Journal Home > Volume 17 , Issue 4

The anodic electrooxidation of ethanol to value-added acetate is an excellent example of replacing the oxygen evolution reaction to promote the cathodic hydrogen evolution reaction and save energy. Herein, we present a colloidal strategy to produce Ni-Fe bimetallic alloy nanoparticles (NPs) as efficient electrocatalysts for the electrooxidation of ethanol in alkaline media. Ni-Fe alloy NPs deliver a current density of 100 mA·cm−2 in a 1.0 M KOH solution containing 1.0 M ethanol merely at 1.5 V vs. reversible hydrogen electrode (RHE), well above the performance of other electrocatalysts in a similar system. Within continuous 10 h testing at this external potential, this electrode is able to produce an average of 0.49 mmol·cm−2·h−1 of acetate with an ethanol-to-acetate Faradaic efficiency of 80%. A series of spectroscopy techniques are used to probe the electrocatalytic process and analyze the electrolyte. Additionally, density functional theory (DFT) calculations demonstrate that the iron in the alloy NPs significantly enhances the electroconductivity and electron transfer, shifts the rate-limiting step, and lowers the energy barrier during the ethanol-to-acetate reaction pathway.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Unraveling the role of iron on Ni-Fe alloy nanoparticles during the electrocatalytic ethanol-to-acetate process

Show Author's information Junshan Li1,2Luming Li1,3Xinyu Ma4Jun Wang2Jun Zhao5Yu Zhang6Ren He6Yaoyue Yang4( )Andreu Cabot6,7( )Yongfa Zhu2,8( )
Institute for Advanced Study, Chengdu University, 610106 Chengdu, China
State Key Laboratory of Environmental-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China
College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
Hebei Key Laboratory of Photoelectric Control on Surface and Interface, College of Science, Hebei University of Science and Technology, Shijiazhuang 050018, China
Catalonia Institute for Energy Research-IREC, Sant Adrià de Besòs, Barcelona 08930, Catalonia, Spain
ICREA, Pg. Lluís Companys 23, Barcelona 08010, Catalonia, Spain
Department of Chemistry, Tsinghua University, Beijing 100084, China

Abstract

The anodic electrooxidation of ethanol to value-added acetate is an excellent example of replacing the oxygen evolution reaction to promote the cathodic hydrogen evolution reaction and save energy. Herein, we present a colloidal strategy to produce Ni-Fe bimetallic alloy nanoparticles (NPs) as efficient electrocatalysts for the electrooxidation of ethanol in alkaline media. Ni-Fe alloy NPs deliver a current density of 100 mA·cm−2 in a 1.0 M KOH solution containing 1.0 M ethanol merely at 1.5 V vs. reversible hydrogen electrode (RHE), well above the performance of other electrocatalysts in a similar system. Within continuous 10 h testing at this external potential, this electrode is able to produce an average of 0.49 mmol·cm−2·h−1 of acetate with an ethanol-to-acetate Faradaic efficiency of 80%. A series of spectroscopy techniques are used to probe the electrocatalytic process and analyze the electrolyte. Additionally, density functional theory (DFT) calculations demonstrate that the iron in the alloy NPs significantly enhances the electroconductivity and electron transfer, shifts the rate-limiting step, and lowers the energy barrier during the ethanol-to-acetate reaction pathway.

Keywords: electrocatalysis, ethanol oxidation reaction, biorefinery, alloy nanoparticle, acetate

References(72)

[1]

You, B.; Sun, Y. J. Innovative strategies for electrocatalytic water splitting. Acc. Chem. Res. 2018, 51, 1571–1580.

[2]

McCrory, C. C. L.; Jung, S.; Ferrer, I. M.; Chatman, S. M.; Peters, J. C.; Jaramillo, T. F. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J. Am. Chem. Soc. 2015, 137, 4347–4357.

[3]

Wang, X.; Xing, C. C.; Liang, Z. F.; Guardia, P.; Han, X.; Zuo, Y.; Llorca, J.; Arbiol, J.; Li, J. S.; Cabot, A. Activating the lattice oxygen oxidation mechanism in amorphous molybdenum cobalt oxide nanosheets for water oxidation. J. Mater. Chem. A 2022, 10, 3659–3666.

