AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Designing topological and correlated 2D magnetic states via superatomic lattice constructions of zirconium dichloride

Yang Song1,§Wen-Han Dong2,3,§Kuan-Rong Hao1Shixuan Du2Lizhi Zhang1( )
Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China

§ Yang Song and Wen-Han Dong contributed equally to this work.

Show Author Information

Graphical Abstract

Two-dimensional Chern insulator and antiferromagnetic Dirac Mott insulator states are obtained by theoretically designing superatomic lattices of zirconium dichloride.

Abstract

Magnetic materials could realize the intriguing quantum anomalous Hall effect and metal-to-insulator transition when combined with band topology or electronic correlation, which have broad prospects in quantum information, spintronics, and valleytronics. Here, we propose the approach of designing novel two-dimensional (2D) magnetic states via d-orbital-based superatomic lattices. Specifically, we chose triangular zirconium dichloride disks as superatoms to construct the honeycomb superatomic lattices. Using first-principles calculations, we identified a series of 2D magnetic states with varying sizes of superatoms. We found the non-uniform stoichiometries and geometric effect of superatomic lattice give rise to spin-polarized charges arranged in different magnetic configurations, containing ferromagnetic coloring triangles, antiferromagnetic honeycomb, and ferromagnetic kagome lattices. Attractively, these magnetic states are endowed with nontrivial band topology or strong correlation, forming an ideal Chern insulator or antiferromagnetic Dirac Mott insulator. Our work not only reveals the potential of d-orbital-based superatoms for generating unusual magnetic configurations, but also supplies a new avenue for material engineering at the nanoscale.

Electronic Supplementary Material

Download File(s)
12274_2023_6066_MOESM1_ESM.pdf (513.6 KB)

References

[1]

Mak, K. F.; Shan, J.; Ralph, D. C. Probing and controlling magnetic states in 2D layered magnetic materials. Nat. Rev. Phys. 2019, 1, 646–661.

[2]

Gibertini, M.; Koperski, M.; Morpurgo, A. F.; Novoselov, K. S. Magnetic 2D materials and heterostructures. Nat. Nanotechnol. 2019, 14, 408–419.

[3]

Liu, P. Z.; Williams, J. R.; Cha, J. J. Topological nanomaterials. Nat. Rev. Mater. 2019, 4, 479–496.

[4]

Armitage, N. P.; Mele, E. J.; Vishwanath, A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 2018, 90, 015001.

[5]

Huang, B.; Clark, G.; Navarro-Moratalla, E.; Klein, D. R.; Cheng, R.; Seyler, K. L.; Zhong, D.; Schmidgall, E.; McGuire, M. A.; Cobden, D. H. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 2017, 546, 270–273.

[6]

Fei, Z. Y.; Huang, B.; Malinowski, P.; Wang, W. B.; Song, T. C.; Sanchez, J.; Yao, W.; Xiao, D.; Zhu, X. Y.; May, A. F. et al. Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2. Nat. Mater. 2018, 17, 778–782.

[7]

Ashton, M.; Gluhovic, D.; Sinnott, S. B.; Guo, J.; Stewart, D. A.; Hennig, R. G. Two-dimensional intrinsic half-metals with large spin gaps. Nano Lett. 2017, 17, 5251–5257.

[8]

Huang, B.; Clark, G.; Klein, D. R.; MacNeill, D.; Navarro-Moratalla, E.; Seyler, K. L.; Wilson, N.; McGuire, M. A.; Cobden, D. H.; Xiao, D. et al. Electrical control of 2D magnetism in bilayer CrI3. Nat. Nanotechnol. 2018, 13, 544–548.

[9]

Kane, C. L.; Mele, E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 2005, 95, 226801.

[10]

Bernevig, B. A.; Hughes, T. L.; Zhang, S. C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 2006, 314, 1757–1761.

[11]

Moore, J. E. The birth of topological insulators. Nature 2010, 464, 194–198.

