Journal Home > Volume 16 , Issue 12

Atmospheric particulate matter (PM) is a dominant source of air pollution, in particular, molecules less than 2.5 μm in diameter, endangering human health. An estimated 2.1 million deaths from exposure to PM2.5 and 700,000 cases of respiratory disease caused by atmospheric pollution were reported on an annual basis. The main components of PM2.5 include heavy metal elements, water-soluble ions, carbon aerosols, ozone, and organic compounds. Per- and polyfluoroalkyl substances (PFASs) are a large group of representative pollutants among the organic compounds absorbed in PM2.5. PFASs are widely used in industrial production and hardly degraded in the environment, resulting in their accumulation in water, food, and air, and abosorbed by humans via ingestion and inhalation. On the other hand, accumulation of PFAS in the human body is proving to be associated with some unfavorable health outcomes, whereas the mechanisms underlying the effects of PFAS exposure on human lung diseases remain unclear at present. The toxicological effects of organic components are a significant focus of research. This review will fix our attention on the changes in the distribution, composition, and content of PFAS in PM2.5 by location and year, and provide an overview on the influence of PM2.5 and PFAS on lung health, with indications of possible synergistic adverse effects of PM2.5 and PFAS on pulmonary homeostasis.


menu
Abstract
Full text
Outline
About this article

PFAS in PMs might be the escalating hazard to the lung health

Show Author's information Yue Pan1,2,§Jie Mei2,3,§Jipeng Jiang4,§Ke Xu2,3Xinglong Gao2,3Shasha Jiang4Ying Liu2( )
Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450052, China
CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
University of Chinese Academy of Sciences, Beijing 100049, China
Department of Thoracic Surgery, the First Medical Center of Chinese PLA General Hospital, Beijing 100853, China

§ Yue Pan, Jie Mei, and Jipeng Jiang contributed equally to this work.

Abstract

Atmospheric particulate matter (PM) is a dominant source of air pollution, in particular, molecules less than 2.5 μm in diameter, endangering human health. An estimated 2.1 million deaths from exposure to PM2.5 and 700,000 cases of respiratory disease caused by atmospheric pollution were reported on an annual basis. The main components of PM2.5 include heavy metal elements, water-soluble ions, carbon aerosols, ozone, and organic compounds. Per- and polyfluoroalkyl substances (PFASs) are a large group of representative pollutants among the organic compounds absorbed in PM2.5. PFASs are widely used in industrial production and hardly degraded in the environment, resulting in their accumulation in water, food, and air, and abosorbed by humans via ingestion and inhalation. On the other hand, accumulation of PFAS in the human body is proving to be associated with some unfavorable health outcomes, whereas the mechanisms underlying the effects of PFAS exposure on human lung diseases remain unclear at present. The toxicological effects of organic components are a significant focus of research. This review will fix our attention on the changes in the distribution, composition, and content of PFAS in PM2.5 by location and year, and provide an overview on the influence of PM2.5 and PFAS on lung health, with indications of possible synergistic adverse effects of PM2.5 and PFAS on pulmonary homeostasis.

Keywords: PM2.5, lung, pulmonary homeostasis, environment pollution, per- and polyfluorinated alkyl substances (PFASs)

References(226)

[1]

Liang, C. S.; Duan, F. K.; He, K. B.; Ma, Y. L. Review on recent progress in observations, source identifications and countermeasures of PM2.5. Environ. Int. 2016, 86, 150–170.

[2]

Ding, J.; Guo, J. C.; Wang, L. M.; Chen, Y. D.; Hu, B.; Li, Y. Y.; Huang, R. J.; Cao, J. J.; Zhao, Y. L.; Geiser, M. et al. Cellular responses to exposure to outdoor air from the Chinese spring festival at the air–liquid interface. Environ. Sci. Technol. 2019, 53, 9128–9138.

[3]

Kourtchev, I.; Hellebust, S.; Heffernan, E.; Wenger, J.; Towers, S.; Diapouli, E.; Eleftheriadis, K. A new on-line SPE LC-HRMS method for the analysis of perfluoroalkyl and polyfluoroalkyl substances (PFAS) in PM2.5 and its application for screening atmospheric particulates from Dublin and Enniscorthy, Ireland. Sci. Total Environ. 2022, 835, 155496.

[4]

Chen, R.; Hu, B.; Liu, Y.; Xu, J. X.; Yang, G. S.; Xu, D. D.; Chen, C. Y. Beyond PM2.5: The role of ultrafine particles on adverse health effects of air pollution. Biochim. Biophys. Acta (BBA)-Gen. Subj. 2016, 1860, 2844–2855.

[5]

Achilleos, S.; Kioumourtzoglou, M. A.; Wu, C. D.; Schwartz, J. D.; Koutrakis, P.; Papatheodorou, S. I. Acute effects of fine particulate matter constituents on mortality: A systematic review and meta-regression analysis. Environ. Int. 2017, 109, 89–100.

[6]

Xue, Y. G.; Wang, L. X.; Zhang, Y. M.; Zhao, Y. L.; Liu, Y. Air pollution: A culprit of lung cancer. J. Hazard. Mater. 2022, 434, 128937.

[7]

Wang, X. Y.; Xu, W. S.; Gu, J. G.; Yan, X. Y.; Chen, Y.; Guo, M. Y.; Zhou, G. Q.; Tong, S. R.; Ge, M. F.; Liu, Y. et al. MOF-based fibrous membranes adsorb PM efficiently and capture toxic gases selectively. Nanoscale 2019, 11, 17782–17790.

[8]
https://www.un.org/zh/documents/treaty/WIPO-2001 (accessed Jul 4, 2023).
[9]

Rengarajan, T.; Rajendran, P.; Nandakumar, N.; Lokeshkumar, B.; Rajendran, P.; Nishigaki, I. Exposure to polycyclic aromatic hydrocarbons with special focus on cancer. Asian Pac. J. Trop. Biomed. 2015, 5, 182–189.

[10]

Yu, Z. G.; Wang, H.; Zhang, X.; Gong, S. P.; Liu, Z.; Zhao, N.; Zhang, C. Q.; Xie, X. R.; Wang, K. G.; Liu, Z. et al. Long-term environmental surveillance of PM2.5-bound polycyclic aromatic hydrocarbons in Jinan, China (2014–2020): Health risk assessment. J. Hazard. Mater. 2022, 425, 127766.

[11]

Hecht, S. S.; Hatsukami, D. K. Smokeless tobacco and cigarette smoking: Chemical mechanisms and cancer prevention. Nat. Rev. Cancer 2022, 22, 143–155.

[12]

Jubber, I.; Ong, S.; Bukavina, L.; Black, P. C.; Compérat, E.; Kamat, A. M.; Kiemeney, L.; Lawrentschuk, N.; Lerner, S. P.; Meeks, J. J. et al. Epidemiology of bladder cancer in 2023: A systematic review of risk factors. Eur. Urol. 2023, 84, 176–190.

[13]

Chapman, R. S. Lung function and polycyclic aromatic hydrocarbons in China. Am. J. Respir. Crit. Care Med. 2016, 193, 814–815.

[14]

Zhou, Y.; Sun, H. Z.; Xie, J. G.; Song, Y. C.; Liu, Y. W.; Huang, X. J.; Zhou, T.; Rong, Y.; Wu, T. C.; Yuan, J. et al. Urinary polycyclic aromatic hydrocarbon metabolites and altered lung function in Wuhan, China. Am. J. Respir. Crit. Care Med. 2016, 193, 835–846.

[15]

Jain, R. B. Contributions of dietary, demographic, disease, lifestyle and other factors in explaining variabilities in concentrations of selected monohydroxylated polycyclic aromatic hydrocarbons in urine: Data for US children, adolescents, and adults. Environ. Pollut. 2020, 266, 115178.

[16]

Savvaides, T.; Koelmel, J. P.; Zhou, Y. K.; Lin, E. Z.; Stelben, P.; Aristizabal-Henao, J. J.; Bowden, J. A.; Godri Pollitt, K. J. Prevalence and implications of per- and polyfluoroalkyl substances (PFAS) in settled dust. Curr. Environ. Health Rep. 2021, 8, 323–335.

[17]

Beser, M. I.; Pardo, O.; Beltrán, J.; Yusà, V. Determination of per- and polyfluorinated substances in airborne particulate matter by microwave-assisted extraction and liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2011, 1218, 4847–4855.

[18]

Guo, M. J.; Lyu, Y.; Xu, T. T.; Yao, B.; Song, W. H.; Li, M.; Yang, X.; Cheng, T. T.; Li, X. Particle size distribution and respiratory deposition estimates of airborne perfluoroalkyl acids during the haze period in the megacity of Shanghai. Environ. Pollut. 2018, 234, 9–19.

[19]

Ge, H.; Yamazaki, E.; Yamashita, N.; Taniyasu, S.; Ogata, A.; Furuuchi, M. Particle size specific distribution of perfluoro alkyl substances in atmospheric particulate matter in Asian cities. Environ. Sci. :Process. Impacts 2017, 19, 549–560.

[20]

Phan, T.; Devine, C.; Laursen, E. D.; Simpson, A.; Kahn, A.; Khandhar, A. P.; Mesite, S.; Besse, B.; Mabery, K. J.; Flanagan, E. I. et al. Squalene emulsion manufacturing process scale-up for enhanced global pandemic response. Pharmaceuticals 2020, 13, 168.