[4]

Wang, X.; Han, X.; Du, R. F.; Xing, C. C.; Qi, X. Q.; Liang, Z. F.; Guardia, P.; Arbiol, J.; Cabot, A.; Li, J. S. Cobalt molybdenum nitride-based nanosheets for seawater splitting. ACS Appl. Mater. Interfaces 2022, 14, 41924–41933.

[5]

He, R.; Yang, L. L.; Zhang, Y.; Wang, X.; Lee, S.; Zhang, T.; Li, L. X.; Liang, Z. F.; Chen, J. W.; Li, J. S. et al. A CrMnFeCoNi high entropy alloy boosting oxygen evolution/reduction reactions and zinc-air battery performance. Energy Storage Mater. 2023, 58, 287–298.

[6]

Yan, D. F.; Mebrahtu, C.; Wang, S. Y.; Palkovits, R. Innovative electrochemical strategies for hydrogen production: From electricity input to electricity output. Angew. Chem., Int. Ed. 2023, 62, e202214333.

[7]

Kahlstorf, T.; Hausmann, J. N.; Sontheimer, T.; Menezes, P. W. Challenges for hybrid water electrolysis to replace the oxygen evolution reaction on an industrial scale. Glob. Chall. 2023, 7, 2200242.

[8]

Wu, X. H.; Wang, Y.; Wu, Z. S. Design principle of electrocatalysts for the electrooxidation of organics. Chem 2022, 8, 2594–2629.

[9]

Liu, Y. P.; Zhao, S. F.; Guo, S. X.; Bond, A. M.; Zhang, J.; Zhu, G. B.; Hill, C. L.; Geletii, Y. V. Electrooxidation of ethanol and methanol using the molecular catalyst [{Ru4O4(OH)2(H2O)4}(γ-SiW10O36)2]10−. J. Am. Chem. Soc. 2016, 138, 2617–2628.

[10]

Qi, Y. B.; Zhang, Y.; Yang, L.; Zhao, Y. H.; Zhu, Y. H.; Jiang, H. L.; Li, C. Z. Insights into the activity of nickel boride/nickel heterostructures for efficient methanol electrooxidation. Nat. Commun. 2022, 13, 4602.

[11]

Prabhu, P.; Wan, Y.; Lee, J. M. Electrochemical conversion of biomass derived products into high-value chemicals. Matter 2020, 3, 1162–1177.

[12]

Chen, G. B.; Li, X. D.; Feng, X. L. Upgrading organic compounds through the coupling of electrooxidation with hydrogen evolution. Angew. Chem., Int. Ed. 2022, 61, e202209014.

[13]

Li, J. S.; Li, L. M.; Ma, X. Y.; Han, X.; Xing, C. C.; Qi, X. Q.; He, R.; Arbiol, J.; Pan, H. Y.; Zhao, J. et al. Selective ethylene glycol oxidation to formate on nickel selenide with simultaneous evolution of hydrogen. Adv. Sci. 2023, 10, 2300841.

[14]

Sun, H. C.; Zhang, W.; Li, J. G.; Li, Z. S.; Ao, X.; Xue, K. H.; Ostrikov, K. K.; Tang, J.; Wang, C. D. Rh-engineered ultrathin NiFe-LDH nanosheets enable highly-efficient overall water splitting and urea electrolysis. Appl. Catal. B:Environ. 2021, 284, 119740.

[15]

Li, D.; Zhou, X. M.; Liu, L. L.; Ruan, Q. D.; Zhang, X. L.; Wang, B.; Xiong, F. Y.; Huang, C.; Chu, P. K. Reduced anodic energy depletion in electrolysis by urea and water co-oxidization on NiFe-LDH: Activity origin and plasma functionalized strategy. Appl. Catal. B: Environ. 2023, 324, 122240.

[16]

Yi, Y. N.; Li, J. S.; Cui, C. H. Trimetallic FeCoNi disulfide nanosheets for CO2-emission-free methanol conversion. Chin. Chem. Lett. 2022, 33, 1006–1010.

[17]

You, B.; Liu, X.; Jiang, N.; Sun, Y. J. A general strategy for decoupled hydrogen production from water splitting by integrating oxidative biomass valorization. J. Am. Chem. Soc. 2016, 138, 13639–13646.

[18]

Liu, J. F.; Wang, Q. X.; Li, T.; Wang, Y.; Li, H. M.; Cabot, A. PdMoSb trimetallene as high-performance alcohol oxidation electrocatalyst. Nano Res. 2023, 16, 2041–2048.

