Journal Home > Volume 17 , Issue 4

Lithium metal batteries (LMBs) show great promise for achieving energy densities over 400 Wh·kg−1. However, highly flammable organic electrolytes are a long-lasting problem that triggers safety hazards and hinders the commercial application of LMBs. Here, a nonflammable diluted highly concentrated electrolyte (DHCE) with ethoxy(pentafluoro)cyclotriphosphazene (PFPN) as a diluent is developed to simultaneously achieve high safety and cycling stability of high-voltage LMBs. The optimal DHCE not only ensures reversible Li deposition/dissolution behavior with a superior average Coulombic efficiency (CE) over 99.1% on lithium metal anode (LMA), but also suppresses side reactions and stress crack on the LiCoO2 (LCO) under high cut-off voltage. The newly developed DHCE exhibits high thermal stability, showing complete nonflammability and reduced heat generation between the electrolyte and delithiated LCO/cycled LMA. This work offers an opportunity for rational designing nonflammable electrolytes toward high-voltage and safe LMBs.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

High-safety and high-voltage lithium metal batteries enabled by nonflammable diluted highly concentrated electrolyte

Show Author's information Han Zhang1,2Ziqi Zeng2( )Shuping Wang3Yuanke Wu1,2Changhao Li3Mengchuang Liu2,4Xinlan Wang1,2Shijie Cheng2Jia Xie2( )
State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
State Grid Anhui Electric Power Research Institute, Anhui Province Key Laboratory of Electric Fire and Safety Protection (State Grid Laboratory of Fire Protection for Transmission and Distribution Facilities), Hefei 230601, China
School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

Abstract

Lithium metal batteries (LMBs) show great promise for achieving energy densities over 400 Wh·kg−1. However, highly flammable organic electrolytes are a long-lasting problem that triggers safety hazards and hinders the commercial application of LMBs. Here, a nonflammable diluted highly concentrated electrolyte (DHCE) with ethoxy(pentafluoro)cyclotriphosphazene (PFPN) as a diluent is developed to simultaneously achieve high safety and cycling stability of high-voltage LMBs. The optimal DHCE not only ensures reversible Li deposition/dissolution behavior with a superior average Coulombic efficiency (CE) over 99.1% on lithium metal anode (LMA), but also suppresses side reactions and stress crack on the LiCoO2 (LCO) under high cut-off voltage. The newly developed DHCE exhibits high thermal stability, showing complete nonflammability and reduced heat generation between the electrolyte and delithiated LCO/cycled LMA. This work offers an opportunity for rational designing nonflammable electrolytes toward high-voltage and safe LMBs.

Keywords: thermal stability, lithium metal batteries, nonflammable electrolyte, phosphazene, high-voltage

References(54)

[1]

Duffner, F.; Kronemeyer, N.; Tübke, J.; Leker, J.; Winter, M.; Schmuch, R. Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure. Nat. Energy 2021, 6, 123–134.

[2]

Zhang, X.; Yang, Y. A.; Zhou, Z. Towards practical lithium-metal anodes. Chem. Soc. Rev. 2020, 49, 3040–3071.

[3]

Chen, S. R.; Dai, F.; Cai, M. Opportunities and challenges of high-energy lithium metal batteries for electric vehicle applications. ACS Energy Lett. 2020, 5, 3140–3151.

[4]

Wu, F. X.; Maier, J.; Yu, Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chem. Soc. Rev. 2020, 49, 1569–1614.

[5]

Wang, Y.; Zhang, Q. H.; Xue, Z. C.; Yang, L. F.; Wang, J. Y.; Meng, F. Q.; Li, Q. H.; Pan, H. Y.; Zhang, J. N.; Jiang, Z. et al. An in situ formed surface coating layer enabling LiCoO2 with stable 4.6 V high-voltage cycle performances. Adv. Energy Mater. 2020, 10, 2001413.

[6]

Zhu, Z.; Yu, D. W.; Shi, Z.; Gao, R.; Xiao, X. H.; Waluyo, I.; Ge, M. Y.; Dong, Y. H.; Xue, W. J.; Xu, G. Y. et al. Gradient-morph LiCoO2 single crystals with stabilized energy density above 3400 Wh·L−1. Energy Environ. Sci. 2020, 13, 1865–1878.

