Journal Home > Volume 17 , Issue 4

Biomimetics provides guidance to design and synthesize advanced catalysts for oxygen reduction reaction in microbial fuel cells (MFCs). Herein, jellyfish-inspired Fe clusters on carbon nanotubes connected with CuNC (Fe@CNT@CuNC) were designed and prepared by using zeolitic imidazolate framework (ZIF)-8 precursors to imitate the organic texture and function of jellyfish. The antibacterial effect of Cu+ ions depressed the growth of cathode biofilm to ensure rapid mass transport. Fe clusters and CuNC connected by CNTs accelerated the electron transfer from Fe to CuNC. The optimization of oxygen adsorption was caused by electron redistribution between sites of Fe and Cu. Jellyfish-like catalysts achieved a half-wave potential of 0.86 V and onset potential of 0.95 V vs. reversible hydrogen electrode (RHE). MFCs gained the maximum power density of 1600 mW·m−2 after 500 h measurement. This work provides insights into the special design of advanced catalysts based on bio-inspiration and biomimetics.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Jellyfish bio-inspired Fe@CNT@CuNC derived from ZIF-8 for cathodic oxygen reduction

Show Author's information Kai Cheng1,2Zequan Liu3Demin Jiang1Min Song3( )Yuqiao Wang1,2( )
Research Center for Nano Photoelectrochemistry and Devices, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
Yangtze River Delta Carbon Neutrality Strategy Development Institute, Southeast University, Nanjing 210096, China
School of Energy and Environment, Southeast University, Nanjing 210096, China

Abstract

Biomimetics provides guidance to design and synthesize advanced catalysts for oxygen reduction reaction in microbial fuel cells (MFCs). Herein, jellyfish-inspired Fe clusters on carbon nanotubes connected with CuNC (Fe@CNT@CuNC) were designed and prepared by using zeolitic imidazolate framework (ZIF)-8 precursors to imitate the organic texture and function of jellyfish. The antibacterial effect of Cu+ ions depressed the growth of cathode biofilm to ensure rapid mass transport. Fe clusters and CuNC connected by CNTs accelerated the electron transfer from Fe to CuNC. The optimization of oxygen adsorption was caused by electron redistribution between sites of Fe and Cu. Jellyfish-like catalysts achieved a half-wave potential of 0.86 V and onset potential of 0.95 V vs. reversible hydrogen electrode (RHE). MFCs gained the maximum power density of 1600 mW·m−2 after 500 h measurement. This work provides insights into the special design of advanced catalysts based on bio-inspiration and biomimetics.

Keywords: oxygen reduction reaction, microbial fuel cells, bio-inspiration, antibacterial ability, density functional theory (DFT) rational design

References(32)

[1]

Lin, Z. N.; Yang, A. Z.; Zhang, B. B.; Liu, B.; Zhu, J. W.; Tang, Y. W.; Qiu, X. Y. Coupling the atomically dispersed Fe-N3 sites with sub-5 nm Pd nanocrystals confined in N-doped carbon nanobelts to boost the oxygen reduction for microbial fuel cells. Adv. Funct. Mater. 2022, 32, 2107683.

[2]

Cao, B. C.; Zhao, Z. P.; Peng, L. L.; Shiu, H. Y.; Ding, M. N.; Song, F.; Guan, X.; Lee, C. K.; Huang, J.; Zhu, D. et al. Silver nanoparticles boost charge-extraction efficiency in Shewanella microbial fuel cells. Science 2021, 373, 1336–1340.

[3]

Shao, C. F.; Wu, L. M.; Wang, Y. H.; Qu, K. G.; Chu, H. L.; Sun, L. X.; Ye, J. S.; Li, B. T.; Wang, X. J. Engineering asymmetric Fe coordination centers with hydroxyl adsorption for efficient and durable oxygen reduction catalysis. Appl. Catal. B: Environ. 2022, 316, 121607.

[4]

Huang, S. T.; Geng, Y. X.; Xia, J.; Chen, D. Y.; Lu, J. M. NiCo alloy nanoparticles on a N/C dual-doped matrix as a cathode catalyst for improved microbial fuel cell performance. Small 2022, 18, 2106355.

[5]

Chen, H. N.; Jiang, D. M.; Xie, H.; Liu, Y. X.; Li, S. S.; Wang, Y. Q. Cu2O@Co/N-doped carbon as antibacterial catalysts for oxygen reduction in microbial fuel cells. Environ. Sci.: Nano 2023, 10, 158–165.

[6]

Yang, W.; Chata, G.; Zhang, Y. D.; Peng, Y.; Lu, J. E.; Wang, N.; Mercado, R.; Li, J.; Chen, S. W. Graphene oxide-supported zinc cobalt oxides as effective cathode catalysts for microbial fuel cell: High catalytic activity and inhibition of biofilm formation. Nano Energy 2019, 57, 811–819.

