Journal Home > Volume 16 , Issue 12

A variety of out-of-plane deformation patterns have been observed for two-dimensional (2D) materials including ripples, wrinkles, buckles, scrolls, folds, tents, and bubbles due to their extra-low bending rigidity. Among them, the micro- and nanoscale bubbles arising from the deformation of the atomically thin membrane by gases, liquids, and solids trapped underneath 2D materials were frequently observed. On the one hand, the presence of bubbles may severely deteriorate the performance of 2D material devices because of the obstructed charge, photon, and phonon transport across the interface. On the other hand, these bubbles offer a novel avenue to explore the intrinsic mechanical parameters (e.g., Young’s modulus and bending rigidity) of 2D materials as well as their interfacial properties (e.g., shear stress and adhesion energy). Furthermore, these bubbles with stable and controllable morphology also act as effective knobs to tune the electronic and photonic performance of various 2D materials. This review highlights the recent progress on the 2D material bubbles, which will be helpful for measurement of the mechanical properties of ultrathin 2D materials and the applications of developing 2D material devices.


menu
Abstract
Full text
Outline
About this article

Mechanics of 2D material bubbles

Show Author's information Xuwei Cui1,2Luqi Liu1( )Wenlong Dong1,3Yekai Zhou1,3Zhong Zhang2( )
Chinese Academy of Sciences (CAS) Key Laboratory of Nanosystem and Hierarchical Fabrication and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, China
University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

A variety of out-of-plane deformation patterns have been observed for two-dimensional (2D) materials including ripples, wrinkles, buckles, scrolls, folds, tents, and bubbles due to their extra-low bending rigidity. Among them, the micro- and nanoscale bubbles arising from the deformation of the atomically thin membrane by gases, liquids, and solids trapped underneath 2D materials were frequently observed. On the one hand, the presence of bubbles may severely deteriorate the performance of 2D material devices because of the obstructed charge, photon, and phonon transport across the interface. On the other hand, these bubbles offer a novel avenue to explore the intrinsic mechanical parameters (e.g., Young’s modulus and bending rigidity) of 2D materials as well as their interfacial properties (e.g., shear stress and adhesion energy). Furthermore, these bubbles with stable and controllable morphology also act as effective knobs to tune the electronic and photonic performance of various 2D materials. This review highlights the recent progress on the 2D material bubbles, which will be helpful for measurement of the mechanical properties of ultrathin 2D materials and the applications of developing 2D material devices.

Keywords: two-dimensional (2D) materials, interface, strain engineering, mechanics, bubbles

References(145)

[1]

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

[2]

Novoselov, K. S.; Mishchenko, A.; Carvalho, A.; Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 2016, 353, aac9439.

[3]

Hu, H.; Chen, N.; Teng, H. C.; Yu, R. W.; Xue, M. F.; Chen, K.; Xiao, Y. C.; Qu, Y. P.; Hu, D. B.; Chen, J. N. et al. Gate-tunable negative refraction of mid-infrared polaritons. Science 2023, 379, 558–561.

[4]

Kim, H.; Uddin, S. Z.; Lien, D. H.; Yeh, M.; Azar, N. S.; Balendhran, S.; Kim, T.; Gupta, N.; Rho, Y.; Grigoropoulos, C. P. et al. Actively variable-spectrum optoelectronics with black phosphorus. Nature 2021, 596, 232–237.

[5]

Meng, Z.; Stolz, R. M.; Mendecki, L.; Mirica, K. A. Electrically-transduced chemical sensors based on two-dimensional nanomaterials. Chem. Rev. 2019, 119, 478–598.

[6]

Augustyn, V.; Gogotsi, Y. 2D materials with nanoconfined fluids for electrochemical energy storage. Joule 2017, 1, 443–452.

[7]

Huang, Y.; Wang, X.; Zhang, X.; Chen, X. J.; Li, B. W.; Wang, B.; Huang, M.; Zhu, C. Y.; Zhang, X. W.; Bacsa, W. S. et al. Raman spectral band oscillations in large graphene bubbles. Phys. Rev. Lett. 2018, 120, 186104.

[8]

Zong, Z.; Chen, C. L.; Dokmeci, M. R.; Wan, K. T. Direct measurement of graphene adhesion on silicon surface by intercalation of nanoparticles. J. Appl. Phys. 2010, 107, 026104.

[9]

Sanchez, D. A.; Dai, Z. H.; Wang, P.; Cantu-Chavez, A.; Brennan, C. J.; Huang, R.; Lu, N. S. Mechanics of spontaneously formed nanoblisters trapped by transferred 2D crystals. Proc. Natl. Acad. Sci. USA 2018, 115, 7884–7889.

[10]

Pham, P. H. Q.; Quach, N. V.; Li, J. F.; Burke, P. J. Scalable and reusable micro-bubble removal method to flatten large-area 2D materials. Appl. Phys. Lett. 2018, 112, 163106.

[11]

Rosenberger, M. R.; Chuang, H. J.; McCreary, K. M.; Hanbicki, A. T.; Sivaram, S. V.; Jonker, B. T. Nano-“squeegee” for the creation of clean 2D material interfaces. ACS Appl. Mater. Interfaces 2018, 10, 10379–10387.

[12]

Purdie, D. G.; Pugno, N. M.; Taniguchi, T.; Watanabe, K.; Ferrari, A. C.; Lombardo, A. Cleaning interfaces in layered materials heterostructures. Nat. Commun. 2018, 9, 5387.