[12]

Qi, X. L.; Zhang, S. C. Topological insulators and superconductors. Rev. Mod. Phys. 2011, 83, 1057–1110.

[13]

Pesin, D.; MacDonald, A. H. Spintronics and pseudospintronics in graphene and topological insulators. Nat. Mater. 2012, 11, 409–416.

[14]

Niu, C. W.; Hanke, J. P.; Buhl, P. M.; Zhang, H. B.; Plucinski, L.; Wortmann, D.; Blügel, S.; Bihlmayer, G.; Mokrousov, Y. Mixed topological semimetals driven by orbital complexity in two-dimensional ferromagnets. Nat. Commun. 2019, 10, 3179.

[15]

Niu, C. W.; Wang, H.; Mao, N.; Huang, B. B.; Mokrousov, Y.; Dai, Y. Antiferromagnetic topological insulator with nonsymmorphic protection in two dimensions. Phys. Rev. Lett. 2020, 124, 066401.

[16]

Dong, W. H.; Bao, D. L.; Sun, J. T.; Liu, F.; Du, S. X. Manipulation of Dirac fermions in nanochain-structured graphene. Chin. Phys. Lett. 2021, 38, 097101.

[17]

Xu, Y. F.; Elcoro, L.; Song, Z. D.; Wieder, B. J.; Vergniory, M. G.; Regnault, N.; Chen, Y. L.; Felser, C.; Bernevig, B. A. High-throughput calculations of magnetic topological materials. Nature 2020, 586, 702–707.

[18]

Elcoro, L.; Wieder, B. J.; Song, Z. D.; Xu, Y. F.; Bradlyn, B.; Bernevig, B. A. Magnetic topological quantum chemistry. Nat. Commun. 2021, 12, 5965.

[19]

Watanabe, H.; Po, H. C.; Vishwanath, A. Structure and topology of band structures in the 1651 magnetic space groups. Sci. Adv. 2018, 4, eaat8685.

[20]

Morali, N.; Batabyal, R.; Nag, P. K.; Liu, E. K.; Xu, Q. N.; Sun, Y.; Yan, B. H.; Felser, C.; Avraham, N.; Beidenkopf, H. Fermi-arc diversity on surface terminations of the magnetic Weyl semimetal Co3Sn2S2. Science 2019, 365, 1286–1291.

[21]

Otrokov, M. M.; Klimovskikh, I. I.; Bentmann, H.; Estyunin, D.; Zeugner, A.; Aliev, Z. S.; Gaß, S.; Wolter, A. U. B.; Koroleva, A. V.; Shikin, A. M. et al. Prediction and observation of an antiferromagnetic topological insulator. Nature 2019, 576, 416–422.

[22]

Noky, J.; Zhang, Y.; Gooth, J.; Felser, C.; Sun, Y. Giant anomalous Hall and Nernst effect in magnetic cubic Heusler compounds. npj Comput. Mater. 2020, 6, 77.

[23]

Zhang, L. Z.; Wang, Z. F.; Huang, B.; Cui, B.; Wang, Z. M.; Du, S. X.; Gao, H. J.; Liu, F. Intrinsic two-dimensional organic topological insulators in metal-dicyanoanthracene lattices. Nano Lett. 2016, 16, 2072–2075.

[24]

Li, J. H.; Wang, C.; Zhang, Z. T.; Gu, B. L.; Duan, W. H.; Xu, Y. Magnetically controllable topological quantum phase transitions in the antiferromagnetic topological insulator MnBi2Te4. Phys. Rev. B 2019, 100, 121103.

[25]

Chang, C. Z.; Zhang, J. S.; Feng, X.; Shen, J.; Zhang, Z. C.; Guo, M. H.; Li, K.; Ou, Y. B.; Wei, P.; Wang, L. L. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 2013, 340, 167–170.