[21]

Ritscher, A.; Wang, Z. Y.; Scheringer, M.; Boucher, J. M.; Ahrens, L.; Berger, U.; Bintein, S.; Bopp, S. K.; Borg, D.; Buser, A. M. et al. Zürich statement on future actions on per- and polyfluoroalkyl substances (PFASs). Environ. Health Perspect. 2018, 126, 084502.

[22]

Goosey, E.; Harrad, S. Perfluoroalkyl substances in UK indoor and outdoor air: Spatial and seasonal variation, and implications for human exposure. Environ. Int. 2012, 45, 86–90.

[23]

Barber, J. L.; Berger, U.; Chaemfa, C.; Huber, S.; Jahnke, A.; Temme, C.; Jones, K. C. Analysis of per- and polyfluorinated alkyl substances in air samples from Northwest Europe. J. Environ. Monit. 2007, 9, 530–541.

[24]

Zhou, J.; Baumann, K.; Mead, R. N.; Skrabal, S. A.; Kieber, R. J.; Avery, G. B.; Shimizu, M.; DeWitt, J. C.; Sun, M.; Vance, S. A. et al. PFOS dominates PFAS composition in ambient fine particulate matter (PM2.5) collected across North Carolina nearly 20 years after the end of its US production. Environ. Sci.: Process. Impacts 2021, 23, 580–587.

[25]

Jian, J. M.; Chen, D.; Han, F. J.; Guo, Y.; Zeng, L. X.; Lu, X. W.; Wang, F. A short review on human exposure to and tissue distribution of per- and polyfluoroalkyl substances (PFASs). Sci. Total Environ. 2018, 636, 1058–1069.

[26]

Fenton, S. E.; Ducatman, A.; Boobis, A.; DeWitt, J. C.; Lau, C.; Ng, C.; Smith, J. S.; Roberts, S. M. Per- and polyfluoroalkyl substance toxicity and human health review: Current state of knowledge and strategies for informing future research. Environ. Toxicol. Chem. 2021, 40, 606–630.

[27]

Mamsen, L. S.; Björvang, R. D.; Mucs, D.; Vinnars, M. T.; Papadogiannakis, N.; Lindh, C. H.; Andersen, C. Y.; Damdimopoulou, P. Concentrations of perfluoroalkyl substances (PFASs) in human embryonic and fetal organs from first, second, and third trimester pregnancies. Environ. Int. 2019, 124, 482–492.

[28]

Gao, K.; Chen, Y.; Xue, Q.; Fu, J.; Fu, K. H.; Fu, J. J.; Zhang, A. Q.; Cai, Z. W.; Jiang, G. B. Trends and perspectives in per- and polyfluorinated alkyl substances (PFASs) determination: Faster and broader. TrAC Trends Anal. Chem. 2020, 133, 116114.

[29]

Zhao, P. J.; Xia, X. H.; Dong, J. W.; Xia, N.; Jiang, X. M.; Li, Y.; Zhu, Y. M. Short- and long-chain perfluoroalkyl substances in the water, suspended particulate matter, and surface sediment of a turbid river. Sci. Total Environ. 2016, 568, 57–65.

[30]

Zhang, Y.; Meng, W.; Guo, C. S.; Xu, J.; Yu, T.; Fan, W. H.; Li, L. Determination and partitioning behavior of perfluoroalkyl carboxylic acids and perfluorooctanesulfonate in water and sediment from Dianchi Lake, China. Chemosphere 2012, 88, 1292–1299.

[31]

Poothong, S.; Papadopoulou, E.; Padilla-Sánchez, J. A.; Thomsen, C.; Haug, L. S. Multiple pathways of human exposure to poly- and perfluoroalkyl substances (PFASs): From external exposure to human blood. Environ. Int. 2020, 134, 105244.

[32]

Dragon, J.; Hoaglund, M.; Badireddy, A. R.; Nielsen, G.; Schlezinger, J.; Shukla, A. Perfluoroalkyl substances (PFAS) affect inflammation in lung cells and tissues. Int. J. Mol. Sci. 2023, 24, 8539.

[33]

Kung, Y. P.; Lin, C. C.; Chen, M. H.; Tsai, M. S.; Hsieh, W. S.; Chen, P. C. Intrauterine exposure to per- and polyfluoroalkyl substances may harm children’s lung function development. Environ. Res. 2021, 192, 110178.

[34]

Ahmad, S.; Wen, Y.; Irudayaraj, J. M. K. PFOA induces alteration in DNA methylation regulators and SARS-CoV-2 targets Ace2 and Tmprss2 in mouse lung tissues. Toxicol. Rep. 2021, 8, 1892–1898.

[35]

Wang, M.; Aaron, C. P.; Madrigano, J.; Hoffman, E. A.; Angelini, E.; Yang, J.; Laine, A.; Vetterli, T. M.; Kinney, P. L.; Sampson, P. D. et al. Association between long-term exposure to ambient air pollution and change in quantitatively assessed emphysema and lung function. JAMA 2019, 322, 546–556.

[36]

Goobie, G. C.; Carlsten, C.; Johannson, K. A.; Khalil, N.; Marcoux, V.; Assayag, D.; Manganas, H.; Fisher, J. H.; Kolb, M. R. J.; Lindell, K. O. et al. Association of particulate matter exposure with lung function and mortality among patients with fibrotic interstitial lung disease. JAMA Intern. Med. 2022, 182, 1248–1259.

[37]

Wei, J.; Li, Z. Q.; Lyapustin, A.; Sun, L.; Peng, Y. R.; Xue, W. H.; Su, T. N.; Cribb, M. Reconstructing 1-km-resolution high-quality PM2.5 data records from 2000 to 2018 in China: Spatiotemporal variations and policy implications. Remote Sens. Environ. 2021, 252, 112136.

[38]

Ali, A.; Ovais, M.; Cui, X. J.; Rui, Y. K.; Chen, C. Y. Safety assessment of nanomaterials for antimicrobial applications. Chem. Res. Toxicol. 2020, 33, 1082–1109.

[39]

Iriti, M.; Piscitelli, P.; Missoni, E.; Miani, A. Air pollution and health: The need for a medical reading of environmental monitoring data. Int. J. Environ. Res. Public Health 2020, 17, 2174.

[40]

Zhang, N.; Wu, Y. P.; Choi, Y. Is it feasible for China to enhance its air quality in terms of the efficiency and the regulatory cost of air pollution. Sci. Total Environ. 2020, 709, 136149.

[41]

Sánchez-Piñero, J.; Novo-Quiza, N.; Pernas-Castaño, C.; Moreda-Piñeiro, J.; Muniategui-Lorenzo, S.; López-Mahía, P. Inhalation bioaccessibility of multi-class organic pollutants associated to atmospheric PM2.5: Correlation with PM2.5 properties and health risk assessment. Environ. Pollut. 2022, 307, 119577.

[42]
https://www.mee.gov.cn/xxgk2018/xxgk/xxgk01/201903/t20190312_695462.html (accessed Jun 16, 2023).
[43]

Gawor, A.; Shunthirasingham, C.; Hayward, S. J.; Lei, Y. D.; Gouin, T.; Mmereki, B. T.; Masamba, W.; Ruepert, C.; Castillo, L. E.; Shoeib, M. et al. Neutral polyfluoroalkyl substances in the global atmosphere. Environ. Sci.: Process. Impacts 2014, 16, 404–413.

[44]

Dinglasan-Panlilio, M. J. A.; Mabury, S. A. Significant residual fluorinated alcohols present in various fluorinated materials. Environ. Sci. Technol. 2006, 40, 1447–1453.

[45]

Wang, Z. Y.; Scheringer, M.; MacLeod, M.; Bogdal, C.; Müller, C. E.; Gerecke, A. C.; Hungerbühler, K. Atmospheric fate of poly- and perfluorinated alkyl substances (PFASs): II. Emission source strength in summer in Zurich, Switzerland. Environ. Pollut. 2012, 169, 204–209.

[46]

Yao, Y. M.; Sun, H. W.; Gan, Z. W.; Hu, H. W.; Zhao, Y. Y.; Chang, S.; Zhou, Q. X. Nationwide distribution of per- and polyfluoroalkyl substances in outdoor dust in mainland China from eastern to western areas. Environ. Sci. Technol. 2016, 50, 3676–3685.

[47]

Liu, W. X.; He, W.; Wu, J. Y.; Wu, W. J.; Xu, F. L. Distribution, partitioning and inhalation exposure of perfluoroalkyl acids (PFAAs) in urban and rural air near Lake Chaohu, China. Environ. Pollut. 2018, 243, 143–151.

[48]

Strynar, M. J.; Lindstrom, A. B. Perfluorinated compounds in house dust from Ohio and North Carolina, USA. Environ. Sci. Technol. 2008, 42, 3751–3756.

[49]

Zhu, H. K.; Kannan, K. A pilot study of per- and polyfluoroalkyl substances in automotive lubricant oils from the United States. Environ. Technol. Innovation 2020, 19, 100943.

[50]

McMurdo, C. J.; Ellis, D. A.; Webster, E.; Butler, J.; Christensen, R. D.; Reid, L. K. Aerosol enrichment of the surfactant PFO and mediation of the water-air transport of gaseous PFOA. Environ. Sci. Technol. 2008, 42, 3969–3974.