[13]

Hou, Y.; Ren, X. B.; Fan, J. C.; Wang, G. R.; Dai, Z. H.; Jin, C. H.; Wang, W. X.; Zhu, Y. B.; Zhang, S.; Liu, L. Q. et al. Preparation of twisted bilayer graphene via the wetting transfer method. ACS Appl. Mater. Interfaces 2020, 12, 40958–40967.

[14]

Uwanno, T.; Hattori, Y.; Taniguchi, T.; Watanabe, K.; Nagashio, K. Fully dry PMMA transfer of graphene on h-BN using a heating/cooling system. 2D Mater. 2015, 2, 041002.

[15]

Vasu, K. S.; Prestat, E.; Abraham, J.; Dix, J.; Kashtiban, R. J.; Beheshtian, J.; Sloan, J.; Carbone, P.; Neek-Amal, M.; Haigh, S. J. et al. van der Waals pressure and its effect on trapped interlayer molecules. Nat. Commun. 2016, 7, 12168.

[16]

Lim, C. H. Y. X.; Nesladek, M.; Loh, K. P. Observing high-pressure chemistry in graphene bubbles. Angew. Chem., Int. Ed. 2014, 53, 215–219.

[17]

Wood, J. D.; Harvey, C. M.; Wang, S. Adhesion toughness of multilayer graphene films. Nat. Commun. 2017, 8, 1952.

[18]

Lloyd, D.; Liu, X. H.; Boddeti, N.; Cantley, L.; Long, R.; Dunn, M. L.; Bunch, J. S. Adhesion, stiffness, and instability in atomically thin MoS2 bubbles. Nano Lett. 2017, 17, 5329–5334.

[19]

Lloyd, D.; Liu, X. H.; Christopher, J. W.; Cantley, L.; Wadehra, A.; Kim, B. L.; Goldberg, B. B.; Swan, A. K.; Bunch, J. S. Band gap engineering with ultralarge biaxial strains in suspended monolayer MoS2. Nano Lett. 2016, 16, 5836–5841.

[20]

Dai, Z. H.; Liu, L. Q.; Zhang, Z. Strain engineering of 2D materials: Issues and opportunities at the interface. Adv. Mater. 2019, 31, 1805417.

[21]

Pandey, M.; Pandey, C.; Ahuja, R.; Kumar, R. Straining techniques for strain engineering of 2D materials towards flexible straintronic applications. Nano Energy 2023, 109, 108278.

[22]

Qi, Y. P.; Sadi, M. A.; Hu, D.; Zheng, M.; Wu, Z. P.; Jiang, Y. C.; Chen, Y. P. Recent progress in strain engineering on van der Waals 2D materials: Tunable electrical, electrochemical, magnetic, and optical properties. Adv. Mater. 2022, 35, 2205714.

[23]

Han, Y.; Zhou, J. Z.; Wang, H. Y.; Gao, L. B.; Feng, S. Z.; Cao, K.; Xu, Z. P.; Lu, Y. Experimental nanomechanics of 2D materials for strain engineering. Appl. Nanosci. 2021, 11, 1075–1091.

[24]

He, Y. T.; Dong, Y. J.; Zhang, Y. H.; Li, Y. T.; Li, H. J. Graphene nano-blister in graphite for future cathode in dual-ion batteries: Fundamentals, advances, and prospects. Adv. Sci. 2023, 10, 2207426.

[25]

An, H. J.; Tan, B. H.; Moo, J. G. S.; Liu, S.; Pumera, M.; Ohl, C. D. Graphene nanobubbles produced by water splitting. Nano Lett. 2017, 17, 2833–2838.

[26]

Zamborlini, G.; Imam, M.; Patera, L. L.; Menteş, T. O.; Stojić, N.; Africh, C.; Sala, A.; Binggeli, N.; Comelli, G.; Locatelli, A. Nanobubbles at GPa pressure under graphene. Nano Lett. 2015, 15, 6162–6169.

[27]

Bunch, J. S.; Verbridge, S. S.; Alden, J. S.; van der Zande, A. M.; Parpia, J. M.; Craighead, H. G.; McEuen, P. L. Impermeable atomic membranes from graphene sheets. Nano Lett. 2008, 8, 2458–2462.

[28]

Wang, G. R.; Dai, Z. H.; Wang, Y. L.; Tan, P. H.; Liu, L. Q.; Xu, Z. P.; Wei, Y. G.; Huang, R.; Zhang, Z. Measuring interlayer shear stress in bilayer graphene. Phys. Rev. Lett. 2017, 119, 036101.

[29]

Sun, P. Z.; Yang, Q.; Kuang, W. J.; Stebunov, Y. V.; Xiong, W. Q.; Yu, J.; Nair, R. R.; Katsnelson, M. I.; Yuan, S. J.; Grigorieva, I. V. et al. Limits on gas impermeability of graphene. Nature 2020, 579, 229–232.

[30]

Sun, P. Z.; Yagmurcukardes, M.; Zhang, R.; Kuang, W. J.; Lozada-Hidalgo, M.; Liu, B. L.; Cheng, H. M.; Wang, F. C.; Peeters, F. M.; Grigorieva, I. V. et al. Exponentially selective molecular sieving through angstrom pores. Nat. Commun. 2021, 12, 7170.

[31]

Koenig, S. P.; Boddeti, N. G.; Dunn, M. L.; Bunch, J. S. Ultrastrong adhesion of graphene membranes. Nat. Nanotechnol. 2011, 6, 543–546.

[32]

Zabel, J.; Nair, R. R.; Ott, A.; Georgiou, T.; Geim, A. K.; Novoselov, K. S.; Casiraghi, C. Raman spectroscopy of graphene and bilayer under biaxial strain: Bubbles and balloons. Nano Lett. 2012, 12, 617–621.