[19]

Wang, Q. X.; Li, T.; Yan, S. X.; Zhang, W. J.; Lv, G. A.; Xu, H.; Li, H. M.; Wang, Y.; Liu, J. F. Boosting hydrogen production by selective anodic electrooxidation of ethanol over trimetallic PdSbBi nanoparticles: Composition matters. Inorg. Chem. 2022, 61, 16211–16219.

[20]

Li, J. S.; Wang, X.; Xing, C. C.; Li, L. M.; Mu, S. J.; Han, X.; He, R.; Liang, Z. F.; Martinez, P.; Yi, Y. N. et al. Electrochemical reforming of ethanol with acetate Co-production on nickel cobalt selenide nanoparticles. Chem. Eng. J. 2022, 440, 135817.

[21]

Yoneda, N.; Kusano, S.; Yasui, M.; Pujado, P.; Wilcher, S. Recent advances in processes and catalysts for the production of acetic acid. Appl. Catal. A: Gen. 2001, 221, 253–265.

[22]

Sun, H. N.; Li, L. L.; Chen, Y. H.; Kim, H.; Xu, X. M.; Guan, D. Q.; Hu, Z. W.; Zhang, L. J.; Shao, Z. P.; Jung, W. Boosting ethanol oxidation by NiOOH-CuO nano-heterostructure for energy-saving hydrogen production and biomass upgrading. Appl. Catal. B: Environ. 2023, 325, 122388.

[23]

Oh, M. H.; Yu, T.; Yu, S. H.; Lim, B.; Ko, K. T.; Willinger, M. G.; Seo, D. H.; Kim, B. H.; Cho, M. G.; Park, J. H. et al. Galvanic replacement reactions in metal oxide nanocrystals. Science 2013, 340, 964–968.

[24]

Tong, Y. Y.; Yan, X.; Liang, J.; Dou, S. X. Metal-based electrocatalysts for methanol electro-oxidation: Progress, opportunities, and challenges. Small 2021, 17, 1904126.

[25]

Roger, I.; Shipman, M. A.; Symes, M. D. Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat. Rev. Chem. 2017, 1, 0003.

[26]

Bender, M. T.; Lam, Y. C.; Hammes-Schiffer, S.; Choi, K. S. Unraveling two pathways for electrochemical alcohol and aldehyde oxidation on NiOOH. J. Am. Chem. Soc. 2021, 142, 21538–21547.

[27]

Vij, V.; Sultan, S.; Harzandi, A. M.; Meena, A.; Tiwari, J. N.; Lee, W. G.; Yoon, T.; Kim, K. S. Nickel-based electrocatalysts for energy-related applications: Oxygen reduction, oxygen evolution, and hydrogen evolution reactions. ACS Catal. 2017, 7, 7196–7225.

[28]

Wu, D.; Hao, J.; Song, Z. X.; Fu, X. Z.; Luo, J. L. All roads lead to Rome: An energy-saving integrated electrocatalytic CO2 reduction system for concurrent value-added formate production. Chem. Eng. J. 2021, 412, 127893.

[29]

Li, J. S.; Wei, R. L.; Wang, X.; Zuo, Y.; Han, X.; Arbiol, J.; Llorca, J.; Yang, Y. Y.; Cabot, A.; Cui, C. H. Selective methanol-to-formate electrocatalytic conversion on branched nickel carbide. Angew. Chem., Int. Ed. 2020, 59, 20826–20830.

[30]

Li, J. S.; Tian, X.; Wang, X.; Zhang, T.; Spadaro, M. C.; Arbiol, J.; Li, L. M.; Zuo, Y.; Cabot, A. Electrochemical conversion of alcohols into acidic commodities on nickel sulfide nanoparticles. Inorg. Chem. 2022, 61, 13433–13441.

[31]

Liu, W. J.; Xu, Z. R.; Zhao, D. T.; Pan, X. Q.; Li, H. C.; Hu, X.; Fan, Z. Y.; Wang, W. K.; Zhao, G. H.; Jin, S. et al. Efficient electrochemical production of glucaric acid and H2 via glucose electrolysis. Nat. Commun. 2020, 11, 265.

[32]

Chen, C. Z.; Wu, D. C.; Liu, P.; Li, J.; Xia, H. H.; Zhou, M. H.; Jiang, J. C. Eco-friendly preparation of ultrathin biomass-derived Ni3S2-doped carbon nanosheets for selective hydrogenolysis of lignin model compounds in the absence of hydrogen. Green Chem. 2021, 23, 3090–3103.