[26]

Deng, Y. J.; Yu, Y. J.; Shi, M. Z.; Guo, Z. X.; Xu, Z. H.; Wang, J.; Chen, X. H.; Zhang, Y. B. Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4. Science 2020, 367, 895–900.

[27]

Sakai, A.; Mizuta, Y. P.; Nugroho, A. A.; Sihombing, R.; Koretsune, T.; Suzuki, M. T.; Takemori, N.; Ishii, R.; Nishio-Hamane, D.; Arita, R. et al. Giant anomalous Nernst effect and quantum-critical scaling in a ferromagnetic semimetal. Nat. Phys. 2018, 14, 1119–1124.

[28]

Ghimire, N. J.; Mazin, I. I. Topology and correlations on the kagome lattice. Nat. Mater. 2020, 19, 137–138.

[29]

Liu, Z.; Liu, F.; Wu, Y. S. Exotic electronic states in the world of flat bands: From theory to material. Chin. Phys. B 2014, 23, 077308.

[30]

Lee, D.; Jin, K. H.; Liu, F.; Yeom, H. W. Tunable Mott Dirac and kagome bands engineered on 1T-TaS2. Nano Lett. 2022, 22, 7902–7909.

[31]

Paiva, T.; Scalettar, R. T.; Zheng, W.; Singh, R. R. P.; Oitmaa, J. Ground-state and finite-temperature signatures of quantum phase transitions in the half-filled Hubbard model on a honeycomb lattice. Phys. Rev. B 2005, 72, 085123.

[32]

Meng, Z. Y.; Lang, T. C.; Wessel, S.; Assaad, F. F.; Muramatsu, A. Quantum spin liquid emerging in two-dimensional correlated Dirac fermions. Nature 2010, 464, 847–851.

[33]

Thomas, S.; Li, H.; Bredas, J. L. Emergence of an antiferromagnetic Mott insulating phase in hexagonal π-conjugated covalent organic frameworks. Adv. Mater. 2019, 31, 1900355.

[34]

Zhou, Y. N.; Liu, F. Realization of an antiferromagnetic superatomic graphene: Dirac Mott insulator and circular dichroism Hall effect. Nano Lett. 2021, 21, 230–235.

[35]
Lei, L.; Dai, J. Q.; Dong, H. Y.; Geng, Y. Y.; Cao, F. Y.; Wang, C.; Xu, R.; Pang, F.; Li, F. S.; Cheng, Z. H. et al. Electronic Janus lattice and kagome-like bands in coloring-triangular MoTe2 monolayers. arXiv: 2302.06166, 2023.
[36]

Cisar, A.; Corbett, J. D.; Daake, R. L. The zirconium dichloride phase region. Synthesis, structure, and photoelectron spectral studies of 3R-ZrCl2, 6T-Zr1.05Cl2, and related phases. Inorg. Chem. 1979, 18, 836–843.

[37]

Zhang, S. H.; Kang, M.; Huang, H. Q.; Jiang, W.; Ni, X. J.; Kang, L.; Zhang, S. P.; Xu, H. X.; Liu, Z.; Liu, F. Kagome bands disguised in a coloring-triangle lattice. Phys. Rev. B 2019, 99, 100404.

[38]

Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561.

[39]

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

[40]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[41]

Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

[42]

Mostofi, A. A.; Yates, J. R.; Pizzi, G.; Lee, Y. S.; Souza, I.; Vanderbilt, D.; Marzari, N. An updated version of wannier90: A tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 2014, 185, 2309–2310.

[43]

Sancho, M. P. L.; Sancho, J. M. L.; Sancho, J. M. L.; Rubio, J. Highly convergent schemes for the calculation of bulk and surface Green functions. J. Phys. F Met. Phys. 1985, 15, 851–858.

[44]

Wu, Q. S.; Zhang, S. N.; Song, H. F.; Troyer, M.; Soluyanov, A. A. WannierTools: An open-source software package for novel topological materials. Comput. Phys. Commun. 2018, 224, 405–416.