[33]

Nicholl, R. J. T.; Lavrik, N. V.; Vlassiouk, I.; Srijanto, B. R.; Bolotin, K. I. Hidden area and mechanical nonlinearities in freestanding graphene. Phys. Rev. Lett. 2017, 118, 266101.

[34]

Nicholl, R. J. T.; Conley, H. J.; Lavrik, N. V.; Vlassiouk, I.; Puzyrev, Y. S.; Sreenivas, V. P.; Pantelides, S. T.; Bolotin, K. I. The effect of intrinsic crumpling on the mechanics of free-standing graphene. Nat. Commun. 2015, 6, 8789.

[35]

Liu, X. H.; Boddeti, N. G.; Szpunar, M. R.; Wang, L. D.; Rodriguez, M. A.; Long, R.; Xiao, J. L.; Dunn, M. L.; Bunch, J. S. Observation of pull-in instability in graphene membranes under interfacial forces. Nano Lett. 2013, 13, 2309–2313.

[36]

Boddeti, N. G.; Liu, X. H.; Long, R.; Xiao, J. L.; Bunch, J. S.; Dunn, M. L. Graphene blisters with switchable shapes controlled by pressure and adhesion. Nano Lett. 2013, 13, 6216–6221.

[37]

Pandey, M.; Kumar, R. Polymer curing assisted formation of optically visible sub-micron blisters of multilayer graphene for local strain engineering. J. Phys.: Condens. Matter 2022, 34, 245401.

[38]

Wang, W. X.; Ma, X. J.; Dai, Z. H.; Zhang, S.; Hou, Y.; Wang, G. R.; Li, Q. Y.; Zhang, Z.; Wei, Y. G.; Liu, L. Q. Mechanical behavior of blisters spontaneously formed by multilayer 2D materials. Adv. Mater. Interfaces 2022, 9, 2101939.

[39]

Chen, Y. J.; Wang, Y. K.; Shen, W. F.; Wu, M. H.; Li, B.; Zhang, Q.; Liu, S.; Hu, C. G.; Yang, S. X.; Gao, Y. N. et al. Strain and interference synergistically modulated optical and electrical properties in ReS2/graphene heterojunction bubbles. ACS Nano 2022, 16, 16271–16280.

[40]

Gao, X. Y.; Yu, X. Y.; Li, B. X.; Fan, S. C.; Li, C. Measuring graphene adhesion on silicon substrate by single and dual nanoparticle-loaded blister. Adv. Mater. Interfaces 2017, 4, 1601023.

[41]

Dai, Z. H.; Hou, Y.; Sanchez, D. A.; Wang, G. R.; Brennan, C. J.; Zhang, Z.; Liu, L. Q.; Lu, N. S. Interface-governed deformation of nanobubbles and nanotents formed by two-dimensional materials. Phys. Rev. Lett. 2018, 121, 266101.

[42]

Hou, Y.; Dai, Z. H.; Zhang, S.; Feng, S. Z.; Wang, G. R.; Liu, L. Q.; Xu, Z. P.; Li, Q. Y.; Zhang, Z. Elastocapillary cleaning of twisted bilayer graphene interfaces. Nat. Commun. 2021, 12, 5069.

[43]

Khestanova, E.; Guinea, F.; Fumagalli, L.; Geim, A. K.; Grigorieva, I. V. Universal shape and pressure inside bubbles appearing in van der Waals heterostructures. Nat. Commun. 2016, 7, 12587.

[44]

Bampoulis, P.; Teernstra, V. J.; Lohse, D.; Zandvliet, H. J. W.; Poelsema, B. Hydrophobic ice confined between graphene and MoS2. J. Phys. Chem. C 2016, 120, 27079–27084.

[45]

Kim, H. H.; Yang, J. W.; Jo, S. B.; Kang, B.; Lee, S. K.; Bong, H.; Lee, G.; Kim, K. S.; Cho, K. Substrate-induced solvent intercalation for stable graphene doping. ACS Nano 2013, 7, 1155–1162.

[46]

Li, Y. Q.; Wang, B. W.; Li, W.; Xu, K. Dynamic, spontaneous blistering of substrate-supported graphene in acidic solutions. ACS Nano 2022, 16, 6145–6152.

[47]

Binder, J.; Dabrowska, A. K.; Tokarczyk, M.; Ludwiczak, K.; Bozek, R.; Kowalski, G.; Stepniewski, R.; Wysmolek, A. Epitaxial hexagonal boron nitride for hydrogen generation by radiolysis of interfacial water. Nano Lett. 2023, 23, 1267–1272.

[48]

Jia, P. F.; Chen, W. J.; Qiao, J. B.; Zhang, M.; Zheng, X. H.; Xue, Z. Y.; Liang, R. D.; Tian, C. S.; He, L.; Di, Z. F. et al. Programmable graphene nanobubbles with three-fold symmetric pseudo-magnetic fields. Nat. Commun. 2019, 10, 3127.

[49]

Stolyarova, E.; Stolyarov, D.; Bolotin, K.; Ryu, S.; Liu, L.; Rim, K. T.; Klima, M.; Hybertsen, M.; Pogorelsky, I.; Pavlishin, I. et al. Observation of graphene bubbles and effective mass transport under graphene films. Nano Lett. 2009, 9, 332–337.

[50]

Lee, J. H.; Tan, J. Y.; Toh, C. T.; Koenig, S. P.; Fedorov, V. E.; Castro Neto, A. H.; Özyilmaz, B. Nanometer thick elastic graphene engine. Nano Lett. 2014, 14, 2677–2680.