[51]

Wallington, T. J.; Hurley, M. D.; Xia, J.; Wuebbles, D. J.; Sillman, S.; Ito, A.; Penner, J. E.; Ellis, D. A.; Martin, J.; Mabury, S. A. et al. Formation of C7F15COOH (PFOA) and other perfluorocarboxylic acids during the atmospheric oxidation of 8: 2 fluorotelomer alcohol. Environ. Sci. Technol. 2006, 40, 924–930.

[52]

Paragot, N.; Bečanová, J.; Karásková, P.; Prokeš, R.; Klánová, J.; Lammel, G.; Degrendele, C. Multi-year atmospheric concentrations of per- and polyfluoroalkyl substances (PFASs) at a background site in central Europe. Environ. Pollut. 2020, 265, 114851.

[53]

Lin, H. J.; Taniyasu, S.; Yamazaki, E.; Wei, S.; Wang, X. H.; Gai, N.; Kim, J. H.; Eun, H.; Lam, P. K. S.; Yamashita, N. Per- and polyfluoroalkyl substances in the air particles of Asia: Levels, seasonality, and size-dependent distribution. Environ. Sci. Technol. 2020, 54, 14182–14191.

[54]

Wang, S. Q.; Lin, X. P.; Li, Q.; Li, Y. Y.; Yamazaki, E.; Yamashita, N.; Wang, X. H. Particle size distribution, wet deposition and scavenging effect of per- and polyfluoroalkyl substances (PFASs) in the atmosphere from a subtropical city of China. Sci. Total Environ. 2022, 823, 153528.

[55]

Wang, S. Q.; Lin, X. P.; Li, Q.; Liu, C.; Li, Y. Y.; Wang, X. H. Neutral and ionizable per- and polyfluoroalkyl substances in the urban atmosphere: Occurrence, sources and transport. Sci. Total Environ. 2022, 823, 153794.

[56]

Liu, Z. Z.; Zhou, J. Q.; Xu, Y. L.; Lu, J. F.; Chen, J. Y.; Wang, J. Distributions and sources of traditional and emerging per- and polyfluoroalkyl substances among multiple environmental media in the Qiantang River watershed, China. RSC Adv. 2022, 12, 21247–21254.

[57]

Bao, Y. X.; Cagnetta, G.; Huang, J.; Yu, G. Degradation of hexafluoropropylene oxide oligomer acids as PFOA alternatives in simulated nanofiltration concentrate: Effect of molecular structure. Chem. Eng. J. 2020, 382, 122866.

[58]

Mullin, L.; Katz, D. R.; Riddell, N.; Plumb, R.; Burgess, J. A.; Yeung, L. W. Y.; Jogsten, I. E. Analysis of hexafluoropropylene oxide-dimer acid (HFPO-DA) by liquid chromatography-mass spectrometry (LC-MS): Review of current approaches and environmental levels. TrAC Trends Anal. Chem. 2019, 118, 828–839.

[59]

Ardain, A.; Marakalala, M. J.; Leslie, A. Tissue-resident innate immunity in the lung. Immunology 2020, 159, 245–256.

[60]

Xia, X. H.; Rabearisoa, A. H.; Jiang, X. M.; Dai, Z. N. Bioaccumulation of perfluoroalkyl substances by Daphnia magna in water with different types and concentrations of protein. Environ. Sci. Technol. 2013, 47, 10955–10963.

[61]

Wang, B.; Yao, Y. M.; Wang, Y.; Chen, H.; Sun, H. W. Per- and polyfluoroalkyl substances in outdoor and indoor dust from mainland China: Contributions of unknown precursors and implications for human exposure. Environ. Sci. Technol. 2022, 56, 6036–6045.

[62]

Shoeib, M.; Harner, T.; Webster, G. M.; Lee, S. C. Indoor sources of poly- and perfluorinated compounds (PFCS) in Vancouver, Canada: Implications for human exposure. Environ. Sci. Technol. 2011, 45, 7999–8005.

[63]

Schlummer, M.; Gruber, L.; Fiedler, D.; Kizlauskas, M.; Muller, J. Detection of fluorotelomer alcohols in indoor environments and their relevance for human exposure. Environ. Int. 2013, 57–58, 42–49.

[64]

Morgan, M. K.; Sheldon, L. S.; Croghan, C. W.; Jones, P. A.; Robertson, G. L.; Chuang, J. C.; Wilson, N. K.; Lyu, C. W. Exposures of preschool children to chlorpyrifos and its degradation product 3,5,6-trichloro-2-pyridinol in their everyday environments. J. Expo. Sci. Environ. Epidemiol. 2005, 15, 297–309.

[65]

Yao, Y. M.; Zhao, Y. Y.; Sun, H. W.; Chang, S.; Zhu, L. Y.; Alder, A. C.; Kannan, K. Per- and polyfluoroalkyl substances (PFASs) in indoor air and dust from homes and various microenvironments in China: Implications for human exposure. Environ. Sci. Technol. 2018, 52, 3156–3166.

[66]

Yao, Y. M.; Chang, S.; Sun, H. W.; Gan, Z. W.; Hu, H. W.; Zhao, Y. Y.; Zhang, Y. F. Neutral and ionic per- and polyfluoroalkyl substances (PFASs) in atmospheric and dry deposition samples over a source region (Tianjin, China). Environ. Pollut. 2016, 212, 449–456.

[67]

Yu, N. Y.; Guo, H. W.; Yang, J. P.; Jin, L.; Wang, X. B.; Shi, W.; Zhang, X. W.; Yu, H. X.; Wei, S. Non-target and suspect screening of per- and polyfluoroalkyl substances in airborne particulate matter in China. Environ. Sci. Technol. 2018, 52, 8205–8214.

[68]

Jahnke, A.; Ahrens, L.; Ebinghaus, R.; Temme, C. Urban versus remote air concentrations of fluorotelomer alcohols and other polyfluorinated alkyl substances in Germany. Environ. Sci. Technol. 2007, 41, 745–752.

[69]

Rauert, C.; Shoieb, M.; Schuster, J. K.; Eng, A.; Harner, T. Atmospheric concentrations and trends of poly- and perfluoroalkyl substances (PFAS) and volatile methyl siloxanes (VMS) over 7 years of sampling in the Global Atmospheric Passive Sampling (GAPS) network. Environ. Pollut. 2018, 238, 94–102.

[70]

Saini, A.; Chinnadurai, S.; Schuster, J. K.; Eng, A.; Harner, T. Per- and polyfluoroalkyl substances and volatile methyl siloxanes in global air: Spatial and temporal trends. Environ. Pollut. 2023, 323, 121291.

[71]

Seo, S. H.; Son, M. H.; Shin, E. S.; Choi, S. D.; Chang, Y. S. Matrix-specific distribution and compositional profiles of perfluoroalkyl substances (PFASs) in multimedia environments. J. Hazard. Mater. 2019, 364, 19–27.

[72]

Zhang, B.; He, Y.; Huang, Y. Y.; Hong, D. H.; Yao, Y. M.; Wang, L.; Sun, W. W.; Yang, B. Q.; Huang, X. F.; Song, S. M. et al. Novel and legacy poly- and perfluoroalkyl substances (PFASs) in indoor dust from urban, industrial, and e-waste dismantling areas: The emergence of PFAS alternatives in China. Environ. Pollut. 2020, 263, 114461.

[73]

Zhou, J. Q.; Baumann, K.; Chang, N. M.; Morrison, G.; Bodnar, W.; Zhang, Z. F.; Atkin, J. M.; Surratt, J. D.; Turpin, B. J. Per- and polyfluoroalkyl substances (PFASs) in airborne particulate matter (PM2.0) emitted during floor waxing: A pilot study. Atmos. Environ. 2022, 268, 118845.

[74]

Lin, H. J.; Taniyasu, S.; Yamazaki, E.; Wu, R. B.; Lam, P. K. S.; Eun, H.; Yamashita, N. Fluorine mass balance analysis and per- and polyfluoroalkyl substances in the atmosphere. J. Hazard. Mater. 2022, 435, 129025.

[75]

Morales-McDevitt, M. E.; Becanova, J.; Blum, A.; Bruton, T. A.; Vojta, S.; Woodward, M.; Lohmann, R. The air that we breathe: Neutral and volatile PFAS in indoor air. Environ. Sci. Technol. Lett. 2021, 8, 897–902.

[76]

Morales-McDevitt, M. E.; Dunn, M.; Habib, A.; Vojta, S.; Becanova, J.; Lohmann, R. Poly- and perfluorinated alkyl substances in air and water from Dhaka, Bangladesh. Environ. Toxicol. Chem. 2022, 41, 334–342.

[77]
https://echa.europa.eu/-/echa-publishes-pfas-restriction-proposal (accessed Jun 15, 2023).
[78]

Prevedouros, K.; Cousins, I. T.; Buck, R. C.; Korzeniowski, S. H. Sources, fate and transport of perfluorocarboxylates. Environ. Sci. Technol. 2006, 40, 32–44.

[79]

Kannan, K. Perfluoroalkyl and polyfluoroalkyl substances: Current and future perspectives. Environ. Chem. 2011, 8, 333–338.