[45]

Baroni, S.; Giannozzi, P.; Testa, A. Green’s-function approach to linear response in solids. Phys. Rev. Lett. 1987, 58, 1861–1864.

[46]

Giannozzi, P.; de Gironcoli, S.; Pavone, P.; Baroni, S. Ab initio calculation of phonon dispersions in semiconductors. Phys. Rev. B 1991, 43, 7231–7242.

[47]

Togo, A.; Oba, F.; Tanaka, I. First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures. Phys. Rev. B 2008, 78, 134106.

[48]

Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 1984, 81, 511–519.

[49]

Wang, V.; Tang, G.; Liu, Y. C.; Wang, R. T.; Mizuseki, H.; Kawazoe, Y.; Nara, J.; Geng, W. T. High-throughput computational screening of two-dimensional semiconductors. J. Phys. Chem. Lett. 2022, 13, 11581–11594.

[50]

Mounet, N.; Gibertini, M.; Schwaller, P.; Campi, D.; Merkys, A.; Marrazzo, A.; Sohier, T.; Castelli, I. E.; Cepellotti, A.; Pizzi, G. et al. Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat. Nanotechnol. 2018, 13, 246–252.

[51]

Zhang, J. Y.; Ma, C. L. Room-temperature non-Dirac quantum anomalous Hall states, half semiconductors, and strain-tuned half metals in monolayer zirconium trihalide. Phys. Rev. B 2021, 104, 205429.

[52]

Wang, Z. F.; Su, N. H.; Liu, F. Prediction of a two-dimensional organic topological insulator. Nano Lett. 2013, 13, 2842–2845.

[53]

Xiang, H. J.; Lee, C.; Koo, H. J.; Gong, X. G.; Whangbo, M. H. Magnetic properties and energy-mapping analysis. Dalton Trans. 2013, 42, 823–853.

[54]

Dong, W. H.; Zhang, Y. Y.; Zhang, Y. F.; Sun, J. T.; Liu, F.; Du, S. X. Superconductivity and topological aspects of two-dimensional transition-metal monohalides. npj Comput. Mater. 2022, 8, 185.

[55]

Haldane, F. D. M. Nonlinear field theory of large-spin heisenberg antiferromagnets: Semiclassically quantized solitons of the one-dimensional easy-axis néel state. Phys. Rev. Lett. 1983, 50, 1153–1156.

[56]

Gu, Y. W.; Qiu, Z. J.; Müllen, K. Nanographenes and graphene nanoribbons as multitalents of present and future materials science. J. Am. Chem. Soc. 2022, 144, 11499–11524.

[57]

Arikawa, S.; Shimizu, A.; Shiomi, D.; Sato, K.; Shintani, R. Synthesis and isolation of a kinetically stabilized crystalline triangulene. J. Am. Chem. Soc. 2021, 143, 19599–19605.

[58]

Hieulle, J.; Castro, S.; Friedrich, N.; Vegliante, A.; Lara, F. R.; Sanz, S.; Rey, D.; Corso, M.; Frederiksen, T.; Pascual, J. I. et al. On-surface synthesis and collective spin excitations of a triangulene-based nanostar. Angew. Chem., Int. Ed. 2021, 60, 25224–25229.

Nano Research
Pages 13509-13515
Cite this article:
Song Y, Dong W-H, Hao K-R, et al. Designing topological and correlated 2D magnetic states via superatomic lattice constructions of zirconium dichloride. Nano Research, 2023, 16(12): 13509-13515. https://doi.org/10.1007/s12274-023-6066-3
Topics:
Part of a topical collection:

1126

Views

4

Crossref

4

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 22 May 2023
Revised: 28 July 2023
Accepted: 07 August 2023
Published: 04 November 2023
© Tsinghua University Press 2023
Return