[51]

Zhang, X.; Zhang, H. J.; Cao, S. W.; Zhang, N.; Jin, B.; Zong, Z. W.; Li, Z.; Chen, X. M. Construction of position-controllable graphene bubbles in liquid nitrogen with assistance of low-power laser. ACS Appl. Mater. Interfaces 2020, 12, 56260–56268.

[52]

Tedeschi, D.; Blundo, E.; Felici, M.; Pettinari, G.; Liu, B. Q.; Yildrim, T.; Petroni, E.; Zhang, C.; Zhu, Y.; Sennato, S. et al. Controlled micro/nanodome formation in proton-irradiated bulk transition-metal dichalcogenides. Adv. Mater. 2019, 31, 1903795.

[53]

He, L.; Wang, H. S.; Chen, L. X.; Wang, X. J.; Xie, H.; Jiang, C. X.; Li, C.; Elibol, K.; Meyer, J.; Watanabe, K. et al. Isolating hydrogen in hexagonal boron nitride bubbles by a plasma treatment. Nat. Commun. 2019, 10, 2815.

[54]

Blundo, E.; Surrente, A.; Spirito, D.; Pettinari, G.; Yildirim, T.; Chavarin, C. A.; Baldassarre, L.; Felici, M.; Polimeni, A. Vibrational properties in highly strained hexagonal boron nitride bubbles. Nano Lett. 2022, 22, 1525–1533.

[55]

Blundo, E.; Di Giorgio, C.; Pettinari, G.; Yildirim, T.; Felici, M.; Lu, Y. R.; Bobba, F.; Polimeni, A. Engineered creation of periodic giant, nonuniform strains in MoS2 monolayers. Adv. Mater. Interfaces 2020, 7, 2000621.

[56]

Di Giorgio, C.; Blundo, E.; Pettinari, G.; Felici, M.; Lu, Y. R.; Cucolo, A. M.; Polimeni, A.; Bobba, F. Nanoscale measurements of elastic properties and hydrostatic pressure in H2-bulged MoS2 membranes. Adv. Mater. Interfaces 2020, 7, 2001024.

[57]

Blundo, E.; Felici, M.; Yildirim, T.; Pettinari, G.; Tedeschi, D.; Miriametro, A.; Liu, B.; Ma, W.; Lu, Y.; Polimeni, A. Evidence of the direct-to-indirect band gap transition in strained two-dimensional WS2, MoS2, and WSe2. Phys. Rev. Res. 2020, 2, 012024.

[58]

Blundo, E.; Yildirim, T.; Pettinari, G.; Polimeni, A. Experimental adhesion energy in van der Waals crystals and heterostructures from atomically thin bubbles. Phys. Rev. Lett. 2021, 127, 046101.

[59]

Liu, B. Q.; Yildirim, T.; Lü, T. Y.; Blundo, E.; Wang, L.; Jiang, L. X.; Zou, H. S.; Zhang, L. J.; Zhao, H. J.; Yin, Z. Y. et al. Variant Plateau’s law in atomically thin transition metal dichalcogenide dome networks. Nat. Commun. 2023, 14, 1050.

[60]

Villarreal, R.; Lin, P. C.; Faraji, F.; Hassani, N.; Bana, H.; Zarkua, Z.; Nair, M. N.; Tsai, H. C.; Auge, M.; Junge, F. et al. Breakdown of universal scaling for nanometer-sized bubbles in graphene. Nano Lett. 2021, 21, 8103–8110.

[61]

Ares, P.; Cea, T.; Holwill, M.; Wang, Y. B.; Roldán, R.; Guinea, F.; Andreeva, D. V.; Fumagalli, L.; Novoselov, K. S.; Woods, C. R. Piezoelectricity in monolayer hexagonal boron nitride. Adv. Mater. 2020, 32, 1905504.

[62]

Georgiou, T.; Britnell, L.; Blake, P.; Gorbachev, R. V.; Gholinia, A.; Geim, A. K.; Casiraghi, C.; Novoselov, K. S. Graphene bubbles with controllable curvature. Appl. Phys. Lett. 2011, 99, 093103.

[63]

Zhang, K.; Arroyo, M. Coexistence of wrinkles and blisters in supported graphene. Extreme Mech. Lett. 2017, 14, 23–30.

[64]

Liu, S.; Cui, X. W.; Zhang, Q. H.; Shen, W. F.; Du, J. T.; Lin, T.; Wang, Y. K.; Wu, M. H.; Gu, L.; Gao, Y. N. et al. Anisotropic optical and mechanical properties in few-layer GaPS4. Adv. Opt. Mater. 2023, 11, 2202288.

[65]

Wang, P.; Gao, W.; Cao, Z. Y.; Liechti, K. M.; Huang, R. Numerical analysis of circular graphene bubbles. J. Appl. Mech. 2013, 80, 040905.

[66]

Yue, K. M.; Gao, W.; Huang, R.; Liechti, K. M. Analytical methods for the mechanics of graphene bubbles. J. Appl. Phys. 2012, 112, 083512.

[67]

Wang, G. R.; Dai, Z. H.; Xiao, J. K.; Feng, S. Z.; Weng, C. X.; Liu, L. Q.; Xu, Z. P.; Huang, R.; Zhang, Z. Bending of multilayer van der Waals materials. Phys. Rev. Lett. 2019, 123, 116101.

[68]

Lee, H. Y.; Sarkar, S.; Reidy, K.; Kumar, A.; Klein, J.; Watanabe, K.; Taniguchi, T.; LeBeau, J. M.; Ross, F. M.; Gradečak, S. Strong and localized luminescence from interface bubbles between stacked hBN multilayers. Nat. Commun. 2022, 13, 5000.