[80]
https://www.americanchemistry.com/chemistry-in-america/chemistries/fluorotechnology-per-and-polyfluoroalkyl-substances-pfas/pfas-grouping-an-emerging-scientific-consensus (accessed Jun 15, 2023).
[81]

Sun, J. C.; Bossi, R.; Bustnes, J. O.; Helander, B.; Boertmann, D.; Dietz, R.; Herzke, D.; Jaspers, V. L. B.; Labansen, A. L.; Lepoint, G. et al. White-tailed eagle (Haliaeetus albicilla) body feathers document spatiotemporal trends of perfluoroalkyl substances in the northern environment. Environ. Sci. Technol. 2019, 53, 12744–12753.

[82]

Li, J.; Del Vento, S.; Schuster, J.; Zhang, G.; Chakraborty, P.; Kobara, Y.; Jones, K. C. Perfluorinated compounds in the Asian atmosphere. Environ. Sci. Technol. 2011, 45, 7241–7248.

[83]

Zhang, L.; Liu, J. G.; Hu, J. X.; Liu, C.; Guo, W. G.; Wang, Q.; Wang, H. The inventory of sources, environmental releases and risk assessment for perfluorooctane sulfonate in China. Environ. Pollut. 2012, 165, 193–198.

[84]

Wu, J.; Jin, H. B.; Li, L.; Zhai, Z. H.; Martin, J. W.; Hu, J. X.; Peng, L.; Wu, P. F. Atmospheric perfluoroalkyl acid occurrence and isomer profiles in Beijing, China. Environ. Pollut. 2019, 255, 113129.

[85]

Liu, B. L.; Zhang, H.; Yao, D.; Li, J. Y.; Xie, L. W.; Wang, X. X.; Wang, Y. P.; Liu, G. Q.; Yang, B. Perfluorinated compounds (PFCs) in the atmosphere of Shenzhen, China: Spatial distribution, sources and health risk assessment. Chemosphere 2015, 138, 511–518.

[86]
Benskin, J. P.; De Silva, A. O.; Martin, J. W. Isomer profiling of perfluorinated substances as a tool for source tracking: A review of early findings and future applications. In Reviews of Environmental Contamination and Toxicology. De Voogt, P. , Ed.; Springer: New York, 2010; pp 111–160.
[87]

Brendel, S.; Fetter, É.; Staude, C.; Vierke, L.; Biegel-Engler, A. Short-chain perfluoroalkyl acids: Environmental concerns and a regulatory strategy under REACH. Environ. Sci. Eur. 2018, 30, 9.

[88]
https://echa.europa.eu/hot-topics/perfluoroalkyl-chemicals-pfas (accessed Jun 16, 2023).
[89]
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv%3AOJ.LI.2020.188.01.0001.01.ENG&toc=OJ%3AL%3A2020%3A188I%3ATOC (accessed Jun 5, 2023).
[90]
https://environment.ec.europa.eu/news/commission-welcomes-political-agreement-persistent-chemicals-waste-2022-06-21_en (accessed Jun 11, 2023).
[91]
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=PI_COM%3AC%282023%293387&qid=1686635076527 (accessed Jun 17, 2023).
[92]

Gu, Y. F.; Huang, R. J.; Li, Y. J.; Duan, J.; Chen, Q.; Hu, W. W.; Zheng, Y.; Lin, C. S.; Ni, H. Y.; Dai, W. T. et al. Chemical nature and sources of fine particles in urban Beijing: Seasonality and formation mechanisms. Environ. Int. 2020, 140, 105732.

[93]

Ellis, D. A.; Martin, J. W.; De Silva, A. O.; Mabury, S. A.; Hurley, M. D.; Sulbaek Andersen, M. P.; Wallington, T. J. Degradation of fluorotelomer alcohols: A likely atmospheric source of perfluorinated carboxylic acids. Environ. Sci. Technol. 2004, 38, 3316–3321.

[94]

D’Eon, J. C.; Hurley, M. D.; Wallington, T. J.; Mabury, S. A. Atmospheric chemistry of N-methyl perfluorobutane sulfonamidoethanol, C4F9SO2N(CH3)CH2CH2OH: Kinetics and mechanism of reaction with OH. Environ. Sci. Technol. 2006, 40, 1862–1868.

[95]

Churg, A.; Brauer, M. Human lung parenchyma retains PM2.5. Am. J. Respir. Crit. Care Med. 1997, 155, 2109–2111.

[96]

Raaschou-Nielsen, O.; Andersen, Z. J.; Beelen, R.; Samoli, E.; Stafoggia, M.; Weinmayr, G.; Hoffmann, B.; Fischer, P.; Nieuwenhuijsen, M. J.; Brunekreef, B. et al. Air pollution and lung cancer incidence in 17 European cohorts: Prospective analyses from the European Study of Cohorts for Air Pollution Effects (ESCAPE). Lancet Oncol. 2013, 14, 813–822.

[97]

Adam, M.; Schikowski, T.; Carsin, A. E.; Cai, Y. T.; Jacquemin, B.; Sanchez, M.; Vierkötter, A.; Marcon, A.; Keidel, D.; Sugiri, D. et al. Adult lung function and long-term air pollution exposure. ESCAPE:A multicentre cohort study and meta-analysis. Eur. Respir. J. 2015, 45, 38–50.

[98]

Peng, R. D.; Bell, M. L.; Geyh, A. S.; McDermott, A.; Zeger, S. L.; Samet, J. M.; Dominici, F. Emergency admissions for cardiovascular and respiratory diseases and the chemical composition of fine particle air pollution. Environ. Health Perspect. 2009, 117, 957–963.

[99]

Riva, D. R.; Magalhães, C. B.; Lopes, A. A.; Lanças, T.; Mauad, T.; Malm, O.; Valenca, S. S.; Saldiva, P. H.; Faffe, D. S.; Zin, W. A. Low dose of fine particulate matter (PM2.5) can induce acute oxidative stress, inflammation and pulmonary impairment in healthy mice. Inhal. Toxicol. 2011, 23, 257–267.

[100]

Etchie, T. O.; Sivanesan, S.; Etchie, A. T.; Adewuyi, G. O.; Krishnamurthi, K.; George, K. V.; Rao, P. S. The burden of disease attributable to ambient PM2.5-bound PAHs exposure in Nagpur, India. Chemosphere 2018, 204, 277–289.

[101]

Huang, W. Z.; Zhou, Y.; Chen, X.; Zeng, X. W.; Knibbs, L. D.; Zhang, Y. T.; Jalaludin, B.; Dharmage, S. C.; Morawska, L.; Guo, Y. M. et al. Individual and joint associations of long-term exposure to air pollutants and cardiopulmonary mortality: A 22-year cohort study in Northern China. Lancet Reg. Health - Western Pac. 2023, 36, 100776.

[102]

Zhao, C.; Pu, W. Y.; Niu, M. Y.; Wazir, J.; Song, S. Y.; Wei, L. L.; Li, L.; Su, Z. L.; Wang, H. W. Respiratory exposure to PM2.5 soluble extract induced chronic lung injury by disturbing the phagocytosis function of macrophage. Environ. Sci. Pollut. Res. Int. 2022, 29, 13983–13997.

[103]

Huang, L. M.; Pu, J. D.; He, F.; Liao, B. L.; Hao, B. W.; Hong, W.; Ye, X. Q.; Chen, J. L.; Zhao, J.; Liu, S. et al. Positive feedback of the amphiregulin-EGFR-ERK pathway mediates PM2.5 from wood smoke-induced MUC5AC expression in epithelial cells. Sci. Rep. 2017, 7, 11084.

[104]

Zhang, H. S.; Lu, H. M.; Yu, L.; Yuan, J. X.; Qin, S.; Li, C.; Ge, R. S.; Chen, H. L.; Ye, L. P. Effects of gestational exposure to perfluorooctane sulfonate on the lung development of offspring rats. Environ. Pollut. 2021, 272, 115535.

[105]

Jabeen, M.; Fayyaz, M.; Irudayaraj, J. Epigenetic modifications, and alterations in cell cycle and apoptosis pathway in A549 lung carcinoma cell line upon exposure to perfluoroalkyl substances. Toxics 2020, 8, 112.

[106]

Liu, W. J.; Irudayaraj, J. Perfluorooctanoic acid (PFOA) exposure inhibits DNA methyltransferase activities and alters constitutive heterochromatin organization. Food Chem. Toxicol. 2020, 141, 111358.

[107]

Kajekar, R. Environmental factors and developmental outcomes in the lung. Pharmacol. Ther. 2007, 114, 129–145.

[108]

Eriksson, U.; Karrman, A. World-wide indoor exposure to polyfluoroalkyl phosphate esters (PAPs) and other PFASs in household dust. Environ. Sci. Technol. 2015, 49, 14503–14511.

[109]

Ryu, M. H.; Jha, A.; Ojo, O. O.; Mahood, T. H.; Basu, S.; Detillieux, K. A.; Nikoobakht, N.; Wong, C. S.; Loewen, M.; Becker, A. B. et al. Chronic exposure to perfluorinated compounds: Impact on airway hyperresponsiveness and inflammation. Am. J. Physiol. Lung Cell. Mol. Physiol. 2014, 307, L765–L774.