[7]

Lou, Y. W.; Liu, J. J.; Liu, M.; Wang, F. Hexagonal Fe2N coupled with N-doped carbon: Crystal-plane-dependent electrocatalytic activity for oxygen reduction. ACS Catal. 2020, 10, 2443–2451.

[8]

Wang, Z.; Zhu, C.; Tan, H.; Liu, J.; Xu, L. L.; Zhang, Y. Q.; Liu, Y. P.; Zou, X. X.; Liu, Z.; Lu, X. H. Understanding the synergistic effects of cobalt single atoms and small nanoparticles: Enhancing oxygen reduction reaction catalytic activity and stability for zinc-air batteries. Adv. Funct. Mater. 2021, 31, 2104735.

[9]

Sun, Y.; Dai, Y.; Duan, Y. Q.; Xu, X.; Lv, Y.; Yang, L.; Zou, J. L. Biofouling inhibition on nano-silver/ferrous sulfide/partly-graphitized carbon cathode with enhanced catalytic activity and durability for microbial fuel cells. Carbon 2017, 119, 394–402.

[10]

Selvinsimpson, S.; Gnanamozhi, P.; Pandiyan, V.; Govindasamy, M.; Habila, M. A.; AlMasoud, N.; Chen, Y. Synergetic effect of Sn doped ZnO nanoparticles synthesized via ultrasonication technique and its photocatalytic and antibacterial activity. Environ. Res. 2021, 197, 111115.

[11]

Abdieva, G. A.; Patra, I.; Al-Qargholi, B.; Shahryari, T.; Chauhan, N. P. S.; Moghaddam-Manesh, M. An efficient ultrasound-assisted synthesis of Cu/Zn hybrid MOF nanostructures with high microbial strain performance. Front. Bioeng. Biotechnol. 2022, 10, 861580.

[12]

Zhong, K. Q.; Huang, L. Z.; Li, H.; Dai, Y.; Zhang, H. G.; Yang, R. Y.; Arulmani, S. R. B.; Liu, X. J.; Huang, L.; Yan, J. Enhanced oxygen reduction upon Ag/Fe Co-doped UiO-66-NH2-derived porous carbon as bacteriostatic catalysts in microbial fuel cells. Carbon 2021, 183, 62–75.

[13]

Fan, X. Z.; Yahia, L. H.; Sacher, E. Antimicrobial properties of the Ag, Cu nanoparticle system. Biology 2021, 10, 137.

[14]

Nong, W. Y.; Cao, J. Q.; Li, Y. Q.; Qu, Z.; Sun, J.; Swale, T.; Yip, H. Y.; Qian, P. Y.; Qiu, J. W.; Kwan, H. S. et al. Jellyfish genomes reveal distinct homeobox gene clusters and conservation of small RNA processing. Nat. Commun. 2020, 11, 3051.

[15]

Valdés, Á.; Qu, Z. W.; Kroes, G. J.; Rossmeisl, J.; Nørskov, J. K. Oxidation and photo-oxidation of water on TiO2 surface. J. Phys. Chem. C 2008, 112, 9872–9879.

[16]

Pan, Q. R.; Lai, B. L.; Huang, L. J.; Feng, Y. N.; Li, N.; Liu, Z. Q. Regulating the electronic structure of Cu-Nx active sites for efficient and durable oxygen reduction catalysis to improve microbial fuel cell performance. ACS Appl. Mater. Interfaces 2023, 15, 1234–1246.

[17]

Lin, X. R.; Li, Q. Q.; Hu, Y. X.; Jin, Z. Y.; Reddy, K. M.; Li, K. K.; Lin, X.; Ci, L. J.; Qiu, H. J. Revealing atomic configuration and synergistic interaction of single-atom-based Zn-Co-Fe trimetallic sites for enhancing oxygen reduction and evolution reactions. Small 2023, 19, 2300612.

[18]

Ding, Y. N.; Xie, L.; Zhou, W.; Sun, F.; Gao, J. H.; Yang, C. W.; Zhao, G. B.; Qin, Y. K.; Ma, J. Pulsed electrocatalysis enables the stabilization and activation of carbon-based catalysts towards H2O2 Production. Appl. Catal. B: Environ. 2022, 316, 121688.

[19]

Li, S. A.; Feng, C.; Xie, Y. H.; Guo, C. Y.; Hassan, A.; Wang, J. D. Dicyandiamide-assisted synthesis of N-doped porous CoMn-Nx@N-C carbon nanotube composites via MOFs as efficient trifunctional electrocatalysts in the same electrolyte. Nanoscale 2023, 15, 1210–1220.

[20]

Yu, Q. P.; Liu, X. B.; Liu, G. S.; Wang, X. P.; Li, Z. J.; Li, B.; Wu, Z. X.; Wang, L. Constructing three-phase heterojunction with 1D/3D hierarchical structure as efficient trifunctional electrocatalyst in alkaline seawater. Adv. Funct. Mater. 2022, 32, 2205767.