[69]

Rao, Y. F.; Qiao, S. T.; Dai, Z. H.; Lu, N. S. Elastic wetting: Substrate-supported droplets confined by soft elastic membranes. J. Mech. Phys. Solids 2021, 151, 104399.

[70]

Ghorbanfekr-Kalashami, H.; Vasu, K. S.; Nair, R. R.; Peeters, F. M.; Neek-Amal, M. Dependence of the shape of graphene nanobubbles on trapped substance. Nat. Commun. 2017, 8, 15844.

[71]

Ares, P.; Wang, Y. B.; Woods, C. R.; Dougherty, J.; Fumagalli, L.; Guinea, F.; Davidovitch, B.; Novoselov, K. S. van der Waals interaction affects wrinkle formation in two-dimensional materials. Proc. Natl. Acad. Sci. USA 2021, 118, e2025870118.

[72]

Cerda, E.; Mahadevan, L. Geometry and physics of wrinkling. Phys. Rev. Lett. 2003, 90, 074302.

[73]

Box, F.; O’Kiely, D.; Kodio, O.; Inizan, M.; Castrejón-Pita, A. A.; Vella, D. Dynamics of wrinkling in ultrathin elastic sheets. Proc. Natl. Acad. Sci. USA 2019, 116, 20875–20880.

[74]

Dai, Z. H.; Sanchez, D. A.; Brennan, C. J.; Lu, N. S. Radial buckle delamination around 2D material tents. J. Mech. Phys. Solids 2020, 137, 103843.

[75]

Deng, S. K.; Gao, E. L.; Xu, Z. P.; Berry, V. Adhesion energy of MoS2 thin films on silicon-based substrates determined via the attributes of a single MoS2 wrinkle. ACS Appl. Mater. Interfaces 2017, 9, 7812–7818.

[76]

Wang, G. R.; Zhang, Z. P.; Wang, Y. L.; Gao, E. L.; Jia, X. Z.; Dai, Z. H.; Weng, C. X.; Liu, L. Q.; Zhang, Y. F.; Zhang, Z. Out-of-plane deformations determined mechanics of vanadium disulfide (VS2) sheets. ACS Appl. Mater. Interfaces 2021, 13, 3040–3050.

[77]

Iguiñiz, N.; Frisenda, R.; Bratschitsch, R.; Castellanos-Gomez, A. Revisiting the buckling metrology method to determine the Young's modulus of 2D materials. Adv. Mater. 2019, 31, 1807150.

[78]

Vaquero-Garzon, L.; Frisenda, R.; Castellanos-Gomez, A. Anisotropic buckling of few-layer black phosphorus. Nanoscale 2019, 11, 12080–12086.

[79]

Lee, C.; Wei, X. D.; Kysar, J. W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388.

[80]

Cui, Y. Y.; Wang, G. R.; Wang, W. X.; Cui, X. W.; Dong, W. L.; Wang, C. Y.; Jin, M. H.; He, T.; Zhang, Z.; Liu, L. Q. Trade-off between interface stiffening and Young’s modulus weakening in graphene/PMMA nanocomposites. Compos. Sci. Technol. 2022, 225, 109483.

[81]

Cao, K.; Feng, S. Z.; Han, Y.; Gao, L. B.; Hue Ly, T.; Xu, Z. P.; Lu, Y. Elastic straining of free-standing monolayer graphene. Nat. Commun. 2020, 11, 284.

[82]

Yang, Y. C.; Song, Z. G.; Lu, G. Y.; Zhang, Q. H.; Zhang, B. Y.; Ni, B.; Wang, C.; Li, X. Y.; Gu, L.; Xie, X. M. et al. Intrinsic toughening and stable crack propagation in hexagonal boron nitride. Nature 2021, 594, 57–61.

[83]

Di Giorgio, C.; Blundo, E.; Pettinari, G.; Felici, M.; Bobba, F.; Polimeni, A. Mechanical, elastic, and adhesive properties of two-dimensional materials: From straining techniques to state-of-the-art local probe measurements. Adv. Mater. Interfaces 2022, 9, 2102220.

[84]

Cao, G. X.; Gao, H. J. Mechanical properties characterization of two-dimensional materials via nanoindentation experiments. Prog. Mater. Sci. 2019, 103, 558–595.

[85]
Beams, J. W. Mechanical properties of thin film of gold and silver. In Proceedings of Structure and Properties of Thin Films. John Wiley and Sons, New York, USA, 1995, pp 183.
[86]

Tabata, O.; Kawahata, K.; Sugiyama, S.; Igarashi, I. Mechanical property measurements of thin films using load-deflection of composite rectangular membranes. Sensors Actuators 1989, 20, 135–141.

[87]

Vlassak, J. J.; Nix, W. D. A new bulge test technique for the determination of Young’s modulus and Poisson’s ratio of thin films. J. Mater. Res. 1992, 7, 3242–3249.

[88]

Mitchell, J. S.; Zorman, C. A.; Kicher, T.; Roy, S.; Mehregany, M. Examination of bulge test for determining residual stress, Young’s modulus, and Poisson’s ratio of 3C-SiC thin films. J. Aerosp. Eng. 2003, 16, 46–54.

[89]

Dai, Z. H.; Lu, N. S. Poking and bulging of suspended thin sheets: Slippage, instabilities, and metrology. J. Mech. Phys. Solids 2021, 149, 104320.