[110]

Borg, D.; Bogdanska, J.; Sundström, M.; Nobel, S.; Håkansson, H.; Bergman, Å.; DePierre, J. W.; Halldin, K.; Bergström, U. Tissue distribution of 35S-labelled perfluorooctane sulfonate (PFOS) in C57Bl/6 mice following late gestational exposure. Reprod. Toxicol. 2010, 30, 558–565.

[111]

Chen, T.; Zhang, L.; Yue, J. Q.; Lv, Z. Q.; Xia, W.; Wan, Y. J.; Li, Y. Y.; Xu, S. Q. Prenatal PFOS exposure induces oxidative stress and apoptosis in the lung of rat off-spring. Reprod. Toxicol. 2012, 33, 538–545.

[112]

Ye, L. P.; Zhao, B. H.; Yuan, K. M.; Chu, Y. H.; Li, C. C.; Zhao, C. N.; Lian, Q. Q.; Ge, R. S. Gene expression profiling in fetal rat lung during gestational perfluorooctane sulfonate exposure. Toxicol. Lett. 2012, 209, 270–276.

[113]

Manzano-Salgado, C. B.; Granum, B.; Lopez-Espinosa, M. J.; Ballester, F.; Iñiguez, C.; Gascón, M.; Martínez, D.; Guxens, M.; Basterretxea, M.; Zabaleta, C. et al. Prenatal exposure to perfluoroalkyl substances, immune-related outcomes, and lung function in children from a Spanish birth cohort study. Int. J. Hyg. Environ. Health 2019, 222, 945–954.

[114]

Granum, B.; Haug, L. S.; Namork, E.; Stølevik, S. B.; Thomsen, C.; Aaberge, I. S.; van Loveren, H.; Løvik, M.; Nygaard, U. C. Pre-natal exposure to perfluoroalkyl substances may be associated with altered vaccine antibody levels and immune-related health outcomes in early childhood. J. Immunotoxicol. 2013, 10, 373–379.

[115]

Bäckström, E.; Hogmalm, A.; Lappalainen, U.; Bry, K. Developmental stage is a major determinant of lung injury in a murine model of bronchopulmonary dysplasia. Pediatr. Res. 2011, 69, 312–318.

[116]

Mullassery, D.; Smith, N. P. Lung development. Semin. Pediatr. Surg. 2015, 24, 152–155.

[117]

Gaylord, A.; Berger, K. I.; Naidu, M.; Attina, T. M.; Gilbert, J.; Koshy, T. T.; Han, X. X.; Marmor, M.; Shao, Y. Z.; Giusti, R. et al. Serum perfluoroalkyl substances and lung function in adolescents exposed to the World Trade Center disaster. Environ. Res. 2019, 172, 266–272.

[118]

Silkoff, P. E.; Strambu, I.; Laviolette, M.; Singh, D.; FitzGerald, J. M.; Lam, S.; Kelsen, S.; Eich, A.; Ludwig-Sengpiel, A.; Hupp, G. C. et al. Asthma characteristics and biomarkers from the Airways Disease Endotyping for Personalized Therapeutics (ADEPT) longitudinal profiling study. Respir. Res. 2015, 16, 142.

[119]

Lu, X.; Li, R. Q.; Yan, X. X. Airway hyperresponsiveness development and the toxicity of PM2.5. Environ. Sci. Pollut. Res. Int. 2021, 28, 6374–6391.

[120]

Guarnieri, M.; Balmes, J. R. Outdoor air pollution and asthma. Lancet 2014, 383, 1581–1592.

[121]

Fan, J. C.; Li, S. L.; Fan, C. L.; Bai, Z. G.; Yang, K. H. The impact of PM2.5 on asthma emergency department visits: A systematic review and meta-analysis. Environ. Sci. Pollut. Res. Int. 2016, 23, 843–850.

[122]

Liu, F. F.; Qu, F. F.; Zhang, H. R.; Chao, L. S.; Li, R. Q.; Yu, F. X.; Guan, J. T.; Yan, X. X. The effect and burden modification of heating on adult asthma hospitalizations in Shijiazhuang: A time-series analysis. Respir. Res. 2019, 20, 122.

[123]

Garcia, E.; Berhane, K. T.; Islam, T.; McConnell, R.; Urman, R.; Chen, Z. H.; Gilliland, F. D. Association of changes in air quality with incident asthma in children in California, 1993–2014. JAMA 2019, 321, 1906–1915.

[124]

Longhin, E.; Holme, J. A.; Gualtieri, M.; Camatini, M.; Øvrevik, J. Milan winter fine particulate matter (wPM2.5) induces IL-6 and IL-8 synthesis in human bronchial BEAS-2B cells, but specifically impairs IL-8 release. Toxicol. In Vitro 2018, 52, 365–373.

[125]

Ogino, K.; Zhang, R.; Takahashi, H.; Takemoto, K.; Kubo, M.; Murakami, I.; Wang, D. H.; Fujikura, Y. Allergic airway inflammation by nasal inoculation of particulate matter (PM2.5) in NC/Nga mice. PLoS One 2014, 9, e92710.

[126]

Jin, Y. F.; Zhu, M. H.; Guo, Y. L.; Foreman, D.; Feng, F. F.; Duan, G. C.; Wu, W. D.; Zhang, W. G. Fine particulate matter (PM2.5) enhances FcεRI-mediated signaling and mast cell function. Cell. Signal. 2019, 57, 102–109.

[127]

Zhao, Q. J.; Chen, H.; Yang, T.; Rui, W.; Liu, F.; Zhang, F.; Zhao, Y.; Ding, W. J. Direct effects of airborne PM2.5 exposure on macrophage polarizations. Biochim. Biophys. Acta (BBA)-Gen. Subj. 2016, 1860, 2835–2843.

[128]

Fernando, I. P. S.; Jayawardena, T. U.; Kim, H. S.; Lee, W. W.; Vaas, A. P. J. P.; De Silva, H. I. C.; Abayaweera, G. S.; Nanayakkara, C. M.; Abeytunga, D. T. U.; Lee, D. S. et al. Beijing urban particulate matter-induced injury and inflammation in human lung epithelial cells and the protective effects of fucosterol from Sargassum binderi (Sonder ex, J. Agardh). Environ. Res. 2019, 172, 150–158.

[129]

Sachdeva, K.; Do, D. C.; Zhang, Y.; Hu, X. Y.; Chen, J. S.; Gao, P. S. Environmental exposures and asthma development: Autophagy, mitophagy, and cellular senescence. Front. Immunol. 2019, 10, 2787.

[130]

Cao, X. W.; Wang, M.; Li, J. W.; Luo, Y.; Li, R. Q.; Yan, X. X.; Zhang, H. R. Fine particulate matter increases airway hyperresponsiveness through kallikrein-bradykinin pathway. Ecotoxicol. Environ. Saf. 2020, 195, 110491.

[131]

Mei, M.; Song, H. J.; Chen, L. N.; Hu, B.; Bai, R.; Xu, D. D.; Liu, Y.; Zhao, Y. L.; Chen, C. Y. Early-life exposure to three size-fractionated ultrafine and fine atmospheric particulates in Beijing exacerbates asthma development in mature mice. Part. Fibre Toxicol. 2018, 15, 13.

[132]

Fairley, K. J.; Purdy, R.; Kearns, S.; Anderson, S. E.; Meade, B. Exposure to the immunosuppresant, perfluorooctanoic acid, enhances the murine IgE and airway hyperreactivity response to ovalbumin. Toxicol. Sci. 2007, 97, 375–383.

[133]

Manson, M. L.; Säfholm, J.; James, A.; Johnsson, A. K.; Bergman, P.; Al-Ameri, M.; Orre, A. C.; Kärrman-Mårdh, C.; Dahlén, S. E.; Adner, M. IL-13 and IL-4, but not IL-5 nor IL-17A, induce hyperresponsiveness in isolated human small airways. J. Allergy Clin. Immunol. 2020, 145, 808–817.e2.

[134]

Miller, R. L.; Grayson, M. H.; Strothman, K. Advances in asthma: New understandings of asthma’s natural history, risk factors, underlying mechanisms, and clinical management. J. Allergy Clin. Immunol. 2021, 148, 1430–1441.

[135]

Dong, G. H.; Tung, K. Y.; Tsai, C. H.; Liu, M. M.; Wang, D.; Liu, W.; Jin, Y. H.; Hsieh, W. S.; Lee, Y. L.; Chen, P. C. Serum polyfluoroalkyl concentrations, asthma outcomes, and immunological markers in a case-control study of Taiwanese children. Environ. Health Perspect. 2013, 121, 507–513.

[136]

Kvalem, H. E.; Nygaard, U. C.; Lødrup Carlsen, K. C.; Carlsen, K. H.; Haug, L. S.; Granum, B. Perfluoroalkyl substances, airways infections, allergy and asthma related health outcomes—Implications of gender, exposure period and study design. Environ. Int. 2020, 134, 105259.

[137]

Zhu, Y.; Qin, X. D.; Zeng, X. W.; Paul, G.; Morawska, L.; Su, M. W.; Tsai, C. H.; Wang, S. Q.; Lee, Y. L.; Dong, G. H. Associations of serum perfluoroalkyl acid levels with T-helper cell-specific cytokines in children: By gender and asthma status. Sci. Total Environ. 2016, 559, 166–173.