[33]

Li, J. S.; Xing, C. C.; Zhang, Y.; Zhang, T.; Spadaro, M. C.; Wu, Q. B.; Yi, Y. N.; He, S. L.; Llorca, J.; Arbiol, J. et al. Nickel iron diselenide for highly efficient and selective electrocatalytic conversion of methanol to formate. Small 2021, 17, 2006623.

[34]

Lv, L.; Li, Z. S.; Xue, K. H.; Ruan, Y. J.; Ao, X.; Wan, H. Z.; Miao, X. S.; Zhang, B. S.; Jiang, J. J.; Wang, C. D. et al. Tailoring the electrocatalytic activity of bimetallic nickel-iron diselenide hollow nanochains for water oxidation. Nano Energy 2018, 47, 275–284.

[35]

Mondal, B.; Karjule, N.; Singh, C.; Shimoni, R.; Volokh, M.; Hod, I.; Shalom, M. Unraveling the mechanisms of electrocatalytic oxygenation and dehydrogenation of organic molecules to value-added chemicals over a Ni-Fe oxide catalyst. Adv. Energy Mater. 2021, 11, 2101858.

[36]

Dionigi, F.; Strasser, P. NiFe-based (oxy)hydroxide catalysts for oxygen evolution reaction in non-acidic electrolytes. Adv. Energy Mater. 2016, 6, 1600621.

[37]

Hao, Y. M.; Li, Y. F.; Wu, J. X.; Meng, L. S.; Wang, J. L.; Jia, C. L.; Liu, T.; Yang, X. J.; Liu, Z. P.; Gong, M. Recognition of surface oxygen intermediates on NiFe oxyhydroxide oxygen-evolving catalysts by homogeneous oxidation reactivity. J. Am. Chem. Soc. 2021, 143, 1493–1502.

[38]

Sadiki, A.; Vo, P.; Hu, S. Z.; Copenhaver, T. S.; Scudiero, L.; Ha, S.; Haan, J. L. Increased electrochemical oxidation rate of alcohols in alkaline media on palladium surfaces electrochemically modified by antimony, lead, and tin. Electrochim. Acta 2014, 139, 302–307.

[39]

Han, Q. L.; Luo, Y. H.; Li, J. D.; Du, X. H.; Sun, S. J.; Wang, Y. J.; Liu, G. H.; Chen, Z. W. Efficient NiFe-based oxygen evolution electrocatalysts and origin of their distinct activity. Appl. Catal. B: Environ. 2022, 304, 120937.

[40]

Wei, M.; Sun, Y. Y.; Ai, F.; Xi, S. B.; Zhang, J. Y.; Wang, J. K. Stretchable high-entropy alloy nanoflowers enable enhanced alkaline hydrogen evolution catalysis. Appl. Catal. B: Environ. 2023, 334, 122814.

[41]

Liu, X. J.; Zhao, X. M.; Cao, S. Y.; Xu, M. Y.; Wang, Y. J.; Xue, W.; Li, J. D. Local hydroxyl enhancement design of NiFe sulfide electrocatalyst toward efficient oxygen evolution reaction. Appl. Catal. B: Environ. 2023, 331, 122715.

[42]

Peng, W. L.; Li, Y. Y.; Yuan, B.; Hu, R. Z.; Luo, Z. T.; Zhu, M. A dealloyed bulk FeNi pattern with exposed highly active facets for cost-effective oxygen evolution. Appl. Catal. B: Environ. 2023, 323, 122171.

[43]

Fafarman, A. T.; Koh, W. K.; Diroll, B. T.; Kim, D. K.; Ko, D. K.; Oh, S. J.; Ye, X. C.; Doan-Nguyen, V.; Crump, M. R.; Reifsnyder, D. C. et al. Thiocyanate-capped nanocrystal colloids: Vibrational reporter of surface chemistry and solution-based route to enhanced coupling in nanocrystal solids. J. Am. Chem. Soc. 2011, 133, 15753–15761.

[44]

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

[45]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[46]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[47]

Li, J. S.; Zuo, Y.; Liu, J. F.; Wang, X.; Yu, X. T.; Du, R. F.; Zhang, T.; Infante-Carrió, M. F.; Tang, P. Y.; Arbiol, J. et al. Superior methanol electrooxidation performance of (110)-faceted nickel polyhedral nanocrystals. J. Mater. Chem. A 2019, 7, 22036–22043.