[90]
Vlassak, J. J. New experimental techniques and analysis methods for the study of the mechanical properties of materials in small volumes. Ph. D. Dissertation, Stanford University, Stanford, 1994.
[91]
Timoshenko, S.; Woinowsky-Krieger, S. Theory of Plates and Shells, 2nd ed.; McGraw-Hill: New York, 1959.
[92]

Sun, Y. F.; Wang, Y. J.; Wang, E. Z.; Wang, B. L.; Zhao, H. Y.; Zeng, Y. P.; Zhang, Q. H.; Wu, Y. H.; Gu, L.; Li, X. Y. et al. Determining the interlayer shearing in twisted bilayer MoS2 by nanoindentation. Nat. Commun. 2022, 13, 3898.

[93]

Kitt, A. L.; Qi, Z. N.; Rémi, S.; Park, H. S.; Swan, A. K.; Goldberg, B. B. How graphene slides: Measurement and theory of strain-dependent frictional forces between graphene and SiO2. Nano Lett. 2013, 13, 2605–2610.

[94]

Liu, K.; Yan, Q. M.; Chen, M.; Fan, W.; Sun, Y. H.; Suh, J.; Fu, D. Y.; Lee, S.; Zhou, J.; Tongay, S. et al. Elastic properties of chemical-vapor-deposited monolayer MoS2, WS2, and their bilayer heterostructures. Nano Lett. 2014, 14, 5097–5103.

[95]

López-Polín, G.; Gómez-Navarro, C.; Parente, V.; Guinea, F.; Katsnelson, M. I.; Pérez-Murano, F.; Gómez-Herrero, J. Increasing the elastic modulus of graphene by controlled defect creation. Nat. Phys. 2015, 11, 26–31.

[96]

Han, E.; Yu, J.; Annevelink, E.; Son, J.; Kang, D. A.; Watanabe, K.; Taniguchi, T.; Ertekin, E.; Huang, P. Y.; van der Zande, A. M. Ultrasoft slip-mediated bending in few-layer graphene. Nat. Mater. 2020, 19, 305–309.

[97]

Li, H.; Wang, J. H.; Gao, S.; Chen, Q.; Peng, L. M.; Liu, K. H.; Wei, X. L. Superlubricity between MoS2 monolayers. Adv. Mater. 2017, 29, 1701474.

[98]

Zhang, S.; Yao, Q. Z.; Chen, L. X.; Jiang, C. X.; Ma, T. B.; Wang, H. M.; Feng, X. Q.; Li, Q. Y. Dual-scale stick-slip friction on graphene/h-BN moiré superlattice structure. Phys. Rev. Lett. 2022, 128, 226101.

[99]

Zhang, S.; Xu, Q.; Hou, Y.; Song, A. S.; Ma, Y.; Gao, L.; Zhu, M. Z.; Ma, T. B.; Liu, L. Q.; Feng, X. Q. et al. Domino-like stacking order switching in twisted monolayer-multilayer graphene. Nat. Mater. 2022, 21, 621–626.

[100]

Li, B. W.; Yin, J.; Liu, X. F.; Wu, H. R.; Li, J. D.; Li, X. M.; Guo, W. L. Probing van der Waals interactions at two-dimensional heterointerfaces. Nat. Nanotechnol. 2019, 14, 567–572.

[101]

Liu, S. W.; Wang, H. P.; Xu, Q.; Ma, T. B.; Yu, G.; Zhang, C. H.; Geng, D. C.; Yu, Z. W.; Zhang, S. G.; Wang, W. Z. et al. Robust microscale superlubricity under high contact pressure enabled by graphene-coated microsphere. Nat. Commun. 2017, 8, 14029.

[102]

Ying, Y.; Zhang, Z. Z.; Moser, J.; Su, Z. J.; Song, X. X.; Guo, G. P. Sliding nanomechanical resonators. Nat. Commun. 2022, 13, 6392.

[103]

Zhang, L.; Wang, H.; Zong, X. R.; Zhou, Y. H.; Wang, T. H.; Wang, L.; Chen, X. L. Probing interlayer shear thermal deformation in atomically-thin van der Waals layered materials. Nat. Commun. 2022, 13, 3996.

[104]

Zhang, S. Q.; Mao, N. N.; Wu, J. X.; Tong, L. M.; Zhang, J.; Liu, Z. R. In-plane uniaxial strain in black phosphorus enables the identification of crystalline orientation. Small 2017, 13, 1700466.

[105]

Wang, Y.; Yang, R.; Shi, Z. W.; Zhang, L. C.; Shi, D. X.; Wang, E. G.; Zhang, G. Y. Super-elastic graphene ripples for flexible strain sensors. ACS Nano 2011, 5, 3645–3650.

[106]

Yoon, T.; Shin, W. C.; Kim, T. Y.; Mun, J. H.; Kim, T.-S.; Cho, B. J. Direct measurement of adhesion energy of monolayer graphene as-grown on copper and its application to renewable transfer process. Nano Lett. 2012, 12, 1448–1452.

[107]

Cai, J. X.; Chen, H. J.; Ke, Y. L.; Deng, S. Z. A capillary-force-assisted transfer for monolayer transition-metal-dichalcogenide crystals with high utilization. ACS Nano 2022, 16, 15016–15025.

[108]

Liao, M. Z.; Wei, Z.; Du, L. J.; Wang, Q. Q.; Tang, J.; Yu, H.; Wu, F. F.; Zhao, J. J.; Xu, X. Z.; Han, B. et al. Precise control of the interlayer twist angle in large scale MoS2 homostructures. Nat. Commun. 2020, 11, 2153.