[138]

Rundell, K. W.; Smoliga, J. M.; Bougault, V. Exercise-induced bronchoconstriction and the air we breathe. Immunol. Allergy Clin. North Am. 2018, 38, 183–204.

[139]

Yue, W. H.; Tong, L.; Liu, X. H.; Weng, X. Y.; Chen, X. Y.; Wang, D. Z.; Dudley, S. C.; Weir, E. K.; Ding, W. J.; Lu, Z. B. et al. Short term PM2.5 exposure caused a robust lung inflammation, vascular remodeling, and exacerbated transition from left ventricular failure to right ventricular hypertrophy. Redox Biol. 2019, 22, 101161.

[140]

Wang, S. M.; Zhou, Q. X.; Tian, Y. Z.; Hu, X. G. The lung microbiota affects pulmonary inflammation and oxidative stress induced by PM2.5 exposure. Environ. Sci. Technol. 2022, 56, 12368–12379.

[141]

Yang, H. M.; Antonini, J. M.; Barger, M. W.; Butterworth, L.; Roberts, B. R.; Ma, J. K.; Castranova, V.; Ma, J. Y. Diesel exhaust particles suppress macrophage function and slow the pulmonary clearance of Listeria monocytogenes in rats. Environ. Health Perspect. 2001, 109, 515–521.

[142]

Liu, J. G.; Chen, X. Y.; Dou, M. S.; He, H.; Ju, M. H.; Ji, S. M.; Zhou, J.; Chen, C. C.; Zhang, D. H.; Miao, C. H. et al. Particulate matter disrupts airway epithelial barrier via oxidative stress to promote Pseudomonas aeruginosa infection. J. Thorac. Dis. 2019, 11, 2617–2627.

[143]

Li, D. H.; Li, Y. J.; Li, G. L.; Zhang, Y.; Li, J.; Chen, H. S. Fluorescent reconstitution on deposition of PM2.5 in lung and extrapulmonary organs. Proc. Natl. Acad. Sci. USA 2019, 116, 2488–2493.

[144]

Singh, T. S.; Lee, S.; Kim, H. H.; Choi, J. K.; Kim, S. H. Perfluorooctanoic acid induces mast cell-mediated allergic inflammation by the release of histamine and inflammatory mediators. Toxicol. Lett. 2012, 210, 64–70.

[145]

Wang, L. Q.; Liu, T.; Yang, S.; Sun, L.; Zhao, Z. Y.; Li, L. Y.; She, Y. C.; Zheng, Y. Y.; Ye, X. Y.; Bao, Q. et al. Perfluoroalkyl substance pollutants activate the innate immune system through the AIM2 inflammasome. Nat. Commun. 2021, 12, 2915.

[146]

Impinen, A.; Longnecker, M. P.; Nygaard, U. C.; London, S. J.; Ferguson, K. K.; Haug, L. S.; Granum, B. Maternal levels of perfluoroalkyl substances (PFASs) during pregnancy and childhood allergy and asthma related outcomes and infections in the Norwegian Mother and Child (MoBa) cohort. Environ. Int. 2019, 124, 462–472.

[147]

Porter, A. K.; Kleinschmidt, S. E.; Andres, K. L.; Reusch, C. N.; Krisko, R. M.; Taiwo, O. A.; Olsen, G. W.; Longnecker, M. P. Antibody response to COVID-19 vaccines among workers with a wide range of exposure to per- and polyfluoroalkyl substances. Environ. Int. 2022, 169, 107537.

[148]

Lelieveld, J.; Pozzer, A.; Pöschl, U.; Fnais, M.; Haines, A.; Münzel, T. Loss of life expectancy from air pollution compared to other risk factors: A worldwide perspective. Cardiovasc. Res. 2020, 116, 1910–1917.

[149]

Chen, Y. C.; Wu, Y.; Qi, Y.; Liu, S. J. Cell death pathways: The variable mechanisms underlying fine particulate matter-induced cytotoxicity. ACS Nanosci. Au 2023, 3, 130–139.

[150]

Coleman, N. C.; Burnett, R. T.; Ezzati, M.; Marshall, J. D.; Robinson, A. L.; Pope III, C. A. Fine particulate matter exposure and cancer incidence: Analysis of SEER cancer registry data from 1992–2016. Environ. Health Perspect. 2020, 128, 107004.

[151]

Guo, H. G.; Chang, Z.; Wu, J. S.; Li, W. F. Air pollution and lung cancer incidence in China: Who are faced with a greater effect. Environ. Int. 2019, 132, 105077.

[152]

Luo, F.; Guo, H. Q.; Yu, H. Y.; Li, Y.; Feng, Y.; Wang, Y. PM2.5 organic extract mediates inflammation through the ERβ pathway to contribute to lung carcinogenesis in vitro and vivo. Chemosphere 2021, 263, 127867.

[153]

Guo, H. Q.; Feng, Y.; Yu, H. Y.; Xie, Y. C.; Luo, F.; Wang, Y. A novel lncRNA, loc107985872, promotes lung adenocarcinoma progression via the notch1 signaling pathway with exposure to traffic-originated PM2.5 organic extract. Environ. Pollut. 2020, 266, 115307.

[154]

Pan, J. Y.; Xue, Y. G.; Li, S. L.; Wang, L. X.; Mei, J.; Ni, D. Q.; Jiang, J. P.; Zhang, M.; Yi, S. Q.; Zhang, R. et al. PM2.5 induces the distant metastasis of lung adenocarcinoma via promoting the stem cell properties of cancer cells. Environ. Pollut. 2022, 296, 118718.

[155]

Kim, S.; Thapar, I.; Brooks, B. W. Epigenetic changes by per- and polyfluoroalkyl substances (PFAS). Environ. Pollut. 2021, 279, 116929.

[156]

Shatseva, T.; Lee, D. Y.; Deng, Z. Q.; Yang, B. B. MicroRNA miR-199a-3p regulates cell proliferation and survival by targeting caveolin-2. J. Cell Sci. 2011, 124, 2826–2836.

[157]

Mao, Z. X.; Xia, W.; Wang, J.; Chen, T.; Zeng, Q. Q.; Xu, B.; Li, W. Y.; Chen, X.; Xu, S. Q. Perfluorooctane sulfonate induces apoptosis in lung cancer A549 cells through reactive oxygen species-mediated mitochondrion-dependent pathway. J. Appl. Toxicol. 2013, 33, 1268–1276.

[158]

Kelly-Schuette, K. A.; Fomum-Mugri, L.; Walker, J.; Hoppe, A.; Mbanugo, C. C.; Nikroo, N.; Oboh, O.; Wright, G. P.; Chung, M.; Assifi, M. M. Tumor and serum levels of per- and polyfluoroalkyl (PFAS) in hepatobiliary and gastrointestinal malignancy. Am. J. Surg. 2022, 223, 514–518.

[159]

Xie, M. Y.; Sun, X. F.; Wu, C. C.; Huang, G. L.; Wang, P.; Lin, Z. Y.; Liu, Y. W.; Liu, L. Y.; Zeng, E. Y. Glioma is associated with exposure to legacy and alternative per- and polyfluoroalkyl substances. J. Hazard. Mater. 2023, 441, 129819.

[160]

Cao, L. P.; Guo, Y.; Chen, Y. C.; Hong, J. W.; Wu, J.; Jin, H. B. Per-/polyfluoroalkyl substance concentrations in human serum and their associations with liver cancer. Chemosphere 2022, 296, 134083.

[161]

Zhang, J. L.; Liu, C.; Zhao, G. R.; Li, M.; Ma, D.; Meng, Q. G.; Tang, W. L.; Huang, Q. R.; Shi, P. M.; Li, Y. Z. et al. PM2.5 synergizes with Pseudomonas aeruginosa to suppress alveolar macrophage function in mice through the mTOR pathway. Front. Pharmacol. 2022, 13, 924242.

[162]

Zhao, C.; Wang, Y.; Su, Z. L.; Pu, W. Y.; Niu, M. Y.; Song, S. Y.; Wei, L. L.; Ding, Y. B.; Xu, L. Z.; Tian, M. et al. Respiratory exposure to PM2.5 soluble extract disrupts mucosal barrier function and promotes the development of experimental asthma. Sci. Total Environ. 2020, 730, 139145.

[163]

Zhang, L.; He, X.; Xiong, Y.; Ran, Q.; Xiong, A. Y.; Wang, J. Y.; Wu, D. H.; Niu, B.; Li, G. P. Transcriptome-wide profiling discover: PM2.5 aggravates airway dysfunction through epithelial barrier damage regulated by Stanniocalcin 2 in an OVA-induced model. Ecotoxicol. Environ. Saf. 2021, 220, 112408.

[164]

He, X.; Zhang, L.; Hu, L. J.; Liu, S. B.; Xiong, A. Y.; Wang, J. Y.; Xiong, Y.; Li, G. PM2.5 aggravated OVA-induced epithelial tight junction disruption through Fas associated via death domain-dependent apoptosis in asthmatic mice. J. Asthma Allergy 2021, 14, 1411–1423.

[165]

Zhang, Y. T.; Zhang, L. K.; Chen, W. W.; Zhang, Y. Y.; Wang, X. M.; Dong, Y. Y.; Zhang, W. X.; Lin, X. X. Shp2 regulates PM2.5-induced airway epithelial barrier dysfunction by modulating ERK1/2 signaling pathway. Toxicol. Lett. 2021, 350, 62–70.