[48]

Li, J. S.; Xu, X. J.; Yu, X. T.; Han, X.; Zhang, T.; Zuo, Y.; Zhang, C. Q.; Yang, D. W.; Wang, X.; Luo, Z. S. et al. Monodisperse CoSn and NiSn nanoparticles supported on commercial carbon as anode for lithium- and potassium-ion batteries. ACS Appl. Mater. Interfaces 2020, 12, 4414–4422.

[49]

Li, J. S.; Xu, X. J.; Luo, Z. S.; Zhang, C. Q.; Zuo, Y.; Zhang, T.; Tang, P. Y.; Infante-Carrió, M. F.; Arbiol, J.; Llorca, J. et al. Co-Sn nanocrystalline solid solutions as anode materials in lithium-ion batteries with high pseudocapacitive contribution. ChemSusChem 2019, 12, 1451–1458.

[50]

Du, Y. S.; Cheng, G. Z.; Luo, W. Colloidal synthesis of urchin-like Fe doped NiSe2 for efficient oxygen evolution. Nanoscale 2017, 9, 6821–6825.

[51]

Zhou, J.; Yuan, L. W.; Wang, J. W.; Song, L. L.; You, Y.; Zhou, R.; Zhang, J. J.; Xu, J. Combinational modulations of NiSe2 nanodendrites by phase engineering and iron-doping towards an efficient oxygen evolution reaction. J. Mater. Chem. A 2020, 8, 8113–8120.

[52]

Xu, X.; Song, F.; Hu, X. L. A nickel iron diselenide-derived efficient oxygen-evolution catalyst. Nat. Commun. 2016, 7, 12324.

[53]

MacArthur, D. M. The hydrated nickel hydroxide electrode potential sweep experiments. J. Electrochem. Soc. 1970, 117, 422.

[54]

Zhang, M. R.; Zhu, J. P.; Wan, R.; Liu, B.; Zhang, D. D.; Zhang, C.; Wang, J. P.; Niu, J. Y. Synergistic effect of nickel oxyhydroxide and tungsten carbide in electrocatalytic alcohol oxidation. Chem. Mater. 2022, 34, 959–969.

[55]

Zhou, Y. F.; Shen, Y.; Li, H. Y. Effects of metallic impurities in alkaline electrolytes on electro-oxidation of water and alcohol molecules. J. Electrochem. Soc. 2021, 168, 124516.

[56]

Dai, L.; Qin, Q.; Zhao, X. J.; Xu, C. F.; Hu, C. Y.; Mo, S. G.; Wang, Y. O.; Lin, S. C.; Tang, Z. C.; Zheng, N. F. Electrochemical partial reforming of ethanol into ethyl acetate using ultrathin Co3O4 nanosheets as a highly selective anode catalyst. ACS Cent. Sci. 2016, 2, 538–544.

[57]

Sun, S. N.; Zhou, Y.; Hu, B. L.; Zhang, Q. C.; Xu, Z. J. Ethylene glycol and ethanol oxidation on spinel Ni-Co oxides in alkaline. J. Electrochem. Soc. 2016, 163, H99–H104.

[58]

Yu, J.; Ni, Y. H.; Zhai, M. H. Simple solution-combustion synthesis of Ni-NiO@C nanocomposites with highly electrocatalytic activity for methanol oxidation. J. Phys. Chem. Solids 2018, 112, 119–126.

[59]

Wu, D. F.; Zhang, W.; Cheng, D. J. Facile synthesis of Cu/NiCu electrocatalysts integrating alloy, core–shell, and one-dimensional structures for efficient methanol oxidation reaction. ACS Appl. Mater. Interfaces 2017, 9, 19843–19851.

[60]

Rahim, M. A. A.; Hameed, R. M. A.; Khalil, M. W. Nickel as a catalyst for the electro-oxidation of methanol in alkaline medium. J. Power Sources 2004, 134, 160–169.

[61]

Xiao, L.; Lu, J. T.; Liu, P. F.; Zhuang, L.; Yan, J. W.; Hu, Y. G.; Mao, B. W.; Lin, C. J. Proton diffusion determination and dual structure model for nickel hydroxide based on potential step measurements on single spherical beads. J. Phys. Chem. B 2005, 109, 3860–3867.