[109]

Mohiuddin, T. M. G.; Lombardo, A.; Nair, R. R.; Bonetti, A.; Savini, G.; Jalil, R.; Bonini, N.; Basko, D. M.; Galiotis, C.; Marzari, N. et al. Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Grüneisen parameters, and sample orientation. Phys. Rev. B 2009, 79, 205433.

[110]

Wang, Y. X.; Yao, S. K.; Liao, P. L.; Jin, S. Y.; Wang, Q. X.; Kim, M. J.; Cheng, G. J.; Wu, W. Z. Strain-engineered anisotropic optical and electrical properties in 2D chiral-chain tellurium. Adv. Mater. 2020, 32, 2002342.

[111]

Shankar, S.; Nelson, D. R. Thermalized buckling of isotropically compressed thin sheets. Phys. Rev. E 2021, 104, 054141.

[112]

Zhao, Y. S.; Zhang, G.; Nai, M. H.; Ding, G. Q.; Li, D. F.; Liu, Y.; Hippalgaonkar, K.; Lim, C. T.; Chi, D. Z.; Li, B. W. et al. Probing the physical origin of anisotropic thermal transport in black phosphorus nanoribbons. Adv. Mater. 2018, 30, 1804928.

[113]

Won, K.; Lee, C.; Jung, J.; Kwon, S.; Gebredingle, Y.; Lim, J. G.; Kim, M. K.; Jeong, M. S.; Lee, C. Raman scattering measurement of suspended graphene under extreme strain induced by nanoindentation. Adv. Mater. 2022, 34, 2200946.

[114]

Pérez Garza, H. H.; Kievit, E. W.; Schneider, G. F.; Staufer, U. Controlled, reversible, and nondestructive generation of uniaxial extreme strains (> 10%) in graphene. Nano Lett. 2014, 14, 4107–4113.

[115]

Yang, R.; Lee, J.; Ghosh, S.; Tang, H.; Sankaran, R. M.; Zorman, C. A.; Feng, P. X. L. Tuning optical signatures of single- and few-layer MoS2 by blown-bubble bulge straining up to fracture. Nano Lett. 2017, 17, 4568–4575.

[116]

Polyzos, I.; Bianchi, M.; Rizzi, L.; Koukaras, E. N.; Parthenios, J.; Papagelis, K.; Sordan, R.; Galiotis, C. Suspended monolayer graphene under true uniaxial deformation. Nanoscale 2015, 7, 13033–13042.

[117]

Pereira, V. M.; Castro Neto, A. H.; Liang, H. Y.; Mahadevan, L. Geometry, mechanics, and electronics of singular structures and wrinkles in graphene. Phys. Rev. Lett. 2010, 105, 156603.

[118]

Bao, W. Z.; Miao, F.; Chen, Z.; Zhang, H.; Jang, W.; Dames, C.; Lau, C. N. Controlled ripple texturing of suspended graphene and ultrathin graphite membranes. Nat. Nanotechnol. 2009, 4, 562–566.

[119]

Hou, Y.; Zhang, S.; Li, Q. Y.; Liu, L. Q.; Wu, X. P.; Zhang, Z. Evaluation local strain of twisted bilayer graphene via moiré pattern. Opt. Lasers Eng. 2022, 152, 106946.

[120]

Settnes, M.; Power, S. R.; Brandbyge, M.; Jauho, A. P. Graphene nanobubbles as valley filters and beam splitters. Phys. Rev. Lett. 2016, 117, 276801.

[121]

Levy, N.; Burke, S. A.; Meaker, K. L.; Panlasigui, M.; Zettl, A.; Guinea, F.; Neto, A. H. C.; Crommie, M. F. Strain-induced pseudo-magnetic fields greater than 300 tesla in graphene nanobubbles. Science 2010, 329, 544–547.

[122]

Smith, A. D.; Niklaus, F.; Paussa, A.; Vaziri, S.; Fischer, A. C.; Sterner, M.; Forsberg, F.; Delin, A.; Esseni, D.; Palestri, P. et al. Electromechanical piezoresistive sensing in suspended graphene membranes. Nano Lett. 2013, 13, 3237–3242.

[123]

Tyurnina, A. V.; Bandurin, D. A.; Khestanova, E.; Kravets, V. G.; Koperski, M.; Guinea, F.; Grigorenko, A. N.; Geim, A. K.; Grigorieva, I. V. Strained bubbles in van der Waals heterostructures as local emitters of photoluminescence with adjustable wavelength. ACS Photonics 2019, 6, 516–524.

[124]

Zhang, S.; Hou, Y.; Li, S. Z.; Liu, L. Q.; Zhang, Z.; Feng, X. Q.; Li, Q. Y. Tuning friction to a superlubric state via in-plane straining. Proc. Natl. Acad. Sci. USA 2019, 116, 24452–24456.

[125]

Jia, Z. Y.; Dong, J. Y.; Liu, L. X.; Nie, A. M.; Xiang, J. Y.; Wang, B. C.; Wen, F. S.; Mu, C. P.; Zhao, Z. S.; Xu, B. et al. Photoluminescence and Raman spectra oscillations induced by laser interference in annealing-created monolayer WS2 bubbles. Adv. Opt. Mater. 2019, 7, 1801373.

[126]

Blundo, E.; Junior, P. E. F.; Surrente, A.; Pettinari, G.; Prosnikov, M. A.; Olkowska-Pucko, K.; Zollner, K.; Woźniak, T.; Chaves, A.; Kazimierczuk, T. et al. Strain-induced exciton hybridization in WS2 monolayers unveiled by Zeeman-splitting measurements. Phys. Rev. Lett. 2022, 129, 067402.