[7]

Zhang, J. N.; Li, Q. H.; Ouyang, C. Y.; Yu, X. Q.; Ge, M. Y.; Huang, X. J.; Hu, E. Y.; Ma, C.; Li, S. F.; Xiao, R. J. et al. Trace doping of multiple elements enables stable battery cycling of LiCoO2 at 4.6 V. Nat. Energy 2019, 4, 594–603.

[8]

Lyu, Y. C.; Wu, X.; Wang, K.; Feng, Z. J.; Cheng, T.; Liu, Y.; Wang, M.; Chen, R. M.; Xu, L. M.; Zhou, J. J. et al. An overview on the advances of LiCoO2 cathodes for lithium-ion batteries. Adv. Energy Mater. 2021, 11, 2000982.

[9]

Liu, Q. Q.; Chen, Z. R.; Liu, Y.; Hong, Y. R.; Wang, W. N.; Wang, J. H.; Zhao, B.; Xu, Y. F.; Wang, J. W.; Fan, X. L. et al. Cooperative stabilization of bi-electrodes with robust interphases for high-voltage lithium-metal batteries. Energy Storage Mater. 2021, 37, 521–529.

[10]

Zhang, H.; Zeng, Z. Q.; He, R. J.; Wu, Y. K.; Hu, W.; Lei, S.; Liu, M. C.; Cheng, S. J.; Xie, J. 1,3,5-Trifluorobenzene and fluorobenzene co-assisted electrolyte with thermodynamic and interfacial stabilities for high-voltage lithium metal battery. Energy Storage Mater. 2022, 48, 393–402.

[11]

Wang, H. S.; Yu, Z. A.; Kong, X.; Huang, W.; Zhang, Z. W.; Mackanic, D. G.; Huang, X. Y.; Qin, J.; Bao, Z. N.; Cui, Y. Dual-solvent Li-ion solvation enables high-performance Li-metal batteries. Adv. Mater. 2021, 33, 2008619.

[12]

Sun, N. N.; Li, R. H.; Zhao, Y.; Zhang, H. K.; Chen, J. H.; Xu, J. T.; Li, Z. D.; Fan, X. L.; Yao, X. Y.; Peng, Z. Anionic coordination manipulation of multilayer solvation structure electrolyte for high-rate and low-temperature lithium metal battery. Adv. Energy Mater. 2022, 12, 2200621.

[13]

Liu, J. D.; Wu, M. G.; Li, X.; Wu, D. X.; Wang, H. P.; Huang, J. D.; Ma, J. M. Amide-functional, Li3N/LiF-rich heterostructured electrode electrolyte interphases for 4.6 V Li||LiCoO2 batteries. Adv. Energy Mater. 2023, 13, 2300084.

[14]

Yang, C.; Liao, X. B.; Zhou, X.; Sun, C. L.; Qu, R.; Han, J.; Zhao, Y.; Wang, L. G.; You, Y.; Lu, J. Phosphate-rich interface for a highly stable and safe 4.6 V LiCoO2 cathode. Adv. Mater. 2023, 35, 2210966.

[15]

Yuan, S. Y.; Kong, T. Y.; Zhang, Y. Y.; Dong, P.; Zhang, Y. J.; Dong, X. L.; Wang, Y. G.; Xia, Y. Y. Advanced electrolyte design for high-energy-density Li-metal batteries under practical conditions. Angew. Chem., Int. Edit. 2021, 60, 25624–25638.

[16]

Zhang, Q. K.; Zhang, X. Q.; Hou, L. P.; Sun, S. Y.; Zhan, Y. X.; Liang, J. L.; Zhang, F. S.; Feng, X. N.; Li, B. Q.; Huang, J. Q. Regulating solvation structure in nonflammable amide-based electrolytes for long-cycling and safe lithium metal batteries. Adv. Energy Mater. 2022, 12, 2200139.

[17]

Yu, Z. A.; Wang, H. S.; Kong, X.; Huang, W.; Tsao, Y.; Mackanic, D. G.; Wang, K. C.; Wang, X. C.; Huang, W. X.; Choudhury, S. et al. Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries. Nat. Energy 2020, 5, 526–533.

[18]

Chen, Y. L.; Yu, Z. A.; Rudnicki, P.; Gong, H. X.; Huang, Z. J.; Kim, S. C.; Lai, J. C.; Kong, X.; Qin, J.; Cui, Y. et al. Steric effect tuned ion solvation enabling stable cycling of high-voltage lithium metal battery. J. Am. Chem. Soc. 2021, 143, 18703–18713.