[166]

Li, F. F.; Shen, J.; Shen, H. J.; Zhang, X.; Cao, R.; Zhang, Y.; Qui, Q.; Lin, X. X.; Xie, Y. C.; Zhang, L. H. et al. Shp2 plays an important role in acute cigarette smoke-mediated lung inflammation. J. Immunol. 2012, 189, 3159–3167.

[167]

Salem, I. H.; Plante, S.; Gounni, A. S.; Rouabhia, M.; Chakir, J. A shift in the IL-6/STAT3 signalling pathway imbalance towards the SHP2 pathway in severe asthma results in reduced proliferation process. Cell. Signal. 2018, 43, 47–54.

[168]

Zhang, X.; Zhang, Y.; Tao, B.; Teng, L.; Li, Y. W.; Cao, R.; Gui, Q.; Ye, M. D.; Mou, X. Z.; Cheng, H. Q. et al. Loss of Shp2 in alveoli epithelia induces deregulated surfactant homeostasis, resulting in spontaneous pulmonary fibrosis. FASEB J. 2012, 26, 2338–2350.

[169]

Kim, S. S.; Kim, C. H.; Kim, J. W.; Kung, H. C.; Park, T. W.; Shin, Y. S.; Kim, J. D.; Ryu, S.; Kim, W. J.; Choi, Y. H. et al. Airborne particulate matter increases MUC5AC expression by downregulating Claudin-1 expression in human airway cells. BMB Rep. 2017, 50, 516–521.

[170]

Yu, H. J.; Lin, Y. N.; Zhong, Y.; Guo, X. L.; Lin, Y. Y.; Yang, S. Q.; Liu, J. L.; Xie, X. R.; Sun, Y. W.; Wang, D. et al. Impaired AT2 to AT1 cell transition in PM2.5-induced mouse model of chronic obstructive pulmonary disease. Respir. Res. 2022, 23, 70.

[171]

Barkauskas, C. E.; Cronce, M. J.; Rackley, C. R.; Bowie, E. J.; Keene, D. R.; Stripp, B. R.; Randell, S. H.; Noble, P. W.; Hogan, B. L. Type 2 alveolar cells are stem cells in adult lung. J. Clin. Invest. 2013, 123, 3025–3036.

[172]

Mason, R. J. Biology of alveolar type II cells. Respirology 2006, 11, S12–S15.

[173]

Desai, T. J.; Brownfield, D. G.; Krasnow, M. A. Alveolar progenitor and stem cells in lung development, renewal and cancer. Nature 2014, 507, 190–194.

[174]

Tolkach, P. G.; Basharin, V. A.; Chepur, S. V.; Gorshkov, A. N.; Sizova, D. T. Ultrastructural changes in the air-blood barrier of rats in acute intoxication with furoplast pyrolysis products. Bull. Exp. Biol. Med. 2020, 169, 270–275.

[175]

Lucas, J. H.; Wang, Q. X.; Rahman, I. Perfluorooctane sulfonic acid disrupts protective tight junction proteins via protein kinase D in airway epithelial cells. Toxicol. Sci. 2022, 190, 215–226.

[176]

Meng, G.; Zhao, J.; Wang, H. M.; Ding, R. G.; Zhang, X. C.; Huang, C. Q.; Ruan, J. X. Injury of cell tight junctions and changes of actin level in acute lung injury caused by the perfluoroisobutylene exposure and the role of myosin light chain kinase. J. Occup. Health 2011, 53, 250–257.

[177]

Kleinschmidt, E. G.; Schlaepfer, D. D. Focal adhesion kinase signaling in unexpected places. Curr. Opin. Cell Biol. 2017, 45, 24–30.

[178]
Respiratory System (Histophysiology, Evolution, Biochemistry, Pathology and Treatment of Bronchial Asthma): Textbook. Blagoveshchensk: Russia, 2010.
[179]

Tolkach, P. G.; Basharin, V. A.; Chepur, S. V.; Vladimirova, O. O.; Alekseeva, I. I.; Solovyeva, T. S. Mechanisms of pulmonary toxicity of perfluoro-n-alkane pyrolysis products with consideration of the structural features of the blood-air barriers. Bull. Exp. Biol. Med. 2020, 168, 345–348.

[180]

Kumar, V. Pulmonary innate immune response determines the outcome of inflammation during pneumonia and sepsis-associated acute lung injury. Front. Immunol. 2020, 11, 1722.

[181]

Liu, Y. N.; Yuan, Q.; Zhang, X. J.; Chen, Z. Q.; Jia, X. Y.; Wang, M.; Xu, T. T.; Wang, Z. X.; Jiang, J. X.; Ma, Q. Y. et al. Fine particulate matter (PM2.5) induces inhibitory memory alveolar macrophages through the AhR/IL-33 pathway. Cell. Immunol. 2023, 386, 104694.

[182]

Sun, L. C.; Fu, J. R.; Lin, S. H.; Sun, J. L.; Xia, L.; Lin, C. H.; Liu, L. J.; Zhang, C. Y.; Yang, L.; Xue, P. et al. Particulate matter of 2.5 μm or less in diameter disturbs the balance of TH17/regulatory T cells by targeting glutamate oxaloacetate transaminase 1 and hypoxia-inducible factor 1α in an asthma model. J. Allergy Clin. Immunol. 2020, 145, 402–414.

[183]

Dong, G. H.; Liu, M. M.; Wang, D.; Zheng, L.; Liang, Z. F.; Jin, Y. H. Sub-chronic effect of perfluorooctanesulfonate (PFOS) on the balance of type 1 and type 2 cytokine in adult C57BL6 mice. Arch. Toxicol. 2011, 85, 1235–1244.

[184]

Choy, D. F.; Hart, K. M.; Borthwick, L. A.; Shikotra, A.; Nagarkar, D. R.; Siddiqui, S.; Jia, G. Q.; Ohri, C. M.; Doran, E.; Vannella, K. M. et al. TH2 and TH17 inflammatory pathways are reciprocally regulated in asthma. Sci. Transl. Med. 2015, 7, 301ra129.

[185]

Szabo, P. A.; Dogra, P.; Gray, J. I.; Wells, S. B.; Connors, T. J.; Weisberg, S. P.; Krupska, I.; Matsumoto, R.; Poon, M. M. L.; Idzikowski, E. et al. Longitudinal profiling of respiratory and systemic immune responses reveals myeloid cell-driven lung inflammation in severe COVID-19. Immunity 2021, 54, 797–814.e6.

[186]

Qazi, M. R.; Bogdanska, J.; Butenhoff, J. L.; Nelson, B. D.; DePierre, J. W.; Abedi-Valugerdi, M. High-dose, short-term exposure of mice to perfluorooctanesulfonate (PFOS) or perfluorooctanoate (PFOA) affects the number of circulating neutrophils differently, but enhances the inflammatory responses of macrophages to lipopolysaccharide (LPS) in a similar fashion. Toxicology 2009, 262, 207–214.

[187]

Dewitt, J. C.; Copeland, C. B.; Strynar, M. J.; Luebke, R. W. Perfluorooctanoic acid-induced immunomodulation in adult C57BL/6J or C57BL/6N female mice. Environ. Health Perspect. 2008, 116, 644–650.

[188]

Son, H. Y.; Lee, S.; Tak, E. N.; Cho, H. S.; Shin, H. I.; Kim, S. H.; Yang, J. H. Perfluorooctanoic acid alters T lymphocyte phenotypes and cytokine expression in mice. Environ. Toxicol. 2009, 24, 580–588.

[189]

Liu, G.; Summer, R. Cellular metabolism in lung health and disease. Annu. Rev. Physiol. 2019, 81, 403–428.

[190]

Li, J. L.; Hu, Y. R.; Liu, L. J.; Wang, Q.; Zeng, J. H.; Chen, C. S. PM2.5 exposure perturbs lung microbiome and its metabolic profile in mice. Sci. Total Environ. 2020, 721, 137432.

[191]

Song, X. Y.; Liu, J. H.; Geng, N. B.; Shan, Y. C.; Zhang, B. Q.; Zhao, B. F.; Ni, Y. W.; Liang, Z.; Chen, J. P.; Zhang, L. H. et al. Multi-omics analysis to reveal disorders of cell metabolism and integrin signaling pathways induced by PM2.5. J. Hazard. Mater. 2022, 424, 127573.

[192]

Ning, X.; Ji, X. T.; Li, G. K.; Sang, N. Ambient PM2.5 causes lung injuries and coupled energy metabolic disorder. Ecotoxicol. Environ. Saf. 2019, 170, 620–626.

[193]

Yang, S. J.; Chen, R. C.; Zhang, L.; Sun, Q.; Li, R.; Gu, W. J.; Zhong, M. H.; Liu, Y.; Chen, L. C.; Sun, Q. H. et al. Lipid metabolic adaption to long-term ambient PM2.5 exposure in mice. Environ. Pollut. 2021, 269, 116193.

[194]

Sánchez-Soberón, F.; Cuykx, M.; Serra, N.; Linares, V.; Bellés, M.; Covaci, A.; Schuhmacher, M. In-vitro metabolomics to evaluate toxicity of particulate matter under environmentally realistic conditions. Chemosphere 2018, 209, 137–146.