[127]

Li, Y. Y.; Hu, Z. X.; Lin, S. H.; Lai, S. K.; Ji, W.; Lau, S. P. Giant anisotropic Raman response of encapsulated ultrathin black phosphorus by uniaxial strain. Adv. Funct. Mater. 2017, 27, 1600986.

[128]

Cannara, R. J.; Brukman, M. J.; Cimatu, K.; Sumant, A. V.; Baldelli, S.; Carpick, R. W. Nanoscale friction varied by isotopic shifting of surface vibrational frequencies. Science 2007, 318, 780–783.

[129]

Urbakh, M.; Meyer, E. The renaissance of friction. Nat. Mater. 2010, 9, 8–10.

[130]

Ma, W. L.; Alonso-González, P.; Li, S. J.; Nikitin, A. Y.; Yuan, J.; Martín-Sánchez, J.; Taboada-Gutiérrez, J.; Amenabar, I.; Li, P. N.; Vélez, S. et al. In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal. Nature 2018, 562, 557–562.

[131]

Hu, G. W.; Ou, Q. D.; Si, G. Y.; Wu, Y. J.; Wu, J.; Dai, Z. G.; Krasnok, A.; Mazor, Y.; Zhang, Q.; Bao, Q. L. et al. Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers. Nature 2020, 582, 209–213.

[132]

Zheng, Z. B.; Chen, J. N.; Wang, Y.; Wang, X. M.; Chen, X. B.; Liu, P. Y.; Xu, J. B.; Xie, W. G.; Chen, H. J.; Deng, S. Z. et al. Highly confined and tunable hyperbolic phonon polaritons in van der Waals semiconducting transition metal oxides. Adv. Mater. 2018, 30, 1705318.

[133]

Hu, H.; Yu, R. W.; Teng, H. C.; Hu, D. B.; Chen, N.; Qu, Y. P.; Yang, X. X.; Chen, X. Z.; McLeod, A. S.; Alonso-González, P. et al. Active control of micrometer plasmon propagation in suspended graphene. Nat. Commun. 2022, 13, 1465.

[134]

Mounet, N.; Gibertini, M.; Schwaller, P.; Campi, D.; Merkys, A.; Marrazzo, A.; Sohier, T.; Castelli, I. E.; Cepellotti, A.; Pizzi, G. et al. Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat. Nanotechnol. 2018, 13, 246–252.

[135]

Choudhary, K.; Kalish, I.; Beams, R.; Tavazza, F. High-throughput identification and characterization of two-dimensional materials using density functional theory. Sci. Rep. 2017, 7, 5179.

[136]
Cui, X. W.; Dong, W. L.; Feng, S. Z.; Wang, G. R.; Wang, C. Y.; Wang, S. J.; Zhou, Y. K.; Qiu, X. H.; Liu, L. Q.; Xu, Z. P. et al. Extra-high mechanical and phononic anisotropy in black phosphorus blisters. Small, in press, https://doi.org/10.1002/smll.202301959.
DOI
[137]

Boddeti, N. G.; Koenig, S. P.; Long, R.; Xiao, J. L.; Bunch, J. S.; Dunn, M. L. Mechanics of adhered, pressurized graphene blisters. J. Appl. Mech. 2013, 80, 040909.

[138]

Pizzocchero, F.; Gammelgaard, L.; Jessen, B. S.; Caridad, J. M.; Wang, L.; Hone, J.; Bøggild, P.; Booth, T. J. The hot pick-up technique for batch assembly of van der Waals heterostructures. Nat. Commun. 2016, 7, 11894.

[139]

Yin, P.; Ma, M. Efficient and robust fabrication of microscale graphene drums. ACS Appl. Nano Mater. 2018, 1, 6596–6602.

[140]

Gao, W.; Huang, R. Thermomechanics of monolayer graphene: Rippling, thermal expansion, and elasticity. J. Mech. Phys. Solids 2014, 66, 42–58.

[141]

Qu, Z. X.; Jiang, J. W. The bubble effect on the thermal expansion coefficient of few-layer MoS2. Int. J. Therm. Sci. 2023, 191, 108252.

[142]

Wang, L. D.; Drahushuk, L. W.; Cantley, L.; Koenig, S. P.; Liu, X. H.; Pellegrino, J.; Strano, M. S.; Scott Bunch, J. Molecular valves for controlling gas phase transport made from discrete ångströmsized pores in graphene. Nat. Nanotechnol. 2015, 10, 785–790.

[143]

Wang, L. D.; Boutilier, M. S. H.; Kidambi, P. R.; Jang, D.; Hadjiconstantinou, N. G.; Karnik, R. Fundamental transport mechanisms, fabrication and potential applications of nanoporous atomically thin membranes. Nat. Nanotechnol. 2017, 12, 509–522.

[144]

Calis, M.; Lloyd, D.; Boddeti, N.; Bunch, J. S. Adhesion of 2D MoS2 to graphite and metal substrates measured by a blister test. Nano Lett. 2023, 23, 2607–2614.

[145]

Wang, J.; Sorescu, D. C.; Jeon, S.; Belianinov, A.; Kalinin, S. V.; Baddorf, A. P.; Maksymovych, P. Atomic intercalation to measure adhesion of graphene on graphite. Nat. Commun. 2016, 7, 13263.

Publication history
Copyright
Acknowledgements

Publication history

Received: 25 June 2023
Revised: 23 July 2023
Accepted: 29 July 2023
Published: 03 November 2023
Issue date: December 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was jointly supported by the National Natural Science Foundation of China (Nos. 11832010, 11890682, 22072031, and 12202430) and the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB36000000).

Return