[19]

Holoubek, J.; Liu, H. D.; Wu, Z. H.; Yin, Y. J.; Xing, X.; Cai, G. R.; Yu, S. C.; Zhou, H. Y.; Pascal, T. A.; Chen, Z. et al. Tailoring electrolyte solvation for Li metal batteries cycled at ultra-low temperature. Nat. Energy 2021, 6, 303–313.

[20]

Ma, T.; Ni, Y. X.; Wang, Q. R.; Zhang, W. J.; Jin, S.; Zheng, S. B.; Yang, X.; Hou, Y. P.; Tao, Z. L.; Chen, J. Optimize lithium deposition at low temperature by weakly solvating power solvent. Angew. Chem., Int. Edit. 2022, 61, e202207927.

[21]

Cao, X.; Ren, X. D.; Zou, L. F.; Engelhard, M. H.; Huang, W.; Wang, H. S.; Matthews, B. E.; Lee, H.; Niu, C. J.; Arey, B. W. et al. Monolithic solid–electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization. Nat. Energy 2019, 4, 796–805.

[22]

Ren, X. D.; Zou, L. F.; Jiao, S. H.; Mei, D. H.; Engelhard, M. H.; Li, Q. Y.; Lee, H.; Niu, C. J.; Adams, B. D.; Wang, C. M. et al. High-concentration ether electrolytes for stable high-voltage lithium metal batteries. ACS Energy Lett. 2019, 4, 896–902.

[23]

Chen, S. R.; Zheng, J. M.; Yu, L.; Ren, X. D.; Engelhard, M. H.; Niu, C. J.; Lee, H.; Xu, W.; Xiao, J.; Liu, J. et al. High-efficiency lithium metal batteries with fire-retardant electrolytes. Joule 2018, 2, 1548–1558.

[24]

Jiang, Z. P.; Zeng, Z. Q.; Hu, W.; Han, Z. L.; Cheng, S. J.; Xie, J. Diluted high concentration electrolyte with dual effects for practical lithium-sulfur batteries. Energy Storage Mater. 2021, 36, 333–340.

[25]

Zhang, H.; Zeng, Z. Q.; Ma, F. F.; Wu, Q.; Wang, X. L.; Cheng, S. J.; Xie, J. Cyclopentylmethyl ether, a non-fluorinated, weakly solvating and wide temperature solvent for high-performance lithium metal battery. Angew. Chem., Int. Edit. 2023, 62, e202300771.

[26]

Zhang, H.; Zeng, Z. Q.; Liu, M. C.; Ma, F. F.; Qin, M. S.; Wang, X. L.; Wu, Y. K.; Lei, S.; Cheng, S. J.; Xie, J. A “tug-of-war” effect tunes Li-ion transport and enhances the rate capability of lithium metal batteries. Chem. Sci. 2023, 14, 2745–2754.

[27]

Yu, Z. A.; Rudnicki, P. E.; Zhang, Z. W.; Huang, Z. J.; Celik, H.; Oyakhire, S. T.; Chen, Y. L.; Kong, X.; Kim, S. C.; Xiao, X. et al. Rational solvent molecule tuning for high-performance lithium metal battery electrolytes. Nat. Energy 2022, 7, 94–106.

[28]

Peng, X. D.; Lin, Y. K.; Wang, Y.; Li, Y. J.; Zhao, T. S. A lightweight localized high-concentration ether electrolyte for high-voltage Li-ion and Li-metal batteries. Nano Energy 2022, 96, 107102.

[29]

Ren, X. D.; Chen, S. R.; Lee, H.; Mei, D. H.; Engelhard, M. H.; Burton, S. D.; Zhao, W. G.; Zheng, J. M.; Li, Q. Y.; Ding, M. S. et al. Localized high-concentration sulfone electrolytes for high-efficiency lithium-metal batteries. Chem 2018, 4, 1877–1892.

[30]

Yoo, D. J.; Yang, S.; Kim, K. J.; Choi, J. W. Fluorinated aromatic diluent for high-performance lithium metal batteries. Angew. Chem., Int. Edit. 2020, 59, 14869–14876.

[31]

Fan, X. L.; Ji, X.; Chen, L.; Chen, J.; Deng, T.; Han, F. D.; Yue, J.; Piao, N.; Wang, R. X.; Zhou, X. Q. et al. All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents. Nat. Energy 2019, 4, 882–890.