[62]

Benck, J. D.; Chen, Z. B.; Kuritzky, L. Y.; Forman, A. J.; Jaramillo, T. F. Amorphous molybdenum sulfide catalysts for electrochemical hydrogen production: Insights into the origin of their catalytic activity. ACS Catal. 2012, 2, 1916–1923.

[63]

Yang, Y. Y.; Ren, J.; Li, Q. X.; Zhou, Z. Y.; Sun, S. G.; Cai, W. B. Electrocatalysis of ethanol on a Pd electrode in alkaline media: An in situ attenuated total reflection surface-enhanced infrared absorption spectroscopy study. ACS Catal. 2014, 4, 798–803.

[64]

Kavanagh, R.; Cao, X. M.; Lin, W. F.; Hardacre, C.; Hu, P. Origin of low CO2 selectivity on platinum in the direct ethanol fuel cell. Angew. Chem., Int. Ed. 2012, 51, 1572–1575.

[65]

Kim, I.; Han, O. H.; Chae, S. A.; Paik, Y.; Kwon, S. H.; Lee, K. S.; Sung, Y. E.; Kim, H. Catalytic reactions in direct ethanol fuel cells. Angew. Chem., Int. Ed. 2011, 50, 2270–2274.

[66]

Colmati, F.; Tremiliosi-Filho, G.; Gonzalez, E. R.; Berná, A.; Herrero, E.; Feliu, J. M. The role of the steps in the cleavage of the C–C bond during ethanol oxidation on platinum electrodes. Phys. Chem. Chem. Phys. 2009, 11, 9114–9123.

[67]

Tkalych, A. J.; Zhuang, H. L.; Carter, E. A. A density functional + U assessment of oxygen evolution reaction mechanisms on β-NiOOH. ACS Catal. 2017, 7, 5329–5339.

[68]

Friebel, D.; Louie, M. W.; Bajdich, M.; Sanwald, K. E.; Cai, Y.; Wise, A. M.; Cheng, M. J.; Sokaras, D.; Weng, T. C.; Alonso-Mori, R. et al. Identification of highly active Fe sites in (Ni, Fe)OOH for electrocatalytic water splitting. J. Am. Chem. Soc. 2015, 137, 1305–1313.

[69]

Trotochaud, L.; Young, S. L.; Ranney, J. K.; Boettcher, S. W. Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: The role of intentional and incidental iron incorporation. J. Am. Chem. Soc. 2014, 136, 6744–6753.

[70]

Trześniewski, B. J.; Diaz-Morales, O.; Vermaas, D. A.; Longo, A.; Bras, W.; Koper, M. T. M.; Smith, W. A. In situ observation of active oxygen species in Fe-containing Ni-based oxygen evolution catalysts: The effect of pH on electrochemical activity. J. Am. Chem. Soc. 2015, 137, 15112–15121.

[71]

Zhang, W. J.; Hu, Y.; Ma, L. B.; Zhu, G. Y.; Wang, Y. R.; Xue, X. L.; Chen, R. P.; Yang, S. Y.; Jin, Z. Progress and perspective of electrocatalytic CO2 reduction for renewable carbonaceous fuels and chemicals. Adv. Sci. 2018, 5, 1700275.

[72]

Liang, Z. F.; Jiang, D. C.; Wang, X.; Shakouri, M.; Zhang, T.; Li, Z. J.; Tang, P. Y.; Llorca, J.; Liu, L. J.; Yuan, Y. P. et al. Molecular engineering to tune the ligand environment of atomically dispersed nickel for efficient alcohol electrochemical oxidation. Adv. Funct. Mater. 2021, 31, 2106349.

File
12274_2023_6049_MOESM1_ESM.pdf (2.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 21 June 2023
Revised: 21 July 2023
Accepted: 27 July 2023
Published: 18 August 2023
Issue date: April 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the Natural Science Foundation of Sichuan Province (No. 2022NSFSC1229) and the open project from Hebei Key Laboratory of Photoelectric Control on Surface and Interface (No. ZD2022003). J. S. L. thanks the project funded by China Postdoctoral Science Foundation (project No. 2023MD734228). It was also supported by the European Regional Development Funds and by the Spanish Ministerio de Ciencia e Innovación through the project COMBENERGY (No. PID2019-105490RB-C32). Y. Y. Y. acknowledges funding from the National Natural Science Foundation of China (NSFC, No. 22172121) and the Fundamental Research Funds for the Central Universities, Southwest Minzu University (No. xiao2021102).

Return