[21]

Zhang, L. J.; Gu, T. T.; Lu, K. L.; Zhou, L. J.; Li, D. S.; Wang, R. H. Engineering synergistic edge-N dipole in metal-free carbon nanoflakes toward intensified oxygen reduction electrocatalysis. Adv. Funct. Mater. 2021, 31, 2103187.

[22]

Chen, S. Y.; Luo, T.; Li, X. Q.; Chen, K. J.; Fu, J. W.; Liu, K.; Cai, C.; Wang, Q. Y.; Li, H. M.; Chen, Y. et al. Identification of the highly active Co-N4 coordination motif for selective oxygen reduction to hydrogen peroxide. J. Am. Chem. Soc. 2022, 144, 14505–14516.

[23]

Xiong, Q.; Zheng, J. H.; Liu, B.; Liu, Y. J.; Li, H. M.; Yang, M. In-situ self-templating construction of FeNi/N Co-doped 3D porous carbon from bimetallic ions-coordinated porous organic polymer for rechargeable zinc-air batteries. Appl. Catal. B: Environ. 2023, 321, 122067.

[24]

Tong, M. M.; Sun, F. F.; Xie, Y.; Wang, Y.; Yang, Y. Q.; Tian, C. G.; Wang, L.; Fu, H. G. Operando cooperated catalytic mechanism of atomically dispersed Cu-N4 and Zn-N4 for promoting oxygen reduction reaction. Angew. Chem., Int. Ed. 2021, 60, 14005–14012.

[25]

Zhang, X. Y.; Zhu, S. F.; Song, L. L.; Xu, Y. X.; Wang, Y. Q. NiS gradient distribution on arrayed porous carbonized grapefruit peel for water splitting. Nanoscale 2023, 15, 3764–3771.

[26]

Zhang, Y.; Wang, M. W.; Zhu, W. X.; Fang, M. M.; Ma, M. J.; Liao, F.; Yang, H.; Cheng, T.; Pao, C. W.; Chang, Y. C. et al. Metastable hexagonal phase SnO2 nanoribbons with active edge sites for efficient hydrogen peroxide electrosynthesis in neutral media. Angew. Chem., Int. Ed. 2023, 62, e202218924.

[27]

Noman, M.; Ahmed, T.; White, J. C.; Nazir, M. M.; Azizullah; Li, D. Y.; Song, F. M. Bacillus altitudinis-stabilized multifarious copper nanoparticles prevent bacterial fruit blotch in watermelon (Citrullus lanatus L.): Direct pathogen inhibition, in planta particles accumulation, and host stomatal immunity modulation. Small 2023, 19, 2207136.

[28]

Kosimaningrum, W. E.; Le, T. X. H.; Holade, Y.; Bechelany, M.; Tingry, S.; Buchari, B.; Noviandri, I.; Innocent, C.; Cretin, M. Surfactant- and binder-free hierarchical platinum nanoarrays directly grown onto a carbon felt electrode for efficient electrocatalysis. ACS Appl. Mater. Interfaces 2017, 9, 22476–22489.

[29]

Jiang, D. M.; Chen, H. N.; Xie, H.; Cheng, K.; Li, L.; Xie, K.; Wang, Y. Q. Fe, N, S Co-doped cellulose paper carbon fibers as an air-cathode catalyst for microbial fuel cells. Environ. Res. 2023, 221, 115308.

[30]

Xia, X. J.; Liang, Q. D.; Sun, X. G.; Yu, D. H.; Huang, X. R.; Mugo, S. M.; Chen, W.; Wang, D.; Zhang, Q. Intrinsically electron conductive, antibacterial, and anti-swelling hydrogels as implantable sensors for bioelectronics. Adv. Funct. Mater. 2022, 32, 2208024.

[31]

Lai, B. L.; Wei, H. X.; Luo, Z. N.; Zheng, T.; Lin, Y. H.; Liu, Z. Q.; Li, N. ZIF-8-derived Cu,N Co-doped carbon as a bifunctional cathode catalyst for enhanced performance of microbial fuel cell. Sci. Total Environ. 2023, 856, 159083.

[32]

Liu, Y. F.; Nie, N.; Tang, H. F.; Zhang, C. R.; Chen, K. Z.; Wang, W.; Liu, J. F. Effective antibacterial activity of degradable copper-doped phosphate-based glass nanozymes. ACS Appl. Mater. Interfaces 2021, 13, 11631–11645.

File
12274_2023_6064_MOESM1_ESM.pdf (2.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 07 July 2023
Revised: 22 July 2023
Accepted: 03 August 2023
Published: 26 August 2023
Issue date: April 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was financially supported by the Joint Funds of NUAA-SEU (No. 6907046031) and the National Natural Science Foundation of China (Nos. 52076043 and 52222609). We thank the Big Data Center of Southeast University for providing the facility support on the numerical calculations in this paper.

Return