[32]

Zeng, Z. Q.; Murugesan, V.; Han, K. S.; Jiang, X. Y.; Cao, Y. L.; Xiao, L. F.; Ai, X. P.; Yang, H. X.; Zhang, J. G.; Sushko, M. L. et al. Non-flammable electrolytes with high salt-to-solvent ratios for Li-ion and Li-metal batteries. Nat. Energy 2018, 3, 674–681.

[33]

Hu, Z. L.; Xian, F.; Guo, Z. Y.; Lu, C. L.; Du, X. F.; Cheng, X. Y.; Zhang, S.; Dong, S. M.; Cui, G. L.; Chen, L. Q. Nonflammable nitrile deep eutectic electrolyte enables high-voltage lithium metal batteries. Chem. Mater. 2020, 32, 3405–3413.

[34]

Niu, C. J.; Lee, H.; Chen, S. R.; Li, Q. Y.; Du, J.; Xu, W.; Zhang, J. G.; Whittingham, M. S.; Xiao, J.; Liu, J. High-energy lithium metal pouch cells with limited anode swelling and long stable cycles. Nat. Energy 2019, 4, 551–559.

[35]

Zheng, J.; Ji, G. B.; Fan, X. L.; Chen, J.; Li, Q.; Wang, H. Y.; Yang, Y.; DeMella, K. C.; Raghavan, S. R.; Wang, C. S. High-fluorinated electrolytes for Li-S batteries. Adv. Energy Mater. 2019, 9, 1803774.

[36]

Ren, X. D.; Zou, L. F.; Cao, X.; Engelhard, M. H.; Liu, W.; Burton, S. D.; Lee, H.; Niu, C. J.; Matthews, B. E.; Zhu, Z. H. et al. Enabling high-voltage lithium-metal batteries under practical conditions. Joule 2019, 3, 1662–1676.

[37]

Jiang, Z. P.; Zeng, Z. Q.; Liang, X. M.; Yang, L.; Hu, W.; Zhang, C.; Han, Z. L.; Feng, J. W.; Xie, J. Fluorobenzene, a low-density, economical, and bifunctional hydrocarbon cosolvent for practical lithium metal batteries. Adv. Funct. Mater. 2021, 31, 2005991.

[38]

Qin, M. S.; Liu, M. C.; Zeng, Z. Q.; Wu, Q.; Wu, Y. K.; Zhang, H.; Lei, S.; Cheng, S. J.; Xie, J. Rejuvenating propylene carbonate-based electrolyte through nonsolvating interactions for wide-temperature Li-ions batteries. Adv. Energy Mater. 2022, 12, 2201801.

[39]

Qin, M. S.; Zeng, Z. Q.; Wu, Q.; Yan, H.; Liu, M. C.; Wu, Y. K.; Zhang, H.; Lei, S.; Cheng, S. J.; Xie, J. Dipole–dipole interactions for inhibiting solvent co-intercalation into a graphite anode to extend the horizon of electrolyte design. Energy Environ. Sci. 2023, 16, 546–556.

[40]

Zhang, H.; Zeng, Z. Q.; Ma, F. F.; Wang, X. L.; Wu, Y. K.; Liu, M. C.; He, R. J.; Cheng, S. J.; Xie, J. Juggling formation of HF and LiF to reduce crossover effects in carbonate electrolyte with fluorinated cosolvents for high-voltage lithium metal batteries. Adv. Funct. Mater. 2023, 33, 2212000.

[41]

Chen, S. R.; Zheng, J. M.; Mei, D. H.; Han, K. S.; Engelhard, M. H.; Zhao, W. G.; Xu, W.; Liu, J.; Zhang, J. G. High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes. Adv. Mater. 2018, 30, 1706102.

[42]

Fan, X. L.; Chen, L.; Borodin, O.; Ji, X.; Chen, J.; Hou, S.; Deng, T.; Zheng, J.; Yang, C. Y.; Liou, S. C. et al. Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries. Nat. Nanotechnol. 2018, 13, 715–722.

[43]

Hu, J. L.; Jin, Z. X.; Zhong, H.; Zhan, H.; Zhou, Y. H.; Li, Z. Y. A new phosphonamidate as flame retardant additive in electrolytes for lithium ion batteries. J. Power Sources 2012, 197, 297–300.

