7
Topics:

860

Views

4

Crossref

2

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 04 June 2023
Revised: 21 July 2023
Accepted: 07 August 2023
Published: 13 September 2023
© Tsinghua University Press 2023
Return