[195]

Hu, R. J.; Zhang, L.; Qin, L.; Ding, H.; Li, R.; Gu, W. J.; Chen, R. C.; Zhang, Y. H.; Rajagoplan, S.; Zhang, K. Z. et al. Airborne PM2.5 pollution: A double-edged sword modulating hepatic lipid metabolism in middle-aged male mice. Environ. Pollut. 2023, 324, 121347.

[196]

Pan, Z. H.; Miao, W. Y.; Wang, C. Y.; Tu, W. Q.; Jin, C. Y.; Jin, Y. X. 6:2 Cl-PFESA has the potential to cause liver damage and induce lipid metabolism disorders in female mice through the action of PPAR-gamma. Environ. Pollut. 2021, 287, 117329.

[197]

Li, R. J; Wang, Y. X.; Chen, R. C.; Gu, W. J.; Zhang, L.; Gu, J. G.; Wang, Z. Y.; Liu, Y.; Sun, Q. H.; Zhang, K. Z. et al. Ambient fine particulate matter disrupts hepatic circadian oscillation and lipid metabolism in a mouse model. Environ. Pollut. 2020, 262, 114179.

[198]

Wang, Y. X.; Li, R.; Chen, R. C.; Gu, W. J.; Zhang, L.; Gu, J. G.; Wang, Z. Y.; Liu, Y.; Sun, Q. H.; Zhang, K. Z. et al. Ambient fine particulate matter exposure perturbed circadian rhythm and oscillations of lipid metabolism in adipose tissues. Chemosphere 2020, 251, 126392.

[199]

Alderete, T. L.; Jin, R.; Walker, D. I.; Valvi, D.; Chen, Z. H.; Jones, D. P.; Peng, C.; Gilliland, F. D.; Berhane, K.; Conti, D. V. et al. Perfluoroalkyl substances, metabolomic profiling, and alterations in glucose homeostasis among overweight and obese Hispanic children: A proof-of-concept analysis. Environ. Int. 2019, 126, 445–453.

[200]

Chen, Z. H.; Yang, T. Y.; Walker, D. I.; Thomas, D. C.; Qiu, C. Y.; Chatzi, L.; Alderete, T. L.; Kim, J. S.; Conti, D. V.; Breton, C. V. et al. Dysregulated lipid and fatty acid metabolism link perfluoroalkyl substances exposure and impaired glucose metabolism in young adults. Environ. Int. 2020, 145, 106091.

[201]

Hong, S. H.; Lee, S. H.; Yang, J. Y.; Lee, J. H.; Jung, K. K.; Seok, J. H.; Kim, S. H.; Nam, K. T.; Jeong, J.; Lee, J. K. et al. Orally administered 6: 2 chlorinated polyfluorinated ether sulfonate (F-53B) causes thyroid dysfunction in rats. Toxics 2020, 8, 54.

[202]

Zhang, H. X.; Zhou, X. J.; Sheng, N.; Cui, R. N.; Cui, Q. Q.; Guo, H.; Guo, Y.; Sun, Y.; Dai, J. Y. Subchronic hepatotoxicity effects of 6: 2 chlorinated polyfluorinated ether sulfonate (6: 2 Cl-PFESA), a novel perfluorooctanesulfonate (PFOS) alternative, on adult male mice. Environ. Sci. Technol. 2018, 52, 12809–12818.

[203]

Wang, X. Y.; Cui, X. J.; Zhao, Y. L.; Chen, C. Y. Nano-bio interactions: The implication of size-dependent biological effects of nanomaterials. Sci. China Life Sci. 2020, 63, 1168–1182.

[204]
http://www.gov.cn/zhengce/2022-12/30/content_5734728.htm (accessed Jun 15, 2023).
[205]
https://eur-lex.europa.eu/eli/reg/2019/1021/oj (accessed Jun 6, 2023).
[206]
https://toxicsinpackaging.org/model-legislation/model/ (accessed Jun 12, 2023).
[207]
https://apps.ecology.wa.gov/publications/SummaryPages/2104007.html (accessed May 13, 2023).
[208]
https://apps.ecology.wa.gov/publications/SummaryPages/2104048.html (accessed Jun 15, 2023).
[209]
https://www.revisor.mn.gov/statutes/cite/325F.075 (accessed Jun 15, 2023).
[210]
https://legiscan.com/RI/bill/H7438/2022 (accessed Jun 15, 2023).
[211]
https://news.3m.com/2022-12-20-3M-to-Exit-PFAS-Manufacturing-by-the-End-of-2025 (accessed Jun 17, 2023).
[212]

Janousek, R. M.; Lebertz, S.; Knepper, T. P. Previously unidentified sources of perfluoroalkyl and polyfluoroalkyl substances from building materials and industrial fabrics. Environ. Sci. :Process. Impacts 2019, 21, 1936–1945.

[213]

Dhore, R.; Murthy, G. S. Per/polyfluoroalkyl substances production, applications and environmental impacts. Bioresour. Technol. 2021, 341, 125808.

[214]

Medeiros, F. S. Jr; Mota, C.; Chaudhuri, P. Perfluoropropionic acid-driven nucleation of atmospheric molecules under ambient conditions. J. Phys. Chem. A 2022, 126, 8449–8458.

[215]

Park, S.; Lee, L. S.; Ross, I.; Hurst, J. Evaluating perfluorooctanesulfonate oxidation in permanganate systems. Environ. Sci. Pollut. Res. Int. 2020, 27, 13976–13984.

[216]

Hu, Y. B.; Lo, S. L.; Li, Y. F.; Lee, Y. C.; Chen, M. J.; Lin, J. C. Autocatalytic degradation of perfluorooctanoic acid in a permanganate-ultrasonic system. Water Res. 2018, 140, 148–157.

[217]

Shields, E. P.; Wallace, M. A. G. Low temperature destruction of gas-phase per- and polyfluoroalkyl substances using an alumina-based catalyst. J. Air Waste Manag. Assoc. 2023, 73, 525–532.

[218]

Li, C.; Mi, N.; Chen, Z. H.; Gu, C. Photodegradation of hexafluoropropylene oxide trimer acid under UV irradiation. J. Environ. Sci. 2020, 97, 132–140.

[219]

Verma, S.; Mezgebe, B.; Sahle-Demessie, E.; Nadagouda, M. N. Photooxidative decomposition and defluorination of perfluorooctanoic acid (PFOA) using an innovative technology of UV–vis/ZnxCu1−xFe2O4/oxalic acid. Chemosphere 2021, 280, 130660.

[220]

Liu, G. S.; Feng, C. J.; Shao, P. H. Degradation of perfluorooctanoic acid with hydrated electron by a heterogeneous catalytic system. Environ. Sci. Technol. 2022, 56, 6223–6231.

[221]

Wu, C. Y.; Klemes, M. J.; Trang, B.; Dichtel, W. R.; Helbling, D. E. Exploring the factors that influence the adsorption of anionic PFAS on conventional and emerging adsorbents in aquatic matrices. Water Res. 2020, 182, 115950.

[222]

Gao, K.; Zhuang, T. F.; Liu, X.; Fu, J. J.; Zhang, J. X.; Fu, J.; Wang, L. G.; Zhang, A. Q.; Liang, Y.; Song, M. Y. et al. Prenatal exposure to per- and polyfluoroalkyl substances (PFASs) and association between the placental transfer efficiencies and dissociation constant of serum proteins-PFAS complexes. Environ. Sci. Technol. 2019, 53, 6529–6538.

[223]

Shearer, J. J.; Callahan, C. L.; Calafat, A. M.; Huang, W. Y.; Jones, R. R.; Sabbisetti, V. S.; Freedman, N. D.; Sampson, J. N.; Silverman, D. T.; Purdue, M. P. et al. Serum concentrations of per- and polyfluoroalkyl substances and risk of renal cell carcinoma. J. Natl. Cancer Inst. 2021, 113, 580–587.

[224]

Donat-Vargas, C.; Bergdahl, I. A.; Tornevi, A.; Wennberg, M.; Sommar, J.; Kiviranta, H.; Koponen, J.; Rolandsson, O.; Akesson, A. Perfluoroalkyl substances and risk of type II diabetes: A prospective nested case-control study. Environ. Int. 2019, 123, 390–398.

[225]

Podder, A.; Sadmani, A. H. M. A.; Reinhart, D.; Chang, N. B.; Goel, R. Per and poly-fluoroalkyl substances (PFAS) as a contaminant of emerging concern in surface water: A transboundary review of their occurrences and toxicity effects. J. Hazard. Mater. 2021, 419, 126361.

[226]

Liu, Y. P.; Zhu, S.; Gu, Z. J.; Chen, C. Y.; Zhao, Y. L. Toxicity of manufactured nanomaterials. Particuology 2022, 69, 31–48.

Publication history
Copyright
Acknowledgements

Publication history

Received: 28 April 2023
Revised: 27 July 2023
Accepted: 28 July 2023
Published: 13 October 2023
Issue date: December 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the Major Research Plan-Integrated Program of National Natural Science Foundation of China (No. 92143301), the National Natural Science Foundation of China (No. 31971318), and Chinese Academy of Medical Sciences (CAMS) Innovation Fund for Medical Science (No. CIFMS 2019-I2M-5-018).

Return