[44]

Li, X.; Li, W. K.; Chen, L.; Lu, Y.; Su, Y. F.; Bao, L. Y.; Wang, J.; Chen, R. J.; Chen, S.; Wu, F. Ethoxy (pentafluoro) cyclotriphosphazene (PFPN) as a multi-functional flame retardant electrolyte additive for lithium-ion batteries. J. Power Sources 2018, 378, 707–716.

[45]

Xie, L. Q.; Wang, L.; Pang, X. Y.; He, X. M.; Tian, G. Y. Research on the estimation of state of charge for lithium battery based on equivalent modeling and parameter identification. Chin. Battery Ind. 2020, 24, 66–70.

[46]

Shen, W.; Lei, Z. H.; Xie, L. S.; Yang, J.; Nuli, Y. N.; Wang, J. L. Multi-functional additive PFPN for rechargeable lithium sulfur battery with composite cathode materials. Energy Storage Sci. Technol. 2016, 5, 397–403.

[47]

Liu, Q. Q.; Liu, Y.; Chen, Z. R.; Ma, Q.; Hong, Y. R.; Wang, J. H.; Xu, Y. F.; Zhao, W.; Hu, Z. K.; Hong, X. et al. An inorganic-dominate molecular diluent enables safe localized high concentration electrolyte for high-voltage lithium-metal batteries. Adv. Funct. Mater. 2023, 33, 2209725.

[48]

Xu, K.; Ding, M. S.; Zhang, S. S.; Allen, J. L.; Jow, T. R. An attempt to formulate nonflammable lithium ion electrolytes with alkyl phosphates and phosphazenes. J. Electrochem. Soc. 2002, 149, A622.

[49]

Zhang, C.; Gu, S. C.; Zhang, D. F.; Ma, J. B.; Zheng, H.; Zheng, M. Y.; Lv, R. T.; Yu, K.; Wu, J. Q.; Wang, X. M. et al. Nonflammable, localized high-concentration electrolyte towards a high-safety lithium metal battery. Energy Storage Mater. 2022, 52, 355–364.

[50]

Cao, X.; Gao, P. Y.; Ren, X. D.; Zou, L. F.; Engelhard, M. H.; Matthews, B. E.; Hu, J. T.; Niu, C. J.; Liu, D. Y.; Arey, B. W. et al. Effects of fluorinated solvents on electrolyte solvation structures and electrode/electrolyte interphases for lithium metal batteries. Prod. Natl. Acad. Sci. USA 2021, 118, e2020357118.

[51]

Cao, X.; Zou, L. F.; Matthews, B. E.; Zhang, L. C.; He, X. Z.; Ren, X. D.; Engelhard, M. H.; Burton, S. D.; El-Khoury, P. Z.; Lim, H. S. et al. Optimization of fluorinated orthoformate based electrolytes for practical high-voltage lithium metal batteries. Energy Storage Mater. 2021, 34, 76–84.

[52]

Adams, B. D.; Zheng, J. M.; Ren, X. D.; Xu, W.; Zhang, J. G. Accurate determination of Coulombic efficiency for lithium metal anodes and lithium metal batteries. Adv. Energy Mater. 2018, 8, 1702097.

[53]

Lei, S.; Zeng, Z. Q.; Wu, Y. K.; Liu, M. C.; Cheng, S. J.; Xie, J. Non-coordinating flame retardants with varied vapor pressures enabling biphasic fire-extinguishing electrolyte for high safety lithium-ion batteries. Chem. Eng. J. 2023, 463, 142181.

[54]

Wu, Y. K.; Zeng, Z. Q.; Lei, S.; Liu, M. C.; Zhong, W.; Qin, M. S.; Cheng, S. J.; Xie, J. Passivating lithiated graphite via targeted repair of SEI to inhibit exothermic reactions in early-stage of thermal runaway for safer lithium-ion batteries. Angew. Chem., Int. Edit. 2023, 62, e20221777.

File
12274_2023_6056_MOESM1_ESM.pdf (3.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 31 May 2023
Revised: 19 July 2023
Accepted: 30 July 2023
Published: 26 August 2023
Issue date: April 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the Science and Technology Project of State Grid Corporation of China (No. 4000-202320087A-1-1-ZN). The authors gratefully acknowledge the Analytical and Testing Center of HUST for allowing us to use its facilities. The authors thank Shiyanjia Lab (www.shiyanjia.com) for the density analysis.

Return